
Datasheet | VOS2000 lens series

Industrial-grade high-resolution C-mount lens of the VOS2000 series with broadband anti-reflection coating

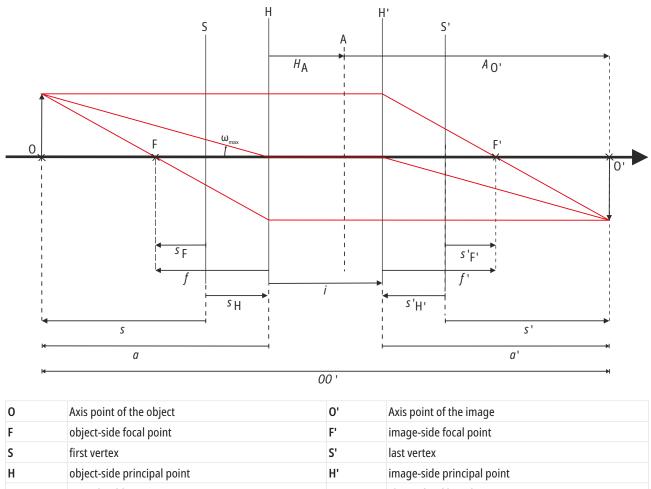
Basic data	Value
Focal length (mm)	16.2
Resolution (µm)	2
f-number	1.6 16.0 (continuous)
Working distance (mm)	150 infinity
Image circle diameter (mm)	11
Largest suitable sensor	2/3" with 8.1 MP

Mechanical data	Value
Total length (near - far) (mm)	44.4 44.5
Length from lens shoulder (mm)	38.0 39.6
Weight (g)	110
Diameter (mm)	42
Connection	C-mount
Filter thread	M35.5x0.5

Environmental conditions	Value
Vibration resistance ¹ (G)	10
Operating temperature ² (°C)	0 60
Storage temperature ³ (°C)	-10 60

 $^{^{1}}$ according to JISC60068-2-6 Freq. 10 - 150 [Hz], Test time: X,Y,X axis direction 20 cycles / 8 min total 160 min x 3 = 480 min. 2 relative humidity 20 ... 70%, non-condensing

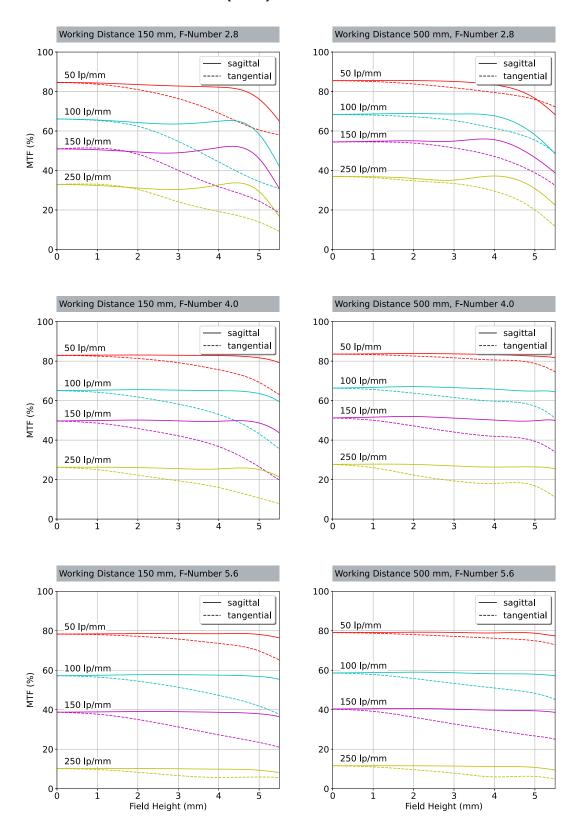
³non-condensing

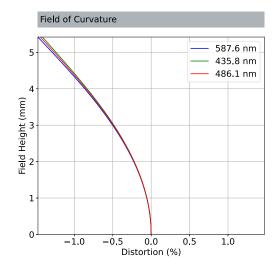

Optical data	Symbol	Nominal object distance	Minimum object distance
Working distance (mm)		500	150
Object distance ¹ (mm)	S	507.0	157.0
Focal length (mm)	f,f'	16.2	16.2
Object-side focal length (mm)	S _F	-12.24	-12.24
Image-side focal length (mm)	s' _{F'}	12.16	13.20
Back focal length of the object-side principal plane (mm)	S _H	28.4	28.4
Back focal length of the image-side principal plane (mm)	S' _{H'}	4.50	4.50
Interstitium (mm)	i	2.20	2.20
Distance from object to image (mm)		554.26	205.30
Object distance (mm)	а	535.4	185.4
Image distance (mm)	a'	16.7	17.7
f-number		1.6 16.0	
Back focal length of the entrance pupil (mm)	S _{EP}	18.9	18.9
Back focal length of the exit pupil (mm)	s' _{AP}	28.1	28.1
Diameter of the entrance pupil (mm)		10.20	10.20
Diameter of the exit pupil (mm)		25.00	25.00
Angle of view² (degrees)	ω_{max}	37.59	37.59
Lateral magnification	β΄	0.031	0.095
Distortion (%)		-0.47	-0.67
Depth of field ³ (mm)		131.9	14.4
Resolution ⁴ (µm)		2	
Relative illumination (%)		32.75	36.61
Image circle diameter (mm)		11	
Sensor size (inch)		2/3	
Flange focal length (mm)	A _{0'}	17.526	
Distance between object-side principal plane and lens shoulder (mm)	H_{A}	1.33	2.37
Available spectral range (nm)		420 1050	

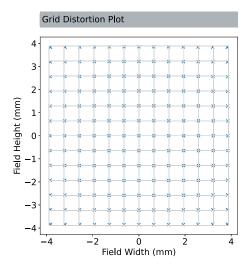
¹ identical with the *object distance* according to DIN 1335:2003-12 ² identical with the double *object field angle* according to DIN 1335:2003-12

³ at a circle of confusion diameter of 0.04 mm

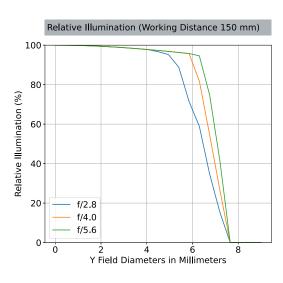
⁴ at 550 nm

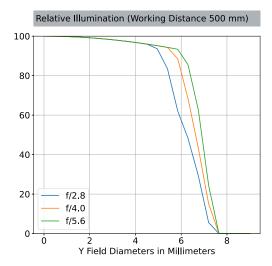

Explanation of symbols

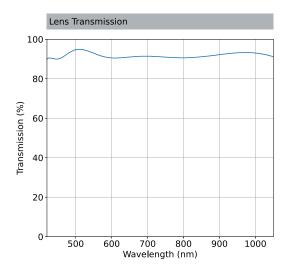

0	Axis point of the object	0'	Axis point of the image
F	object-side focal point	F'	image-side focal point
S	first vertex	S'	last vertex
Н	object-side principal point	H'	image-side principal point
Α	Lens shoulder	A 0'	Flange focal length
S _F	object-side back focal length	S' _{F'}	image-side back focal length
f	object-side focal length	f'	image-side focal length
S _H	Back focal length of the object-side principal point	S ' _{H'}	Back focal length of the image-side principal point
S	Object distance	s'	Flange focal length
a	Object distance	a'	Image distance
H _A	Distance of the object-side principal point to the flange surface	i	Interstitium
ω _{max}	object-side field angle	00'	Distance of the axis points of object and image


Note: directional routes are indicated by arrows with an arrowhead.

Modulation transfer functions (MTF)




Distortion



Relative illumination

Transmission

VOS2000-1616	https://www.beckhoff.com
S® and XPlanar® are registered trademark	SD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, is of and licensed by Beckhoff Automation GmbH. Other designations used in this publication may be ir own purposes could violate the rights of the owners.
	pp

© Beckhoff Automation GmbH & Co. KG 11/10/2022

The information provided in this brochure contains merely general descriptions or characteristics of performance which in case of actual application do not always apply as described or which may change as a result of further development of the products. An obligation to provide the respective characteristics shall only exist if expressively agreed in the terms of contract.