
Manual | EN

TE1000
TwinCAT 3 | PLC Library: Tc3_Module

2023-06-13 | Version: 1.4.0

Table of contents

TE1000 3Version: 1.4.0

Table of contents
1 Foreword.. 5

1.1 Notes on the documentation ... 5
1.2 For your safety .. 6
1.3 Notes on information security.. 7

2 Introduction ... 8

3 Function blocks... 9
3.1 TcBaseModuleRegistered... 9

3.1.1 TcAddRef ... 9
3.1.2 TcGetObjectId .. 10
3.1.3 TcGetObjectName ... 10
3.1.4 TcGetObjPara .. 11
3.1.5 TcGetObjState ... 11
3.1.6 TcQueryInterface ... 12
3.1.7 TcRelease .. 13
3.1.8 TcSetObjId ... 13
3.1.9 TcSetObjectName.. 14
3.1.10 TcSetObjPara... 14
3.1.11 TcSetObjState.. 15

3.2 TcBaseModuleRegistered2... 15
3.2.1 TcAddRef ... 16
3.2.2 TcGetObjectId .. 16
3.2.3 TcGetObjectName ... 17
3.2.4 TcGetObjPara .. 18
3.2.5 TcGetObjState ... 18
3.2.6 TcQueryInterface ... 19
3.2.7 TcRelease .. 20
3.2.8 TcSetObjId ... 20
3.2.9 TcSetObjectName.. 21
3.2.10 TcSetObjPara... 21
3.2.11 TcSetObjState.. 22

4 Functions ... 23
4.1 FW_ObjMgr_CreateAndInitInstance ... 23
4.2 FW_ObjMgr_CreateInstance .. 24
4.3 FW_ObjMgr_DeleteInstance... 25
4.4 FW_ObjMgr_GetObjectInstance ... 25
4.5 FW_SafeRelease .. 26
4.6 FAILED.. 27
4.7 SUCCEEDED.. 28
4.8 ITCUNKNOWN_TO_PVOID ... 28
4.9 PVOID_TO_ITCUNKNOWN ... 29
4.10 GuidsEqual.. 29

5 Global Constants... 31
5.1 GVL ... 31

Table of contents

TE10004 Version: 1.4.0

5.2 Global_Version.. 31

6 Error Codes ... 32
6.1 ADS Return Codes.. 32

7 Samples ... 36
7.1 TcCOM_Sample01_PlcToPlc ... 36

7.1.1 Creating an FB which provides its functionality globally in the first PLC.......................... 37
7.1.2 Creating an FB which likewise offers this functionality there as a simple proxy in the sec-

ond PLC, ... 41
7.1.3 Execution of the sample project ... 44

7.2 TcCOM_Sample02_PlcToCpp.. 46
7.2.1 Instantiating a TwinCAT++ class as a TwinCAT TcCOM Object 46
7.2.2 Creating an FB in the PLC that, as a simple proxy, offers the functionality of the C++ ob-

ject.. 47
7.2.3 Execution of the sample project ... 49

7.3 TcCOM_Sample03_PlcCreatesCpp ... 50
7.3.1 Provision of a TwinCAT C++ driver and its classes ... 51
7.3.2 Creating an FB in the PLC that creates the C++ object and offers its functionality 52
7.3.3 Execution of the sample project ... 54

7.4 TcCOM_Sample13_CppToPlc.. 54
7.4.1 Implementation of the sample .. 55

8 Appendix.. 58
8.1 TcCOM Technology .. 58

8.1.1 The TwinCAT Component Object Model (TcCOM) concept .. 58
8.2 Interfaces .. 69

8.2.1 Interface ITComObject ... 69
8.2.2 Interface ITcUnknown .. 73

Foreword

TE1000 5Version: 1.4.0

1 Foreword

1.1 Notes on the documentation
This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with applicable national standards.
It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning the components.
It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by
Beckhoff Automation GmbH.
Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
with corresponding applications or registrations in various other countries.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

Foreword

TE10006 Version: 1.4.0

1.2 For your safety
Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

 DANGER
Hazard with high risk of death or serious injury.

 WARNING
Hazard with medium risk of death or serious injury.

 CAUTION
There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

NOTICE
The environment, equipment, or data may be damaged.

Information on handling the product

This information includes, for example:
recommendations for action, assistance or further information on the product.

Foreword

TE1000 7Version: 1.4.0

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Introduction

TE10008 Version: 1.4.0

2 Introduction
The PLC library Tc3_Module is used for TcCOM communication.

System requirements

Target System WinXP, WES, Win7, WES7, WEC7
IPC or CX, (x86, x64, ARM)

Min. TwinCAT version 3.1.4020.0
Min. TwinCAT level TC1200 TC3 PLC

Function blocks

TE1000 9Version: 1.4.0

3 Function blocks
The PLC library Tc3_Module offers function blocks in order to communicate from module to module via
TcCOM. The module can be a TwinCAT system component, a C++ object, a Matlab object or also objects in
the PLC.

3.1 TcBaseModuleRegistered
FUNCTION_BLOCK TcBaseModuleRegistered EXTENDS TcBaseModule
VAR
END_VAR

Description

If something is inherited from this object, a TcCOM object can be created from a function block. The object is
automatically registered at the object server and ramped up to OP state. The own object ID is provided as a
process image variable. Methods which are additionally implemented and are to be offered via this object
must have a return value of the type HRESULT and must be implemented in a thread-safe manner. For
more information, refer to the chapter 'Multi-task data access synchronization in the PLC'. How to create this
TcCOM object and use it globally in the TwinCAT system is explained in detail in an example [} 36]. The
TcBaseModule base class implements the ITComObject interface, which in turn expands the ITcUnknown
interface.

ITComObject Interface

The ITComObject interface is implemented by every TwinCAT module. It makes functionalities available
regarding the state machine and Information from/to the TwinCAT system.

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

3.1.1 TcAddRef

The TcAddRef() method increments the reference counter and returns the new value.

 Return value
VAR_OUTPUT
 TcAddRef : UDINT;
END_VAR

Name Type Description
TcAddRef UDINT The resulting reference count value is returned.

 Inputs
VAR_INPUT
 (*none*)
END_VAR

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

https://infosys.beckhoff.com/content/1033/tc3_plc_intro/45844579955484184843.html?id=2972649925198044529

Function blocks

TE100010 Version: 1.4.0

3.1.2 TcGetObjectId

The method TcGetObjectId saves the object ID with the help of the given OTCID reference.

 Return value
VAR_OUTPUT
 TcGetObjectId : HRESULT;
END_VAR

Name Type Description
TcGetObjectId HRESULT Gives information about success of the OTCID query.

 Inputs
VAR_INPUT
 objId : REFERENCE TO OTCID;
END_VAR

Name Type Description
objId REFERENCE TO

OTCID
Reference to OTCID value

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

3.1.3 TcGetObjectName

The method TcGetObjectName saves the object names in the buffer with the given length.

 Return value
VAR_OUTPUT
 TcGetObjectName: DINT;
END_VAR

Name Type Description
TcGetObjectName DINT Gives information about success of the name query.

 Inputs
VAR_INPUT
 objName : POINTER TO SINT;
 nameLen : UDINT;
END_VAR

Name Type Description
objName POINTER TO SI

NT
The name to be set

nameLen UDINT The maximum length of the name to be written

Function blocks

TE1000 11Version: 1.4.0

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

3.1.4 TcGetObjPara

The TcGetObjPara method queries an object parameter identified by means of its PTCID.

 Return value
VAR_OUTPUT
 TcGetObjPara : HRESULT;
END_VAR

Name Type Description
TcGetObjP
ara

HRESULT Gives information about success of the object parameter query.

 Inputs
VAR_INPUT
 pid : PTCID;
 nData : REFERENCE TO UDINT;
 pData : REFERENCE TO PVOID;
 pgp : PTCGP;
END_VAR

Name Type Description
pid PTCID Parameter-ID of the object parameter
nData REFERENCE TO UDINT Maximum length of the data
pData REFERENCE TO PVOID Pointer to the data
Pgp PTCGP Reserved for future expansion.

Pass NULL.

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

3.1.5 TcGetObjState

The TcGetObjState method queries the current state of the object.

 Return value
VAR_OUTPUT
 TcGetObjState : HRESULT;
END_VAR

Function blocks

TE100012 Version: 1.4.0

Name Type Description
TcGetObjState HRESULT Gives information about success of the state query.

 Inputs
VAR_INPUT
 pState : POINTER TO TCOM_STATE;
END_VAR

Name Type Description
pState POINTER TO TCOM_STA

TE
Pointer to the state

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

3.1.6 TcQueryInterface

The method queries the reference at an implemented interface over the ID.

 Return value
VAR_OUTPUT
 TcQueryInterface : HRESULT;
END_VAR

Name Type Description
TcQueryInterface HRESULT Informs about success of the interface query.

If the requested interface is not available, the method returns
ADS_E_NOINTERFACE.

 Inputs
VAR_INPUT
 iid : REFERENCE TO IID;
 pipItf : POINTER TO PVOID;
END_VAR

Name Type Description
iid REFERENCE TO IID Interface ID
pipItf POINTER TO PVOID Pointer to interface pointer. Is set when the requested

interface type is available from the corresponding instance.

Necessary release of the interface pointers
You must explicitly release all references again. We recommend to use FW_SafeRelease [} 26] in
order to perform a release of the interface pointer after use. Frequently the release of the
references is implemented in the destructor of the object.

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

Function blocks

TE1000 13Version: 1.4.0

3.1.7 TcRelease

The TcRelease() method decrements the reference counter and returns the new value. If the reference
counter is 0, the object deletes itself.

 Return value
VAR_OUTPUT
 TcRelease : UDINT;
END_VAR

Name Type Description
TcRelease UDINT The resulting reference count value is returned.

 Inputs
VAR_INPUT
 (*none*)
END_VAR

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

3.1.8 TcSetObjId

The TcSetObjectId method sets the object ID of the object to the given OTCID.

 Return value
VAR_OUTPUT
 TcSetObjId : HRESULT;
END_VAR

Name Type Description
TcSetObjId HRESULT Gives information about success of the ID change.

 Inputs
VAR_INPUT
 objId : OTCID;
END_VAR

Name Type Description
objId OTCID The OTCID to be set

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

Function blocks

TE100014 Version: 1.4.0

3.1.9 TcSetObjectName

The TcSetObjectName method sets the object name of the object.

 Return value
VAR_OUTPUT
 TcSetObjectName : HRESULT;
END_VAR

Name Type Description
TcSetObjectNam
e

HRESULT Gives information about the success of the name change.

 Inputs
VAR_INPUT
 objName : POINTER TO SINT;
END_VAR

Name Type Description
objName POINTER TO SINT The name to be set of the object

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

3.1.10 TcSetObjPara

The TcSetObjPara method sets an object parameter identified by means of its PTCID.

 Return value
VAR_OUTPUT
 TcSetObjPara : HRESULT;
END_VAR

Name Type Description
TcSetObjPara HRESULT Gives information about success of the parameter

change.

 Inputs
VAR_INPUT
 pid : PTCID;
 nData : UDINT;
 pData : PVOID;
 pgp : PTCGP;
END_VAR

Function blocks

TE1000 15Version: 1.4.0

Name Type Description
pid PTCID Parameter-ID of the object parameter
nData UDINT Maximum length of the data
pData PVOID Pointer to the data
pgp PTCGPkl Reserved for future expansion, pass NULL.

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

3.1.11 TcSetObjState

The TcSetObjState method initializes a transition to the given state.

 Return value
VAR_OUTPUT
 TcSetObjState : HRESULT;
END_VAR

Name Type Description
TcSetObjState HRESULT Gives information about success of the state change.

 Inputs
VAR_INPUT
 state : TCOM_STATE;
 ipSrv : ITComObjServer;
 pInitData : POINTER TO TComInitDataHdr;
END_VAR

Name Type Description
state TCOM_STATE Displays the new state.
ipSrv ITComObjServer Object description
pInitData POINTER TO TComInitDataH

dr
Points to a list of parameters (optional).

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

3.2 TcBaseModuleRegistered2

FUNCTION_BLOCK TcBaseModuleRegistered2 EXTENDS TcBaseModule
VAR_OUTPUT
 objID : OTCID;
END_VAR

Function blocks

TE100016 Version: 1.4.0

Description

If something is inherited from this object, a TcCOM object can be created from a function block. The object is
automatically registered at the object server and ramped up to OP state. The own object ID is provided at the
output.

Methods which are additionally implemented and are to be offered via this object must have a return value of
the type HRESULT and must be implemented in a thread-safe manner. For more information, refer to
chapter 'Multi-task data access synchronization in the PLC'. How to create this TcCOM object and use it
globally in the TwinCAT system is explained in detail in an example for TcBaseModuleRegistered [} 36]. The
TcBaseModule base class implements the ITComObject interface, which in turn expands the ITcUnknown
interface.

ITComObject Interface

The ITComObject interface is implemented by every TwinCAT module. It makes functionalities available
regarding the state machine and Information from/to the TwinCAT system.

Requirements

TwinCAT version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4024 x86, x64, ARM Tc3_Module >= v3.3.23.0

3.2.1 TcAddRef

The TcAddRef() method increments the reference counter and returns the new value.

 Return value
VAR_OUTPUT
 TcAddRef : UDINT;
END_VAR

Name Type Description
TcAddRef UDINT The resulting reference count value is returned.

 Inputs
VAR_INPUT
 (*none*)
END_VAR

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

3.2.2 TcGetObjectId

The method TcGetObjectId saves the object ID with the help of the given OTCID reference.

https://infosys.beckhoff.com/content/1033/tc3_plc_intro/45844579955484184843.html?id=2972649925198044529

Function blocks

TE1000 17Version: 1.4.0

 Return value
VAR_OUTPUT
 TcGetObjectId : HRESULT;
END_VAR

Name Type Description
TcGetObjectId HRESULT Gives information about success of the OTCID query.

 Inputs
VAR_INPUT
 objId : REFERENCE TO OTCID;
END_VAR

Name Type Description
objId REFERENCE TO

OTCID
Reference to OTCID value

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

3.2.3 TcGetObjectName

The method TcGetObjectName saves the object names in the buffer with the given length.

 Return value
VAR_OUTPUT
 TcGetObjectName: DINT;
END_VAR

Name Type Description
TcGetObjectName DINT Gives information about success of the name query.

 Inputs
VAR_INPUT
 objName : POINTER TO SINT;
 nameLen : UDINT;
END_VAR

Name Type Description
objName POINTER TO SI

NT
The name to be set

nameLen UDINT The maximum length of the name to be written

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

Function blocks

TE100018 Version: 1.4.0

3.2.4 TcGetObjPara

The TcGetObjPara method queries an object parameter identified by means of its PTCID.

 Return value
VAR_OUTPUT
 TcGetObjPara : HRESULT;
END_VAR

Name Type Description
TcGetObjP
ara

HRESULT Gives information about success of the object parameter query.

 Inputs
VAR_INPUT
 pid : PTCID;
 nData : REFERENCE TO UDINT;
 pData : REFERENCE TO PVOID;
 pgp : PTCGP;
END_VAR

Name Type Description
pid PTCID Parameter-ID of the object parameter
nData REFERENCE TO UDINT Maximum length of the data
pData REFERENCE TO PVOID Pointer to the data
Pgp PTCGP Reserved for future expansion.

Pass NULL.

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

3.2.5 TcGetObjState

The TcGetObjState method queries the current state of the object.

 Return value
VAR_OUTPUT
 TcGetObjState : HRESULT;
END_VAR

Name Type Description
TcGetObjState HRESULT Gives information about success of the state query.

Function blocks

TE1000 19Version: 1.4.0

 Inputs
VAR_INPUT
 pState : POINTER TO TCOM_STATE;
END_VAR

Name Type Description
pState POINTER TO TCOM_STA

TE
Pointer to the state

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

3.2.6 TcQueryInterface

The method queries the reference at an implemented interface over the ID.

 Return value
VAR_OUTPUT
 TcQueryInterface : HRESULT;
END_VAR

Name Type Description
TcQueryInterface HRESULT Informs about success of the interface query.

If the requested interface is not available, the method returns
ADS_E_NOINTERFACE.

 Inputs
VAR_INPUT
 iid : REFERENCE TO IID;
 pipItf : POINTER TO PVOID;
END_VAR

Name Type Description
iid REFERENCE TO IID Interface ID
pipItf POINTER TO PVOID Pointer to interface pointer. Is set when the requested

interface type is available from the corresponding instance.

Necessary release of the interface pointers
You must explicitly release all references again. We recommend to use FW_SafeRelease [} 26] in
order to perform a release of the interface pointer after use. Frequently the release of the
references is implemented in the destructor of the object.

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

Function blocks

TE100020 Version: 1.4.0

3.2.7 TcRelease

The TcRelease() method decrements the reference counter and returns the new value. If the reference
counter is 0, the object deletes itself.

 Return value
VAR_OUTPUT
 TcRelease : UDINT;
END_VAR

Name Type Description
TcRelease UDINT The resulting reference count value is returned.

 Inputs
VAR_INPUT
 (*none*)
END_VAR

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

3.2.8 TcSetObjId

The TcSetObjectId method sets the object ID of the object to the given OTCID.

 Return value
VAR_OUTPUT
 TcSetObjId : HRESULT;
END_VAR

Name Type Description
TcSetObjId HRESULT Gives information about success of the ID change.

 Inputs
VAR_INPUT
 objId : OTCID;
END_VAR

Name Type Description
objId OTCID The OTCID to be set

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

Function blocks

TE1000 21Version: 1.4.0

3.2.9 TcSetObjectName

The TcSetObjectName method sets the object name of the object.

 Return value
VAR_OUTPUT
 TcSetObjectName : HRESULT;
END_VAR

Name Type Description
TcSetObjectNam
e

HRESULT Gives information about the success of the name change.

 Inputs
VAR_INPUT
 objName : POINTER TO SINT;
END_VAR

Name Type Description
objName POINTER TO SINT The name to be set of the object

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

3.2.10 TcSetObjPara

The TcSetObjPara method sets an object parameter identified by means of its PTCID.

 Return value
VAR_OUTPUT
 TcSetObjPara : HRESULT;
END_VAR

Name Type Description
TcSetObjPara HRESULT Gives information about success of the parameter

change.

 Inputs
VAR_INPUT
 pid : PTCID;
 nData : UDINT;
 pData : PVOID;
 pgp : PTCGP;
END_VAR

Function blocks

TE100022 Version: 1.4.0

Name Type Description
pid PTCID Parameter-ID of the object parameter
nData UDINT Maximum length of the data
pData PVOID Pointer to the data
pgp PTCGPkl Reserved for future expansion, pass NULL.

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

3.2.11 TcSetObjState

The TcSetObjState method initializes a transition to the given state.

 Return value
VAR_OUTPUT
 TcSetObjState : HRESULT;
END_VAR

Name Type Description
TcSetObjState HRESULT Gives information about success of the state change.

 Inputs
VAR_INPUT
 state : TCOM_STATE;
 ipSrv : ITComObjServer;
 pInitData : POINTER TO TComInitDataHdr;
END_VAR

Name Type Description
state TCOM_STATE Displays the new state.
ipSrv ITComObjServer Object description
pInitData POINTER TO TComInitDataH

dr
Points to a list of parameters (optional).

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

Functions

TE1000 23Version: 1.4.0

4 Functions
The PLC library Tc3_Module offers functions, in order to communicate from module to module via TcCOM.
The module can be a TwinCAT system component, a C++ object, a Matlab object or also objects in the PLC.

4.1 FW_ObjMgr_CreateAndInitInstance

This function generates an instance of the class specified by means of Class-ID and at the same time
returns an interface pointer to this object. In addition the object name and state into which the object is to be
put, as well as optionally also initialization parameters can be specified.

 Return value
FW_ObjMgr_CreateAndInitInstance : HRESULT;

Name Type Description
FW_ObjMgr_Cre
ateAndInitInstanc
e

HRESULT Returns S_OK if the function call was successful.

 Inputs
VAR_INPUT
 clsId : CLSID;
 iid : IID;
 pipUnk : POINTER TO ITcUnknown;
 objId : UDINT;
 parentId : UDINT;
 name : REFERENCE TO STRING;
 state : UDINT;
 pInitData : POINTER TO TComInitDataHdr;
END_VAR

Functions

TE100024 Version: 1.4.0

Name Type Description
clsId CLSID Specifies the class from which an object should be

created.
iid IID Specifies the interface ID to which an interface pointer

should be referenced.
pipUnk POINTER TO ITcUnknown Returns the interface pointer to the created object.
objId UDINT Specifies the object ID for the newly created object. If the

global constant OTCID_CreateNewId is entered here a
new object ID is generated internally.

parentId UDINT Object ID of the parent object (optional)
Here the object ID of the PLC instance can be specified
from which this function is called.
(TwinCAT_SystemInfoVarList._AppInfo.ObjId).

name REFERENCE TO STRING Specifies the object name which should be assigned for
the newly created object.

State UDINT Specifies the state into which the newly created object
should be put. Typically Operational
(TCOM_STATE.TCOM_STATE_OP) is specified.

pInitData POINTER TO TComInitDataH
dr

Pointer to initialization parameter (optional)

Necessary deletion of the object
A generated object must be explicitly deleted again. There is no Garbage-Collector as in .Net. It is
recommended to use FW_ObjMgr_DeleteInstance [} 25], in order to delete the generated instance
at the latest in the destructor of the object which created the instance.

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

4.2 FW_ObjMgr_CreateInstance

This function generates an instance of the class specified by means of Class-ID and at the same time
returns an interface pointer to this object.

 Return value
FW_ObjMgr_CreateInstance : HRESULT;

Name Type Description
FW_ObjMgr_Cre
ateInstance

HRESULT Returns S_OK if the function call was successful.

 Inputs
VAR_INPUT
 clsId : CLSID;
 iid : IID;
 pipUnk : POINTER TO ITcUnknown;
END_VAR

Functions

TE1000 25Version: 1.4.0

Name Type Description
clsId CLSID Specifies the class from which an object should be

created.
iid IID Specifies the interface ID to which an interface pointer

should be referenced.
pipUnk POINTER TO ITcUnknown Returns the interface pointer to the created object.

Necessary deletion of an object
A generated object must be explicitly deleted again. There is no Garbage-Collector as in .Net. We
recommend to use FW_ObjMgr_DeleteInstance [} 25], in order to delete the generated instance at
the latest in the destructor of the object which created the instance.

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

4.3 FW_ObjMgr_DeleteInstance

This function puts the object in the Init state. After that the reference counter of the object is decremented,
analogous to ITcUnknown.TcRelease(), and the interface pointer is set to zero at the same time.

 Return value
FW_ObjMgr_DeleteInstance : HRESULT;

Name Type Description
FW_ObjMgr_Del
eteInstance

HRESULT Returns S_OK if the function call was successful.

 Inputs
VAR_INPUT
 pipUnk : POINTER TO ITcUnknown;
END_VAR

Name Type Description
pipUnk POINTER TO ITcUnknown Specifies the address of the interface pointer to the

object. The interface pointer is checked internally for null
pointers.

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

4.4 FW_ObjMgr_GetObjectInstance

This function returns an interface pointer to an object instance specified by means of object ID.

Functions

TE100026 Version: 1.4.0

 Return value
FW_ObjMgr_GetObjectInstance : HRESULT;

Name Type Description
FW_ObjMgr_Get
ObjectInstance

HRESULT Returns S_OK if the function call was successful.

 Inputs
VAR_INPUT
 oid : OTCID; (*OID of object*)
 iid : IID; (*requested interface*)
 pipUnk : POINTER TO ITcUnknown;
END_VAR

Name Type Description
oid OTCID Object ID
iid IID Specifies the interface ID to which an interface pointer

should be referenced.
pipUnk POINTER TO ITcUnknown Returns the interface pointer to the created object.

Necessary release of the interface pointers
All references must be explicitly released again. It is recommended to use FW_SafeRelease [} 26]
in order to perform a release of the interface pointer after use. Frequently the release of the
references is implemented in the destructor of the object.

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

4.5 FW_SafeRelease

This function decrements the reference counter of the object, analogous to ITcUnknown.TcRelease(), and at
the same time sets the interface pointer to zero.

 Return value
FW_SafeRelease : HRESULT;

Name Type Description
FW_SafeRelease HRESULT Returns S_OK if the function call was successful.

 Inputs
VAR_INPUT
 pipUnk : POINTER TO ITcUknown;
END_VAR

Name Type Description
pipUnk POINTER TO ITcUknown Specifies the address of the interface pointer to the

object. The interface pointer is checked internally for null
pointers.

Functions

TE1000 27Version: 1.4.0

Example

This function can for example be called in the destructor of the object family, which holds an interface pointer
to another object.
METHOD FB_exit : BOOL
VAR_INPUT
 bInCopyCode : BOOL; // if TRUE, the exit method is called for exiting an instance that is copied
 afterwards (online change).
END_VAR

IF NOT bInCopyCode THEN // no online change
 FW_SafeRelease(ADR(ipItf));
END_IF

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

4.6 FAILED

Error codes or status codes of the type HRESULT are checked with this function for invalidity.

 Return value
FAILED : BOOL;

Name Type Description
FAILED BOOL Returns TRUE if an error is present.

 Inputs
VAR_INPUT
 hr : DINT;
END_VAR

Name Type Description
hr DINT Specification of the error code or status code of type

HRESULT to be checked.

HRESULT

The type HRESULT has the special feature that errors are represented by negative values. Warnings or
information can optionally be output by means of positive values.

Declaration Error range No error Message/info Check functions
hrErrorCode :
HRESULT;

<0 >=0 >0 IF SUCCEEDED(hrErrorCode)
THEN
...
END_IF
IF FAILED(hrErrorCode)
THEN
...
END_IF

Functions

TE100028 Version: 1.4.0

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

4.7 SUCCEEDED

Error codes or status codes of the type HRESULT are checked with this function for validity.

 Return value
SUCCEEDED : BOOL;

Name Type Description
SUCCEEDED BOOL Returns TRUE if no error.

 Inputs
VAR_INPUT
 hr : DINT;
END_VAR

Name Type Description
hr DINT Specification of the error code or status code of type

HRESULT to be checked.

HRESULT

The type HRESULT has the special feature that errors are represented by negative values. Warnings or
information can optionally be output by means of positive values.

Declaration Error range No error Message/info Check functions
hrErrorCode :
HRESULT;

<0 >=0 >0 IF SUCCEEDED(hrErrorCode)
THEN
...
END_IF
IF FAILED(hrErrorCode)
THEN
...
END_IF

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

4.8 ITCUNKNOWN_TO_PVOID

This conversion function converts an interface pointer of the type ITcUnknown to a pointer to VOID.

Functions

TE1000 29Version: 1.4.0

 Return value
ITCUNKNOWN_TO_PVOID : PVOID

 Inputs
VAR_INPUT
 itcUnknown : ITcUknown;
END_VAR

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

4.9 PVOID_TO_ITCUNKNOWN

This conversion function converts a pointer to VOID to an interface pointer of the type ITcUnknown.

 Return value
PVOID_TO_ITCUNKNOWN : ITcUnknown;

 Inputs
VAR_INPUT
 pVoid : PVOID;
END_VAR

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

4.10 GuidsEqual

The function GuidsEqual checks two GUID objects for their equality to one another.

 Return value:
GuidsEqual : BOOL;

Name Type Description
GuidsEqual BOOL The method returns TRUE when both arguments are

equal.

 Inputs
VAR_INPUT
 pGuidA : POINTER TO GUID;
 pGuidB : POINTER TO GUID;
END_VAR

Functions

TE100030 Version: 1.4.0

Name Type Description
pGuidA POINTER TO GUID Pointer to GUID object
pGuidB POINTER TO GUID Pointer to GUID object

Requirements

TwinCAT Version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

Global Constants

TE1000 31Version: 1.4.0

5 Global Constants

5.1 GVL
VAR_GLOBAL CONSTANT GVL
 S_OK : HRESULT := 0;
 S_FALSE : HRESULT := 1;
 S_PENDING : HRESULT := 16#203;
 S_WATCHDOG_TIMEOUT : HRESULT := 16#256;
 OTCID_CreateNewId : OTCID := 16#FFFFFFFF;
 OTCID_FirstFreeId : OTCID := 16#71010000;
 OTCID_LastFreeId : OTCID := 16#710FFFFF;
 NULL : PVOID := 0;
END_VAR

Name Type Value Use Meaning
S_OK HRESUL

T
0 This constant can be used, to

designate error-free processing in
an HRESULT status code.

S_FALSE HRESUL
T

1 This constant indicates
successful processing, although
the result was negative or
incomplete.

S_PENDING HRESUL
T

16#203 This constant indicates
successful processing, although
no result is available yet.

S_WATCHDOG_TIME
OUT

HRESUL
T

16#256 This constant indicates
successful processing, although
a timeout occurred. Depending
on the function, the desired
processing was aborted.

OTCID_CreateNewId OTCID 16#FFFFFFFF FW_ObjMgr_CreateA
ndInitInstance [} 23]

This constant is used to generate
a new object ID.

OTCID_FirstFreeId OTCID 16#71010000
OTCID_LastFreeId OTCID 16#710FFFFF
NULL PVOID 0 NULL pointer

5.2 Global_Version
All libraries have a certain version. The version is indicated in the PLC library repository, for example. A
global constant contains the information about the library version:
VAR_GLOBAL CONSTANT
 stLibVersion_Tc3_Module : ST_LibVersion;
END_VAR

Name Type Description
stLibVersion_Tc3
_Module

ST_LibVersion Version information of the Tc3_Module library

To check whether the version you have is the version you need, use the function F_CmpLibVersion (defined
in the Tc2_System PLC library).

Error Codes

TE100032 Version: 1.4.0

6 Error Codes
The return values of the functions and methods are output by the type HRESULT.

HighWord of HRESULT Group of error codes
16#9811 Ads Error codes

6.1 ADS Return Codes
Grouping of error codes: 0x000 [} 32]..., 0x500 [} 32]..., 0x700 [} 33]..., 0x1000 [} 35]...

Global error codes

Hex Dec HRESULT Name Description
0x0 0 0x9811 0000 ERR_NOERROR No error.
0x1 1 0x9811 0001 ERR_INTERNAL Internal error.
0x2 2 0x9811 0002 ERR_NORTIME No real-time.
0x3 3 0x9811 0003 ERR_ALLOCLOCKEDMEM Allocation locked – memory error.
0x4 4 0x9811 0004 ERR_INSERTMAILBOX Mailbox full – the ADS message could not be sent.

Reducing the number of ADS messages per cycle
will help.

0x5 5 0x9811 0005 ERR_WRONGRECEIVEHMSG Wrong HMSG.
0x6 6 0x9811 0006 ERR_TARGETPORTNOTFOUND Target port not found – ADS server is not started or

is not reachable.
0x7 7 0x9811 0007 ERR_TARGETMACHINENOTFOUND Target computer not found – AMS route was not

found.
0x8 8 0x9811 0008 ERR_UNKNOWNCMDID Unknown command ID.
0x9 9 0x9811 0009 ERR_BADTASKID Invalid task ID.
0xA 10 0x9811 000A ERR_NOIO No IO.
0xB 11 0x9811 000B ERR_UNKNOWNAMSCMD Unknown AMS command.
0xC 12 0x9811 000C ERR_WIN32ERROR Win32 error.
0xD 13 0x9811 000D ERR_PORTNOTCONNECTED Port not connected.
0xE 14 0x9811 000E ERR_INVALIDAMSLENGTH Invalid AMS length.
0xF 15 0x9811 000F ERR_INVALIDAMSNETID Invalid AMS Net ID.
0x10 16 0x9811 0010 ERR_LOWINSTLEVEL Installation level is too low –TwinCAT 2 license

error.
0x11 17 0x9811 0011 ERR_NODEBUGINTAVAILABLE No debugging available.
0x12 18 0x9811 0012 ERR_PORTDISABLED Port disabled – TwinCAT system service not

started.
0x13 19 0x9811 0013 ERR_PORTALREADYCONNECTED Port already connected.
0x14 20 0x9811 0014 ERR_AMSSYNC_W32ERROR AMS Sync Win32 error.
0x15 21 0x9811 0015 ERR_AMSSYNC_TIMEOUT AMS Sync Timeout.
0x16 22 0x9811 0016 ERR_AMSSYNC_AMSERROR AMS Sync error.
0x17 23 0x9811 0017 ERR_AMSSYNC_NOINDEXINMAP No index map for AMS Sync available.
0x18 24 0x9811 0018 ERR_INVALIDAMSPORT Invalid AMS port.
0x19 25 0x9811 0019 ERR_NOMEMORY No memory.
0x1A 26 0x9811 001A ERR_TCPSEND TCP send error.
0x1B 27 0x9811 001B ERR_HOSTUNREACHABLE Host unreachable.
0x1C 28 0x9811 001C ERR_INVALIDAMSFRAGMENT Invalid AMS fragment.
0x1D 29 0x9811 001D ERR_TLSSEND TLS send error – secure ADS connection failed.
0x1E 30 0x9811 001E ERR_ACCESSDENIED Access denied – secure ADS access denied.

Router error codes

Error Codes

TE1000 33Version: 1.4.0

Hex Dec HRESULT Name Description
0x500 1280 0x9811 0500 ROUTERERR_NOLOCKEDMEMORY Locked memory cannot be allocated.

0x501 1281 0x9811 0501 ROUTERERR_RESIZEMEMORY The router memory size could not be changed.

0x502 1282 0x9811 0502 ROUTERERR_MAILBOXFULL The mailbox has reached the maximum number of
possible messages.

0x503 1283 0x9811 0503 ROUTERERR_DEBUGBOXFULL The Debug mailbox has reached the maximum
number of possible messages.

0x504 1284 0x9811 0504 ROUTERERR_UNKNOWNPORTTYPE The port type is unknown.
0x505 1285 0x9811 0505 ROUTERERR_NOTINITIALIZED The router is not initialized.
0x506 1286 0x9811 0506 ROUTERERR_PORTALREADYINUSE The port number is already assigned.
0x507 1287 0x9811 0507 ROUTERERR_NOTREGISTERED The port is not registered.
0x508 1288 0x9811 0508 ROUTERERR_NOMOREQUEUES The maximum number of ports has been reached.
0x509 1289 0x9811 0509 ROUTERERR_INVALIDPORT The port is invalid.
0x50A 1290 0x9811 050A ROUTERERR_NOTACTIVATED The router is not active.
0x50B 1291 0x9811 050B ROUTERERR_FRAGMENTBOXFULL The mailbox has reached the maximum number for

fragmented messages.
0x50C 1292 0x9811 050C ROUTERERR_FRAGMENTTIMEOUT A fragment timeout has occurred.
0x50D 1293 0x9811 050D ROUTERERR_TOBEREMOVED The port is removed.

General ADS error codes

Error Codes

TE100034 Version: 1.4.0

Hex Dec HRESULT Name Description
0x700 1792 0x9811 0700 ADSERR_DEVICE_ERROR General device error.
0x701 1793 0x9811 0701 ADSERR_DEVICE_SRVNOTSUPP Service is not supported by the server.
0x702 1794 0x9811 0702 ADSERR_DEVICE_INVALIDGRP Invalid index group.
0x703 1795 0x9811 0703 ADSERR_DEVICE_INVALIDOFFSET Invalid index offset.
0x704 1796 0x9811 0704 ADSERR_DEVICE_INVALIDACCESS Reading or writing not permitted.
0x705 1797 0x9811 0705 ADSERR_DEVICE_INVALIDSIZE Parameter size not correct.
0x706 1798 0x9811 0706 ADSERR_DEVICE_INVALIDDATA Invalid data values.
0x707 1799 0x9811 0707 ADSERR_DEVICE_NOTREADY Device is not ready to operate.
0x708 1800 0x9811 0708 ADSERR_DEVICE_BUSY Device is busy.
0x709 1801 0x9811 0709 ADSERR_DEVICE_INVALIDCONTEXT Invalid operating system context. This can result

from use of ADS function blocks in different tasks. It
may be possible to resolve this through Multi-task
data access synchronization in the PLC.

0x70A 1802 0x9811 070A ADSERR_DEVICE_NOMEMORY Insufficient memory.
0x70B 1803 0x9811 070B ADSERR_DEVICE_INVALIDPARM Invalid parameter values.
0x70C 1804 0x9811 070C ADSERR_DEVICE_NOTFOUND Not found (files, ...).
0x70D 1805 0x9811 070D ADSERR_DEVICE_SYNTAX Syntax error in file or command.
0x70E 1806 0x9811 070E ADSERR_DEVICE_INCOMPATIBLE Objects do not match.
0x70F 1807 0x9811 070F ADSERR_DEVICE_EXISTS Object already exists.
0x710 1808 0x9811 0710 ADSERR_DEVICE_SYMBOLNOTFOUND Symbol not found.
0x711 1809 0x9811 0711 ADSERR_DEVICE_SYMBOLVERSIONINVAL

ID
Invalid symbol version. This can occur due to an
online change. Create a new handle.

0x712 1810 0x9811 0712 ADSERR_DEVICE_INVALIDSTATE Device (server) is in invalid state.
0x713 1811 0x9811 0713 ADSERR_DEVICE_TRANSMODENOTSUPP AdsTransMode not supported.
0x714 1812 0x9811 0714 ADSERR_DEVICE_NOTIFYHNDINVALID Notification handle is invalid.
0x715 1813 0x9811 0715 ADSERR_DEVICE_CLIENTUNKNOWN Notification client not registered.
0x716 1814 0x9811 0716 ADSERR_DEVICE_NOMOREHDLS No further handle available.
0x717 1815 0x9811 0717 ADSERR_DEVICE_INVALIDWATCHSIZE Notification size too large.
0x718 1816 0x9811 0718 ADSERR_DEVICE_NOTINIT Device not initialized.
0x719 1817 0x9811 0719 ADSERR_DEVICE_TIMEOUT Device has a timeout.
0x71A 1818 0x9811 071A ADSERR_DEVICE_NOINTERFACE Interface query failed.
0x71B 1819 0x9811 071B ADSERR_DEVICE_INVALIDINTERFACE Wrong interface requested.
0x71C 1820 0x9811 071C ADSERR_DEVICE_INVALIDCLSID Class ID is invalid.
0x71D 1821 0x9811 071D ADSERR_DEVICE_INVALIDOBJID Object ID is invalid.
0x71E 1822 0x9811 071E ADSERR_DEVICE_PENDING Request pending.
0x71F 1823 0x9811 071F ADSERR_DEVICE_ABORTED Request is aborted.
0x720 1824 0x9811 0720 ADSERR_DEVICE_WARNING Signal warning.
0x721 1825 0x9811 0721 ADSERR_DEVICE_INVALIDARRAYIDX Invalid array index.
0x722 1826 0x9811 0722 ADSERR_DEVICE_SYMBOLNOTACTIVE Symbol not active.
0x723 1827 0x9811 0723 ADSERR_DEVICE_ACCESSDENIED Access denied.
0x724 1828 0x9811 0724 ADSERR_DEVICE_LICENSENOTFOUND Missing license.
0x725 1829 0x9811 0725 ADSERR_DEVICE_LICENSEEXPIRED License expired.
0x726 1830 0x9811 0726 ADSERR_DEVICE_LICENSEEXCEEDED License exceeded.
0x727 1831 0x9811 0727 ADSERR_DEVICE_LICENSEINVALID Invalid license.
0x728 1832 0x9811 0728 ADSERR_DEVICE_LICENSESYSTEMID License problem: System ID is invalid.
0x729 1833 0x9811 0729 ADSERR_DEVICE_LICENSENOTIMELIMIT License not limited in time.
0x72A 1834 0x9811 072A ADSERR_DEVICE_LICENSEFUTUREISSUE License problem: Time in the future.
0x72B 1835 0x9811 072B ADSERR_DEVICE_LICENSETIMETOLONG License period too long.
0x72C 1836 0x9811 072C ADSERR_DEVICE_EXCEPTION Exception at system startup.
0x72D 1837 0x9811 072D ADSERR_DEVICE_LICENSEDUPLICATED License file read twice.
0x72E 1838 0x9811 072E ADSERR_DEVICE_SIGNATUREINVALID Invalid signature.
0x72F 1839 0x9811 072F ADSERR_DEVICE_CERTIFICATEINVALID Invalid certificate.
0x730 1840 0x9811 0730 ADSERR_DEVICE_LICENSEOEMNOTFOUN

D
Public key not known from OEM.

0x731 1841 0x9811 0731 ADSERR_DEVICE_LICENSERESTRICTED License not valid for this system ID.
0x732 1842 0x9811 0732 ADSERR_DEVICE_LICENSEDEMODENIED Demo license prohibited.
0x733 1843 0x9811 0733 ADSERR_DEVICE_INVALIDFNCID Invalid function ID.
0x734 1844 0x9811 0734 ADSERR_DEVICE_OUTOFRANGE Outside the valid range.
0x735 1845 0x9811 0735 ADSERR_DEVICE_INVALIDALIGNMENT Invalid alignment.

Error Codes

TE1000 35Version: 1.4.0

Hex Dec HRESULT Name Description
0x736 1846 0x9811 0736 ADSERR_DEVICE_LICENSEPLATFORM Invalid platform level.
0x737 1847 0x9811 0737 ADSERR_DEVICE_FORWARD_PL Context – forward to passive level.
0x738 1848 0x9811 0738 ADSERR_DEVICE_FORWARD_DL Context – forward to dispatch level.
0x739 1849 0x9811 0739 ADSERR_DEVICE_FORWARD_RT Context – forward to real-time.
0x740 1856 0x9811 0740 ADSERR_CLIENT_ERROR Client error.
0x741 1857 0x9811 0741 ADSERR_CLIENT_INVALIDPARM Service contains an invalid parameter.
0x742 1858 0x9811 0742 ADSERR_CLIENT_LISTEMPTY Polling list is empty.
0x743 1859 0x9811 0743 ADSERR_CLIENT_VARUSED Var connection already in use.
0x744 1860 0x9811 0744 ADSERR_CLIENT_DUPLINVOKEID The called ID is already in use.
0x745 1861 0x9811 0745 ADSERR_CLIENT_SYNCTIMEOUT Timeout has occurred – the remote terminal is not

responding in the specified ADS timeout. The route
setting of the remote terminal may be configured
incorrectly.

0x746 1862 0x9811 0746 ADSERR_CLIENT_W32ERROR Error in Win32 subsystem.
0x747 1863 0x9811 0747 ADSERR_CLIENT_TIMEOUTINVALID Invalid client timeout value.
0x748 1864 0x9811 0748 ADSERR_CLIENT_PORTNOTOPEN Port not open.
0x749 1865 0x9811 0749 ADSERR_CLIENT_NOAMSADDR No AMS address.
0x750 1872 0x9811 0750 ADSERR_CLIENT_SYNCINTERNAL Internal error in Ads sync.
0x751 1873 0x9811 0751 ADSERR_CLIENT_ADDHASH Hash table overflow.
0x752 1874 0x9811 0752 ADSERR_CLIENT_REMOVEHASH Key not found in the table.
0x753 1875 0x9811 0753 ADSERR_CLIENT_NOMORESYM No symbols in the cache.
0x754 1876 0x9811 0754 ADSERR_CLIENT_SYNCRESINVALID Invalid response received.
0x755 1877 0x9811 0755 ADSERR_CLIENT_SYNCPORTLOCKED Sync Port is locked.

RTime error codes

Hex Dec HRESULT Name Description
0x1000 4096 0x9811 1000 RTERR_INTERNAL Internal error in the real-time system.
0x1001 4097 0x9811 1001 RTERR_BADTIMERPERIODS Timer value is not valid.
0x1002 4098 0x9811 1002 RTERR_INVALIDTASKPTR Task pointer has the invalid value 0 (zero).
0x1003 4099 0x9811 1003 RTERR_INVALIDSTACKPTR Stack pointer has the invalid value 0 (zero).
0x1004 4100 0x9811 1004 RTERR_PRIOEXISTS The request task priority is already assigned.
0x1005 4101 0x9811 1005 RTERR_NOMORETCB No free TCB (Task Control Block) available. The

maximum number of TCBs is 64.
0x1006 4102 0x9811 1006 RTERR_NOMORESEMAS No free semaphores available. The maximum

number of semaphores is 64.
0x1007 4103 0x9811 1007 RTERR_NOMOREQUEUES No free space available in the queue. The maximum

number of positions in the queue is 64.

0x100D 4109 0x9811 100D RTERR_EXTIRQALREADYDEF An external synchronization interrupt is already
applied.

0x100E 4110 0x9811 100E RTERR_EXTIRQNOTDEF No external sync interrupt applied.
0x100F 4111 0x9811 100F RTERR_EXTIRQINSTALLFAILED Application of the external synchronization interrupt

has failed.
0x1010 4112 0x9811 1010 RTERR_IRQLNOTLESSOREQUAL Call of a service function in the wrong context
0x1017 4119 0x9811 1017 RTERR_VMXNOTSUPPORTED Intel VT-x extension is not supported.
0x1018 4120 0x9811 1018 RTERR_VMXDISABLED Intel VT-x extension is not enabled in the BIOS.
0x1019 4121 0x9811 1019 RTERR_VMXCONTROLSMISSING Missing function in Intel VT-x extension.
0x101A 4122 0x9811 101A RTERR_VMXENABLEFAILS Activation of Intel VT-x fails.

TCP Winsock error codes

Hex Dec Name Description
0x274C 10060 WSAETIMEDOUT A connection timeout has occurred - error while establishing the connection, because

the remote terminal did not respond properly after a certain period of time, or the
established connection could not be maintained because the connected host did not
respond.

0x274D 10061 WSAECONNREFUSED Connection refused - no connection could be established because the target computer
has explicitly rejected it. This error usually results from an attempt to connect to a
service that is inactive on the external host, that is, a service for which no server
application is running.

0x2751 10065 WSAEHOSTUNREACH No route to host - a socket operation referred to an unavailable host.
More Winsock error codes: Win32 error codes

Samples

TE100036 Version: 1.4.0

7 Samples
The TcCOM_Sample01 sample [} 36] shows how TcCOM communication can take place between two
PLCs. In the process functionalities from one PLC are directly called up from the other PLC.

The TcCOM_Sample02 sample [} 46] shows how a PLC application can use functionalities of an existing
instance of a TwinCAT C++ class. In this way separate algorithms written C++ (or Matlab) can be used easily
in the PLC.
Although in the event of the use of an existing TwinCAT C++ module the TwinCAT C++ license is required
on the target system, a C++ development environment is not necessary on the target system or on the
development computer.

The TcCOM_Sample03 sample [} 50] shows how a PLC application uses functionalities of a TwinCAT C++
class by generating an instance of C++ class at the same time. In comparison to the previous sample this
can offer increased flexibility.

You will find additional programming examples in the documentation of TwinCAT 3 C++. For example, it
describes an additional option for calling an algorithm written in C++ from a PLC program (Sample11). In
contrast to TcCOM_Sample02, here a wrapper module is programmed that each interface method
implements itself. Therefore this variant is more complex. However, if you have to forego interface pointers
calling the functionalities in the PLC application due to users, this variant offers an option for doing this.

Another example in the documentation of TwinCAT 3 C++ shows how a TwinCAT C++ Module calls up a
method of a function block of the PLC by TcCOM interface (Sample13).

7.1 TcCOM_Sample01_PlcToPlc
This sample describes a TcCOM communication between two PLCs.

Functionalities provided by a function block in the first PLC (also called "provider" in the sample), are called
from the second PLC (also called "caller" in the sample). To this end it is not necessary for the function block
or its program code to be copied. Instead the program works directly with the object instance in the first PLC.

Both PLCs must be in a TwinCAT runtime. In this connection a function block offers its methods system-wide
via a globally defined interface and represents itself a TcCOM object. As is the case with every TcCOM
object, such a function block is also listed at runtime in the TcCOM Objects node.

The procedure is explained in the following sub-chapters:

• Creating an FB in the first PLC that provides its functionality globally [} 37]

• Creating an FB in the second PLC that, as a simple proxy, also offers this functionality there [} 41]

https://infosys.beckhoff.com/content/1033/tc3_c/2407126539.html?id=2867106124242227918

Samples

TE1000 37Version: 1.4.0

• Execution of the sample project [} 44]

Downloading the sample: https://infosys.beckhoff.com/content/1033/TcPlcLib_Tc3_Module/Resources/
2343046667/.zip

Race Conditions in the case of Multi-Tasking (Multi-Threading) use
The function block that provides its functionality globally is instantiated in the first PLC. It can be
used there like any function block. In addition, if it is used from a different PLC (or, for example,
from a C++ module), make sure that the methods offered are thread-safe, as the various calls could
take place simultaneously from different task contexts or mutually interrupt one another, depending
on the system configuration. In this case the methods must not access member variables of the
function block or global variables of the first PLC. If this should be absolutely necessary, prevent
simultaneous access. Observe the function TestAndSet() from the Tc2_System library.

System requirements

TwinCAT version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64, ARM Tc3_Module

7.1.1 Creating an FB which provides its functionality globally in the
first PLC

1. Create a PLC and prepare a new function block (FB) (here: FB_Calculation). Derive the function block
from the TcBaseModuleRegistered [} 9] class, so that an instance of this function block is not only
available in the same PLC, but can also be reached from a second.
Note: as an alternative you can also modify an FB in an existing PLC.

2. The function block must offer its functionality by means of methods. These are defined in a global
interface, whose type is system-wide and known regardless of programming language. To create a
global interface, open the Context menu in the “Interface” tab of System Properties and choose the
option “New”.
ð The TMC Editor opens, which provides you with support in creating a global interface.

https://infosys.beckhoff.com/content/1033/TcPlcLib_Tc3_Module/Resources/2343046667.zip
https://infosys.beckhoff.com/content/1033/TcPlcLib_Tc3_Module/Resources/2343046667.zip

Samples

TE100038 Version: 1.4.0

3. Specify the name (here: I_Calculation) and append the desired methods. The interface is automatically
derived from ITcUnknown, in order to fulfill the TwinCAT TcCOM module concept.

4. Specify the name of the methods analogously (here: Addition() and Subtraction()) and select HRESULT
as return data type. This return type is mandatory if this type of TcCOM communication should be
implemented.

5. Specify the method parameters last and then close the TMC Editor.

Samples

TE1000 39Version: 1.4.0

6. Now implement the I_Calculation interface in the FB_Calculation function block and append the c+
+_compatible attribute.

7. Choose the “Implement interfaces...” option in the Context menu of the function block in order to obtain
the methods belonging to this interface.

Samples

TE100040 Version: 1.4.0

8. Delete the two methods TcAddRef() and TcRelease() because the existing implementation of the base
class should be used.

9. Create the FB_reinit() method for the FB_Calculation function block and call the basic implementation.
This ensures that the FB_reinit() method of the base class will run during the online change. This is
imperative.

Samples

TE1000 41Version: 1.4.0

10. Implement the TcQueryInterface() method of the Interface ITcUnknown [} 73]. Via this method it is
possible for other TwinCAT components to obtain an interface pointer to an instance of this function
block and thus actuate method calls. The call for TcQueryInterface is successful if the function block or
its base class provides the interface queried by means of iid (Interface ID). For this case the handed over
interface pointer is allocated the address to the function block type-changed and the reference counter is
incremented by means of TcAddRef().

11. Fill the two methods Addition() and Subtraction() with the corresponding code to produce the
functionality: nRes := nIn1 + nIn2 and nRes := nIn1 - nIn2

12. Add one or more instances of this function block in the MAIN program block or in a global variable list.
ð The implementation in the first PLC is complete.

ð After compiling the PLC, the object ID of the TcCOM object which represents the instance of
FB_Calculation is available as an outlet in the in the process image.

7.1.2 Creating an FB which likewise offers this functionality there
as a simple proxy in the second PLC,

1. Create a PLC and append a new function block there.
ð This proxy function block should provide the functionality which was programmed in the first PLC. It

does this via an interface pointer of the type of the global interface I_Calculation.

Samples

TE100042 Version: 1.4.0

2. In the declaration part of the function block declare as an output an interface pointer to the global
interface which later provides the functionality outward.

3. In addition create the object ID and the interface ID as local member variables.
While the interface ID is already available via a global list, the object ID is assigned via a link in the
process image.

Samples

TE1000 43Version: 1.4.0

4. Implement the PLC proxy function block. First add the GetInterfacePointer() method to the function block.
The interface pointer is fetched to the specified interface of the specified TcCOM object with the help of
the FW_ObjMgr_GetObjectInstance() [} 25] function. This will only be executed if the object ID is valid
and the interface pointer has not already been allocated. The object itself increments a reference
counter.

5. It is imperative to release the used reference again. To this end call the FW_SafeRelease() function in
the FB_exit destructor of the function block.

ð This completes the implementation of the Proxy function block.
6. Instantiate the Proxy function block FB_CalculationProxy in the application and call its method

GetInterfacePointer() to get a valid interface pointer.
An instance of the proxy block is declared in the application to call the methods provided via the
interface. The calls themselves take all place over the interface pointer defined as output of the function
block. As is typical for pointers a prior null check must be made. Then the methods can be called directly,
also via Intellisense.

Samples

TE100044 Version: 1.4.0

ð The sample is ready for testing.

Order irrelevant
The sequence in which the two PLCs start later is irrelevant in this implementation.

7.1.3 Execution of the sample project
1. Select the destination system and compile the project.
2. Enable the TwinCAT configuration and execute a log-in and start both PLCs.

ð In the online view of the PLC application “Provider” the generated object ID of the C++ object can be
seen in the PLC function block FB_Calculation. The project node “TcCOM Objects” keeps the
generated object with its object ID and the selected name in its list.

Samples

TE1000 45Version: 1.4.0

ð In the online view of the PLC application “Caller” the Proxy function block has been allocated the
same object ID via the process image. The interface pointer has a valid value and the methods are
executed.

Samples

TE100046 Version: 1.4.0

7.2 TcCOM_Sample02_PlcToCpp
This example describes a TcCOM communication between PLC and C++. In this connection a PLC
application uses functionalities of an existing instance of a TwinCAT C++ class. In this way own algorithms
written in C++ can be used easily in the PLC.
Although in the event of the use of an existing TwinCAT C++ driver the TwinCAT C++ license is required on
the destination system, a C++ development environment is not necessary on the destination system or on
the development computer.

An already built C++ driver provides one or more classes whose interfaces are deposited in the TMC
description file and thus are known in the PLC.

The procedure is explained in the following sub-chapters:

1. Instantiating a TwinCAT++ class as a TwinCAT TcCOM Object [} 46]

2. Creating an FB in the PLC, which as a simple wrapper offers the functionality of the C++ object [} 47]

3. Execution of the sample project [} 49]

Downloading the sample: https://infosys.beckhoff.com/content/1033/TcPlcLib_Tc3_Module/Resources/
2343048971/.zip

System requirements

TwinCAT version Hardware Libraries to be Integrated
TwinCAT 3.1, Build 4020 x86, x64 Tc3_Module

7.2.1 Instantiating a TwinCAT++ class as a TwinCAT TcCOM Object
The TwinCAT C++ driver must be available on the target system. TwinCAT offers a deployment for this
purpose, so that the components only have to be stored properly on the development computer.

The existing TwinCAT C++ driver as well as its TMC description file(s) are available as a driver archive. This
archive (IncrementerCpp.zip) is unpacked in the following folder:
C:\TwinCAT\3.1\CustomConfig\Modules\IncrementerCpp\

The TwinCAT Deployment copies the file(s) later in the following folder upon the activation of a configuration
in the target system:
C:\TwinCAT\3.1\Driver\AutoInstall\

1. Open a TwinCAT project or create a new project.
2. Add an instance of Class CIncrementModule in the solution under the node TcCOM Objects.

Creation of the C++ driver
In the documentation for TwinCAT C++ there is a detailed explanation on how C++ drivers for
TwinCAT are created.
To create the above-mentioned driver archive, Publish TwinCAT Modules is selected from the C+
+ project context as the last step in the creation of a driver.

https://infosys.beckhoff.com/content/1033/TcPlcLib_Tc3_Module/Resources/2343048971.zip
https://infosys.beckhoff.com/content/1033/TcPlcLib_Tc3_Module/Resources/2343048971.zip

Samples

TE1000 47Version: 1.4.0

7.2.2 Creating an FB in the PLC that, as a simple proxy, offers the
functionality of the C++ object

1. Create a PLC and append a new function block there.
This Proxy function block should provide the functionality that was programmed in C++. It is able to do
this via an interface pointer that was defined from the C++ class and is known in the PLC due to the TMC
description file.

2. In the declaration part of the function block declare as an output an interface pointer to the interface
which later provides the functionality outward.

3. Create the object ID and the interface ID as local member variables.
While the interface ID is already available via a global list, the object ID is allocated via the TwinCAT
symbol initialization. The TcInitSymbol attribute ensures that the variable appears in a list for external
symbol initialization. The object ID of the created C++ object should be allocated.

Samples

TE100048 Version: 1.4.0

ð The object ID is displayed upon selection of the object under the TcCOM Objects node.
Provided the TcInitSymbol attribute was used, the list of symbol initializations is located in the node
of the PLC instance in the Symbol Initialization tab.

4. Here, assign an existing object ID to the symbol name of the variable by drop-down. This value is
assigned when the PLC is downloaded so it can be defined prior to the PLC run-time. New symbol
initializations or changes are accordingly entered with a new download of the PLC.

As an alternative, the passing of the object ID could also be implemented by means of process image
linking as implemented in the first sample (TcCOM_Sample01_PlcToPlc [} 36]).

5. Implement the PLC Proxy function block.
First the FB_init constructor method is added to the function block. For the case that it is no longer an
OnlineChange but rather the initialization of the function block, the interface pointer to the specified
interface of the specified TcCOM object is obtained with the help of the function

Samples

TE1000 49Version: 1.4.0

FW_ObjMgr_GetObjectInstance() [} 25]. In this connection the object itself increments a reference
counter.

6. It is imperative to release the used reference again. To this end call the FW_SafeRelease() function [} 26]
in the FB_exit destructor of the function block.

ð This completes the implementation of the Proxy function block.
7. Declare an instance of the Proxy function block to call the methods provided via the interface in the

application.
The calls themselves take all place over the interface pointer defined as output of the function block. As
is typical for pointers a prior null check must be made. Then the methods can be called directly, also via
Intellisense.

ð The sample is ready for testing.

7.2.3 Execution of the sample project
1. Select the destination system and compile the project.
2. Enable the TwinCAT configuration and execute a log-in as well as starting the PLC.

Samples

TE100050 Version: 1.4.0

ð In the online view of the PLC application the assigned object ID of the C++ object in the PLC Proxy
function block can be seen. The interface pointer has a valid value and the method will be executed.

7.3 TcCOM_Sample03_PlcCreatesCpp
Just like Sample02, this sample describes a TcCOM communication between PLC and C++. To this end a
PLC application uses functionalities of a TwinCAT C++ class. The required instances of this C++ class will
be created by the PLC itself in this sample. In this way own algorithms written in C++ can be used easily in
the PLC.
Although in the event of the use of an existing TwinCAT C++ driver the TwinCAT C++ license is required on
the destination system, a C++ development environment is not necessary on the destination system or on
the development computer.

An already built C++ driver provides one or more classes whose interfaces are deposited in the TMC
description file and thus are known in the PLC.

The procedure is explained in the following sub-chapters:

1. Provision of a TwinCAT C++ driver and its classes [} 51]

2. Creating an FB in the PLC that creates the C++ object and offers its functionality [} 52]

3. Execution of the sample project [} 54]

Downloading the sample: https://infosys.beckhoff.com/content/1033/TcPlcLib_Tc3_Module/Resources/
2343051531/.zip

System requirements

TwinCAT version Hardware Libraries to be integrated
TwinCAT 3.1, Build 4020 x86, x64 Tc3_Module

https://infosys.beckhoff.com/content/1033/TcPlcLib_Tc3_Module/Resources/2343051531.zip
https://infosys.beckhoff.com/content/1033/TcPlcLib_Tc3_Module/Resources/2343051531.zip

Samples

TE1000 51Version: 1.4.0

7.3.1 Provision of a TwinCAT C++ driver and its classes
The TwinCAT C++ driver must be available on the target system. TwinCAT offers a deployment for this
purpose, so that the components only have to be stored properly on the development computer.

The existing TwinCAT C++ driver as well as its TMC description file(s) are available as a driver archive. This
archive (IncrementerCpp.zip) is unpacked in the following folder:
C:\TwinCAT\3.1\CustomConfig\Modules\IncrementerCpp\

The TwinCAT Deployment copies the file(s) later in the following folder upon the activation of a configuration
in the target system:
C:\TwinCAT\3.1\Driver\AutoInstall\

1. Open a TwinCAT project or create a new project.
2. Select the required C++ driver in the solution under the TcCOM Objects node in the Class Factories

tab.
ð This ensures that the driver is loaded on the target system when TwinCAT starts up. In addition this

selection provides for the described deployment.

Creation of the C++ driver
In the documentation for TwinCAT C++ there is a detailed explanation on how C++ drivers for
TwinCAT are created.
For Sample03 it is important to note that TwinCAT C++ drivers whose classes are supposed to be
dynamically instantiated must be defined as “TwinCAT Module Class for RT Context”. The C++
Wizard offers a special template for this purpose.
In addition this sample uses a TwinCAT C++ class which manages without TcCOM initialization
data and without TcCOM parameters.

Samples

TE100052 Version: 1.4.0

7.3.2 Creating an FB in the PLC that creates the C++ object and
offers its functionality

1. Create a PLC and append a new function block there.
This Proxy function block should provide the functionality that was programmed in C++. It manages this
via an interface pointer that was defined by C++ and is known in the PLC due to the TMC description file.

2. In the declaration part of the function block declare as an output an interface pointer to the interface
(IIncrement) which later provides the functionality outward.

3. Create class ID and the interface ID as member variables.
While the interface ID is already available via a global list, the class IDs, provided they are not yet
supposed to be known, are determined by other means. When you open the TMC description file of the
associated C++ driver you will find the corresponding GUID there.

4. Add the FB_init constructor method to the PLC Proxy function block.
For the case, that it is not an online change but rather the initialization of the function block, a new
TcCOM object (Class instance of the specified class) is created and the interface pointer to the specified
interface is obtained. In the process the used FW_ObjMgr_CreateAndInitInstance() function [} 23] is also
given the name and the destination state of the TcCOM object. These two parameters are declared here
as input parameters of the FB_init method, whereby they are to be specified in the instantiation of the
Proxy function block. The TwinCAT C++ class to be instantiated manages without TcCOM initialization

Samples

TE1000 53Version: 1.4.0

data and without TcCOM parameters.
In the case of this function call the object itself increments a reference counter.

5. It is imperative to release the used reference again and to delete the object, provided it is no longer being
used. To this end call the FW_ObjMgr_DeleteInstance() [} 25] function in the FB_exit destructor of the
function block.

ð This completes the implementation of the Proxy function block.
6. Declare an instance of the Proxy function block to call the methods provided via the interface in the

application. The calls themselves take all place over the interface pointer defined as output of the
function block. As is typical for pointers a prior null check must be made. Then the methods can be called
directly, also via Intellisense.

ð The sample is ready for testing.

Samples

TE100054 Version: 1.4.0

7.3.3 Execution of the sample project
1. Select the target system and compile the project.
2. Enable the TwinCAT configuration and execute a log-in as well as starting the PLC.
ð In the online view of the PLC application the desired TcCOM object name in the PLC Proxy function

block can be seen. The project node TcCOM Objects keeps the generated object with the generated ID
and the desired name in his list. The interface pointer has a valid value and the method will be executed.

7.4 TcCOM_Sample13_CppToPlc
Description

This sample provides for communication from a C++ module to a function block of a PLC by means of
method call. To this end a TcCOM interface is defined that is offered by the PLC and used by the C++
module.

The PLC page as a provider in the process corresponds to the corresponding project of the TcCOM Sample
01 [} 36], where an PLC is considered after PLC communication. Here a Caller is now provided in C++,
which uses the same interface.

You can find the explanation of the sample in the sub-chapter “Implementation of the sample”.

Downloading the sample: TcCOM_Sample13_CppToPlc.zip

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TC1300-C/Samples31/Sample13-CppToPLC/S13-CppToPLC.zip

Samples

TE1000 55Version: 1.4.0

System requirements

TwinCAT version Hardware PLC libraries to be linked
TwinCAT 3.1, Build 4020 x86, x64 Tc3_Module

7.4.1 Implementation of the sample
The PLC page adopted by TcCOM Sample 01 [} 36]. The function block registered there as TcCOM module
offers the object ID allocated to it as an output variable.
It is the C++ module’s task to make the offered interface of this function block accessible.

ü A C++ project with a Cycle IO module is assumed.
1. In the TMC editor, create an interface pointer of the type I_Calculation with the name Calculationn). Later

access occurs via this.

Samples

TE100056 Version: 1.4.0

2. The Data Area Inputs have already been created by the module wizard with the type Input-Destination.
Here in the TMC editor you create an input of the type OTCID with the name oidProvider, via which the
Object ID will be linked from the PLC later.

3. All other symbols are irrelevant for the sample and can be deleted.
ð The TMC-Code-Generator prepares the code accordingly.

In the header of the module some variables are created in order to carry out the methods calls later.

In the actual code of the module in CycleUpdate() the interface pointer is set using the object ID
transmitted from the PLC. It is important that this happens in the CycleUpdate() and thus in real-time
context, since the PLC must first provide the function block.
When this has taken place once, the methods can be called.

Samples

TE1000 57Version: 1.4.0

In addition, as can be seen above, the interface pointer is cleared when the program shuts down.
This happens in the SetObjStateOS method.

4. Now build the C++ project.
5. Create an instance of the module.
6. Connect the input of the C++ module to the output of the PLC.

ð The project can be started. When the PLC is running, the OID is made known through the mapping to the
C++ instance. Once this has occurred, the method can be called.

Appendix

TE100058 Version: 1.4.0

8 Appendix

8.1 TcCOM Technology
The TwinCAT module concept is one of the core elements for the modularization of modern machines. This
chapter describes the modular concept and working with modules.

8.1.1 The TwinCAT Component Object Model (TcCOM) concept
The TwinCAT Component Object Model defines the characteristics and the behavior of the modules. The
model derived from the "Component Object Model" COM from Microsoft Windows describes the way in
which various independently developed and compiled software components can co-operate with one
another. To make that possible, a precisely defined mode of behavior and the observation of interfaces of
the module must be defined, so that they can interact. Such an interface is also ideal for facilitating
interaction between modules from different manufacturers, for example.

To some degree TcCOM is based on COM (Component Object Model of the Microsoft Windows world),
although only a subset of COM is used. In comparison with COM, however, TcCOM contains additional
definitions that go beyond COM, for example the state machine module.

Overview and application of TcCOM modules

This introductory overview is intended to make the individual topics easier to understand.

One or several TcCOM modules are consolidated in a driver. This driver is created by TwinCAT Engineering
using the MSVC compiler. The modules and interfaces are described in a TMC (TwinCAT Module Class) file.
The drivers and their TMC file can now be exchanged and combined between the engineering systems.

Instances of these modules are now created using the engineering facility. They are associated with a TMI
file. The instances can be parameterized and linked with each other and with other modules to form the IO. A
corresponding configuration is transferred to the target system, where it is executed.

Corresponding modules are started, which register with the TwinCAT ObjectServer. The TwinCAT XAR also
provides the process images. Modules can query the TwinCAT ObjectServer for a reference to another
object with regard to a particular interface. If such a reference is available, the interface methods can be
called on the module instance.

The following sections substantiate the individual topics.

ID Management

Different types of ID are used for the interaction of the modules with each other and also within the modules.
TcCOM uses GUIDs (128 bit) and 32 bit long integers.

Appendix

TE1000 59Version: 1.4.0

TcCOM uses

• GUIDs for: ModulIDs, ClassIDs and InterfaceIDs.
• 32 bit long integers are used for: ParameterIDs, ObjectIDs, ContextIDs, CategoryID.

Interfaces

An important component of COM, and therefore of TcCOM too, is interfaces.

Interfaces define a set of methods that are combined in order to perform a certain task. An interface is
referenced with a unique ID (InterfaceID), which must never be modified as long as the interface does not
change. This ID enables modules to determine whether they can cooperate with other modules. At the same
time the development process can take place independently, if the interfaces are clearly defined.
Modifications of interfaces therefore lead to different IDs. The TcCOM concept is designed such that
InterfaceIDs can superpose other (older) InterfaceIDs ("Hides" in the TMC description / TMC editor). In this
way, both versions of the interface are available, while on the other hand it is always clear which is the latest
InterfaceID. The same concept also exists for the data types.

TcCOM itself already defines a whole series of interfaces that are prescribed in some cases (e.g.
ITComObject), but are optional in most. Many interfaces only make sense in certain application areas. Other
interfaces are so general that they can often be re-used. Provision is made for customer-defined interfaces,
so that two third-party modules can interact with each other, for example.

• All interfaces are derived from the basic interface ItcUnknown which, like the corresponding interface of
COM, provides the basic services for querying other interfaces of the module (TcQueryInterface) and
for controlling the lifetime of the module (TcAddRef and TcRelease).

• The ITComObject interface, which must be implemented by each module, contains methods for
accessing the name, ObjectID, ObjectID of the parent, parameters and state machine of the module.

Several general interfaces are used by many modules:

• ITcCyclic is implemented by modules, which are called cyclically ("CycleUpdate"). The module can
register via the ITcCyclicCaller interface of a TwinCAT task to obtain cyclic calls.

• The ITcADI interface can be used to access data areas of a module.
• ITcWatchSource is implemented by default; it facilitates ADS device notifications and other features.
• The ITcTask interface, which is implemented by the tasks of the real-time system, provides information

about the cycle time, the priority and other task information.
• The ITComObjectServer interface is implemented by the ObjectServer and referenced by all modules.

A whole series of general interfaces has already been defined. General interfaces have the advantage that
their use supports the exchange and recycling of modules. User-defined interfaces should only be defined if
no suitable general interfaces are available.

Class Factories

"Class Factories" are used for creating modules in C++. All modules contained in a driver have a common
Class Factory. The Class Factory registers once with the ObjectServer and offers its services for the
development of certain module classes. The module classes are identified by the unique ClassID of the
module. When the ObjectServer requests a new module (based on the initialization data of the configurator
or through other modules at runtime), the module selects the right Class Factory based on the ClassID and
triggers creation of the module via its ITcClassFactory interface.

Module service life

Similar to COM, the service life of a module is determined via a reference counter (RefCounter). The
reference counter is incremented whenever a module interface is queried. The counter is decremented when
the interface is released. An interface is also queried when a module logs into the ObjectServer (the
ITComObject interface), so that the reference counter is at least 1. The counter is decremented on logout.
When the counter reaches 0, the module deletes itself automatically, usually after logout from the
ObjectServer. If another module already maintains a reference (has an interface pointer), the module
continues to exist, and the interface pointer remains valid, until this pointer is released.

Appendix

TE100060 Version: 1.4.0

8.1.1.1 TwinCAT module properties
A TcCOM module has a number of formally defined, prescribed and optional properties. The properties are
sufficiently formalized to enable interchangeable application. Each module has a module description, which
describes the module properties. They are used for configuring the modules and their relationships with each
other.

If a module is instantiated in the TwinCAT runtime, it registers itself with a central system instance, the
ObjectServer. This makes it reachable and parameterizable for other modules and also for general tools.
Modules can be compiled independently and can therefore also be developed, tested and updated
independently. Modules can be very simple, e.g. they may only contain a basic function such as low-pass
filter. Or they may be very complex internally and contain the whole control system for a machine
subassembly.

There are a great many applications for modules; all tasks of an automation system can be specified in
modules. Accordingly, no distinction is made between modules, which primarily represent the basic functions
of an automation system, such as real-time tasks, fieldbus drivers or a PLC runtime system, and user- or
application-specific algorithms for controlling a machine unit.

The diagram below shows a common TwinCAT module with his main properties. The dark blue blocks define
prescribed properties, the light blue blocks optional properties.

Appendix

TE1000 61Version: 1.4.0

Module description

Each TcCOM module has some general description parameters. These include a ClassID, which
unambiguously references the module class. It is instantiated by the corresponding ClassFactory. Each
module instance has an ObjectID, which is unique in the TwinCAT runtime. In addition there is a parent
ObjectID, which refers to a possible logical parent.

The description, state machine and parameters of the module described below can be reached via the
ITComObject interface (see "Interfaces").

Class description files (*.tmc)

The module classes are described in class description files (TwinCAT Module Class; *.tmc).

These files are used by developers to describe the module properties and interfaces, so that others can use
and embed the module. In addition to general information (vendor data, module class ID etc.), optional
module properties are described.

Appendix

TE100062 Version: 1.4.0

• Supported categories
• Implemented interfaces
• Data areas with corresponding symbols
• Parameter
• Interface pointers
• Data pointers, which can be set

The system configurator uses the class description files mainly as a basis for the integration of a module
instance in the configuration, for specifying the parameters and for configuring the links with other modules.

They also include the description of all data types in the modules, which are then adopted by the configurator
in its general data type system. In this way, all interfaces of the TMC descriptions present in the system can
be used by all modules.

More complex configurations involving several modules can also be described in the class description files,
which are preconfigured and linked for a specific application. Accordingly, a module for a complex machine
unit, which internally consists of a number of submodules, can be defined and preconfigured as an entity
during the development phase.

Instance description files (*.tmi)

An instance of a certain module is described in the instance description file (TwinCAT Module Instance;
*.tmi). The instance descriptions are based on a similar format, although in contrast to the class description
files they already contain concrete specifications for the parameters, interface pointers etc. for the special
module instance within a project.

The instance description files are created by TwinCAT Engineering (XAE), when an instance of a class
description is created for a specific project. They are mainly used for the exchange of data between all tools
involved in the configuration. However, the instance descriptions can also be used cross-project, for example
if a specially parameterized module is to be used again in a new project.

State machine

Each module contains a state machine, which describes the initialization state of the module and the means
with which this state can be modified from outside. The state machine describes the states, which occur
during starting and stopping of the module. This relates to module creation, parameterization and production
in conjunction with the other modules.

Application-specific states (e.g. of the fieldbus or driver) can be described in their own state machines. The
state machine of the TcCOM modules defines the states INIT, PREOP, SAFEOP and OP. Although the state
designations are the same as under EtherCAT fieldbus, the actual states differ. When the TcCOM module
implements a fieldbus driver for EtherCAT, it has two state machines (module and fieldbus state machine),
which are passed through sequentially. The module state machine must have reached the operating state
(OP) before the fieldbus state machine can start.

The state machine is described [} 67] in detail separately.

Appendix

TE1000 63Version: 1.4.0

Parameter

Modules can have parameters, which can be read or written during initialization or later at runtime (OP
state). Each parameter is designated by a parameter ID. The uniqueness of the parameter ID can be global,
limited global or module-specific. Further details can be found in the "ID Management" section. In addition to
the parameter ID, the parameter contains the current data; the data type depends on the parameter and is
defined unambiguously for the respective parameter ID.

Interfaces

Appendix

TE100064 Version: 1.4.0

Interfaces consist of a defined set of methods (functions), which offer modules through which they can be
contacted by other modules. Interfaces are characterized by a unique ID, as described above. A module
must support at least the ITComObject interface and may in addition contain as many interfaces as required.
An interface reference can be queried by calling the method "TcQueryInterface" with specification of the
corresponding interface ID.

Interface pointers

Interface pointers behave like the counterpart of interfaces. If a module wants to use an interface of another
module, it must have an interface pointer of the corresponding interface type and ensure that it points to the
other module. The methods of the other module can then be used.

Interface pointers are usually set on startup of the state machine. During the transition from INIT to PREOP
(IP), the module receives the object ID of the other modules with the corresponding interface; during the
transition from PREOP to SAFEOP (PS) or SAFEOP to OP (SO), the instance of the other modules is
searched with the ObjectServer, and the corresponding interface is set with the Method Query interface.
During the state transition in the opposite direction, i.e. from SAFEOP to PREOP (SP) or OP to SAFEOP
(OS), the interface must be enabled again.

Data areas

Modules can contain data areas, which can be used by the environment (e.g. by other modules or the IO
area of TwinCAT). These data areas can contain any data. They are often used for process image data
(inputs and outputs). The structure of the data areas is defined in the device description of the module. If a
module has data areas, which it wants to make accessible for other modules, it implements the ITcADI
interface to enable access to the data. Data areas can contain symbol information, which describes the
structure of the respective data area in more detail.

Appendix

TE1000 65Version: 1.4.0

Data area pointer

If a module wants to access the data area of other modules, it can contain data area pointers. These are
normally set during initialization of the state machine to data areas or data area sections of other modules.
The access is directly to the memory area, so that corresponding protection mechanisms for competing
access operations have to be implemented, if necessary. In many cases it is preferable to use a
corresponding interface.

Context

The context should be regarded as real-time task context. Context is required for the configuration of the
modules, for example. Simple modules usually operate in a single time context, which therefore requires no
detailed specification. Other modules may partly be active in several contexts (e.g. an EtherCAT master can
support several independent real-time tasks, or a control loop can process control loops of the layer below in
another cycle time). If a module has more than one time-dependent context, this must be specified the in the
module description.

Appendix

TE100066 Version: 1.4.0

Categories

Modules can offer categories by implementing the interface ITComObjectCategory. Categories are
enumerated by the ObjectServer, and objects, which use this to associated themselves with categories, can
be queried by the ObjectServer (ITComObjectEnumPtr).

ADS

Each module that is entered in the ObjectServer can be reached via ADS. The ObjectServer uses the
ITComObject interface of the modules in order to read or write parameters or to access the state machine,
for example. In addition, a dedicated ADS port can be implemented, through which dedicated ADS
commands can be received.

Appendix

TE1000 67Version: 1.4.0

System module

In addition, the TwinCAT runtime provides a number of system modules, which make the basic runtime
services available for other modules. These system modules have a fixed, constant ObjectID, through which
the other modules can access it. An example for such a system module is the real-time system, which makes
the basic real-time system services, i.e. generation of real-time tasks, available via the ITcRTime interface.
The ADS router is also implemented as a system module, so that other modules can register their ADS port
here.

Creation of modules

Modules can be created both in C++ and in IEC 61131-3. The object-oriented extensions of the TwinCAT
PLC are used for this purpose. Modules from both worlds can interact via interfaces in the same way as pure
C++ modules. The object-oriented extension makes the same interfaces available as in C++.

The PLC modules also register via the ObjectServer and can therefore be reached through it. PLC modules
vary in terms of complexity. It makes no difference whether only a small filter module is generated or a
complete PLC program is packed into a module. Due to the automation, each PLC program is a module
within the meaning of TwinCAT modules. Each conventional PLC program is automatically packed into a
module and registers itself with the ObjectServer and one or several task modules. Access to the process
data of a PLC module (e.g. mapping with regard to a fieldbus driver) is also controlled via the defined data
areas and ITcADI.

This behavior remains transparent and invisible for PLC programmers, as long as they decide to explicitly
define parts of the PLC program as TwinCAT modules, so that they can be used with suitable flexibility.

8.1.1.2 TwinCAT module state machine
In addition to the states (INIT, PREOP, SAFEOP and OP), there are corresponding state transitions, within
which general or module-specific actions have to be executed or can be executed. The design of the state
machine is very simple. In any case, there are only transitions to the next or previous step,

resulting in the following state transitions: INIT to PREOP (IP), PREOP to SAFEOP (PS) and SAFEOP to OP
(SO). In the opposite direction there are the following state transitions: OP to SAFEOP (OS), SAFEOP to
PREOP (SP) and PREOP to INIT (PI). Up to and including the SAFEOP state, all states and state transitions
take place within the non-real-time context. Only the transition from SAFEOP to OP, the OP state and the
transition from OP to SAFEOP take place in the real-time context. This differentiation is relevant when
resources are allocated or activated, or when modules register or deregister with other modules.

Appendix

TE100068 Version: 1.4.0

State: INIT

The INIT state is only a virtual state. Immediately after creation of a module, the module changes from INIT
to PREOP, i.e. the IP state transition is executed. The instantiation and the IP state transition always take
place together, so that the module never remains in INIT state. Only when the module is removed does it
remain in INIT state for a short time.

Transition: INIT to PREOP (IP)

During the IP state transition, the module registers with the ObjectServer with its unique ObjectID. The
initialization parameters, which are also allocated during object creation, are transferred to the module.
During this transition the module cannot establish connections to other modules, because it is not clear
whether the other modules already exist and are registered with the ObjectServer. When the module
requires system resources (e.g. memory), these can be allocated during the state transition. All allocated
resources have to be released again during the transition from PREOP to INIT (PI).

State: PREOP

In PREOP state, module creation is complete and the module is usually fully parameterized, even if further
parameters may be added during the transition from PREOP to SAFEOP. The module is registered in the
ObjectServer, although no connections with other modules have been created yet.

Transition: PREOP to SAFEOP (PS)

In this state transition the module can establish connections with other modules. To this end it has usually
received, among other things, ObjectIDs of other modules with the initialization data, which are now
converted to actual connections with these modules via the ObjectServer.

The transition can generally be triggered by the system according to the configurator, or by another module
(e.g. the parent module). During this state transition further parameters can be transferred. For example, the
parent module can transfer its own parameters to the child module.

State: SAFEOP

The module is still in the non-real-time context and is waiting to be switched to OP state by the system or by
other modules.

Transition: SAFEOP to OP (SO)

The state transition from SAFEOP to OP, the state OP, and the transition from OP to SAFEOP take place in
the real-time context. System resources may no longer be allocated. On the other hand, resources can now
be requested by other modules, and modules can register with other modules, e.g. in order to obtain a cyclic
call during tasks.

This transition should not be used for long-running tasks. For example, file operations should be executed
during the PS transition.

State: OP

In OP state the module starts working and is fully active in the meaning of the TwinCAT system.

Transition: OP to SAFEOP (OS)

This state transition takes place in the real-time context. All actions from the SO transition are reversed, and
all resources requested during the SO transition are released again.

Transition: SAFEOP to PREOP (SP)

All actions from the PS transition are reversed, and all resources requested during the PS transition are
released again.

Appendix

TE1000 69Version: 1.4.0

Transition: PREOP to INIT (PI)

All actions from the IP transition are reversed, and all resources requested during the IP transition are
released again. The module signs off from the ObjectServer and usually deletes itself (see "Service life").

8.2 Interfaces

8.2.1 Interface ITComObject
The ITComObject interface is implemented by every TwinCAT module. It makes basic functionalities
available.

Syntax
TCOM_DECL_INTERFACE("00000012-0000-0000-e000-000000000064", ITComObject)
struct__declspec(novtable) ITComObject: public ITcUnknown

 Methods

Name Description
TcGetObjectId(OTCID& objId)
[} 69]

Saves the object ID using the given OTCID reference.

TcSetObjectId [} 70] Sets the object ID of the object to the given OTCID.

TcGetObjectName [} 70] Saves the object names in the buffer with the given length.

TcSetObjectName [} 70] Sets the object name of the object to given CHAR*.

TcSetObjState [} 71] Initializes a transition to a predefined state.

TcGetObjState [} 71] Queries the current state of the object.

TcGetObjPara [} 72] Queries an object parameter identified with its PTCID.

TcSetObjPara [} 72] Sets an object parameter identified with its PTCID.

TcGetParentObjId [} 72] Saves the parent object ID with the help of the given OTCID reference.

TcSetParentObject [} 73] Sets the parent object ID to the given OTCID.

Comments

The ITComObject interface is implemented by every TwinCAT module. It makes functionalities available
regarding the state machine and Information from/to the TwinCAT system.

8.2.1.1 Method ITcComObject:TcGetObjectId(OTCID& objId)
The method saves the object ID with the help of the given OTCID reference.

Syntax

HRESULT TcGetObjectId(OTCID& objId)

Parameter

objId: (type: OTCID&) reference to OTCID value.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values. Extended messages
refer in particular to the column HRESULT in ADS Return Codes [} 32].

Appendix

TE100070 Version: 1.4.0

Description

The method stores Object ID using given OTCID reference.

8.2.1.2 Method ITcComObject:TcSetObjectId
The method TcSetObjectId sets object’s object ID to the given OTCID.

Syntax

HRESULT TcSetObjectId(OTCID objId)

Parameters

objId: (type: OTCID) The OTCID, which should be set.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values. Extended messages
refer in particular to the column HRESULT in ADS Return Codes [} 32].

At present, the return value is ignored by the TwinCAT tasks.

Description

Indicates the success of the ID change.

8.2.1.3 Method ITcComObject:TcGetObjectName
The method TcGetObjectName stores the Object name into buffer with given length.

Syntax

HRESULT TcGetObjectName(CHAR* objName, ULONG nameLen);

Parameters

objName: (type: CHAR*) the name, which should be set.

nameLen: (type: ULONG) the maximum length to write.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values. Extended messages
refer in particular to the column HRESULT in ADS Return Codes [} 32].

Description

The method TcGetObjectName stores the Object name into buffer with given length.

8.2.1.4 Method ITcComObject:TcSetObjectName
The method TcSetObjectName sets objects’s Object Name to the given CHAR*.

Syntax

HRESULT TcSetObjectName(CHAR* objName)

Appendix

TE1000 71Version: 1.4.0

Parameter

objName: (type: CHAR*) the name of the object to be set.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values. Extended messages
refer in particular to the column HRESULT in ADS Return Codes [} 32].

Description

The method TcSetObjectName sets objects’s Object Name to the given CHAR*.

8.2.1.5 Method ITcComObject:TcSetObjState
The method TcSetObjState initializes a transition to given state.

Syntax

HRESULT TcSetObjState(TCOM_STATE state, ITComObjectServer* ipSrv, PTComInitDataHdr pInitData);

Parameter

state: (type: TCOM_STATE) displays the new state.

ipSrv: (type: ITComObjectServer*) ObjServer that handles the object.

pInitData: (type: PTComInitDataHdr) points to a list of parameters (optional), see macro
IMPLEMENT_ITCOMOBJECT_EVALUATE_INITDATA as an example of how the list can be iterated.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values. Extended messages
refer in particular to the column HRESULT in ADS Return Codes [} 32].

Description

The method TcSetObjState initializes a transition to given state.

8.2.1.6 Method ITcComObject:TcGetObjState
The method TcGetObjState retrieves the current state of the object.

Syntax

HRESULT TcGetObjState(TCOM_STATE* pState)

Parameter

pState: (type: TCOM_STATE*) pointer to the state.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values. Extended messages
refer in particular to the column HRESULT in ADS Return Codes [} 32].

Description

The TcGetObjState method queries the current state of the object.

Appendix

TE100072 Version: 1.4.0

8.2.1.7 Method ITcComObject:TcGetObjPara
The method TcGetObjPara retrieves a object parameter identified by its PTCID.

Syntax

HRESULT TcGetObjPara(PTCID pid, ULONG& nData, PVOID& pData, PTCGP pgp=0)

Parameter

pid: (type: PTCID) parameter ID of the object parameter.

nData: (type: ULONG&) max. length of the data.

pData: (type: PVOID&) pointer to the data.

pgp: (type: PTCGP) reserved for future extension, NULL forwarded.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values. Extended messages
refer in particular to the column HRESULT in ADS Return Codes [} 32].

Description

The method TcGetObjPara retrieves a object parameter identified by its PTCID.

8.2.1.8 Method ITcComObject:TcSetObjPara
The method TcSetObjPara sets a object parameter identified by its PTCID.

Syntax

HRESULT TcSetObjPara(PTCID pid, ULONG nData, PVOID pData, PTCGP pgp=0)

Parameter

pid: (type: PTCID) parameter ID of the object parameter.

nData: (type: ULONG) max. length of the data.

pData: (type: PVOID) pointer to the data.

pgp: (type: PTCGP) reserved for future extension, NULL forwarded.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values. Extended messages
refer in particular to the column HRESULT in ADS Return Codes [} 32].

Description

The method TcSetObjPara sets a object parameter identified by its PTCID.

8.2.1.9 Method ITcComObject:TcGetParentObjId
The method TcGetParentObjId stores Parent Object ID using given OTCID reference.

Appendix

TE1000 73Version: 1.4.0

Syntax

HRESULT TcGetParentObjId(OTCID& objId)

Parameter

objId: (type: OTCID&) reference to OTCID value.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values. Extended messages
refer in particular to the column HRESULT in ADS Return Codes [} 32].

Description

The method TcGetParentObjId stores Parent Object ID using given OTCID reference.

8.2.1.10 Method ITcComObject:TcSetParentObjId
The method TcSetParentObjId sets Parent Object ID using given OTCID reference.

Syntax

HRESULT TcSetParentObjId(OTCID objId)

Parameter

objId: (type: OTCID) reference to OTCID value.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values. Extended messages
refer in particular to the column HRESULT in ADS Return Codes [} 32].

At present, the return value is ignored by the TwinCAT tasks.

Description

The method TcSetParentObjId sets Parent Object ID using given OTCID reference.

8.2.2 Interface ITcUnknown
ITcUnknown defines the reference counting as well as querying a reference to a more specific interface.

Syntax
TCOM_DECL_INTERFACE("00000001-0000-0000-e000-000000000064", ITcUnknown)

Declared in: TcInterfaces.h

Required include: -

 Methods

Name Description
TcAddRef [} 74] Increments the reference counter.

TcQueryInterface [} 74] Query of the reference to an implemented interface via the IID.

TcRelease [} 75] Decrements the reference counter.

Appendix

TE100074 Version: 1.4.0

Remarks

Every TcCOM interface is directly or indirectly derived from ITcUnknown. As a consequence every TcCOM
module class implements ITcUnknown, because it is derived from ITComObject.

The default implementation for ITcUnknown will delete the object if its last reference is released. Therefore
an interface pointer must not be dereferenced after TcRelease() has been called.

8.2.2.1 Method ITcUnknown:TcAddRef
This method increments the reference counter.

Syntax
ULONG TcAddRef()

Return Value

Resulting reference count value.

Description

Increments the reference counter and returns the new value..

8.2.2.2 Method ITcUnknown:TcQueryInterface
Query of an interface pointer with regard to an interface that is given by interface ID (IID).

Syntax
HRESULT TcQueryInterface(RITCID iid, PPVOID pipItf)

iid: (Type: RITCID) Interface IID.

pipItf: (PPVOID Type) pointer to interface pointer. Is set when the requested interface type is available from
the corresponding instance.

Return value

If successful, S_OK ("0") or another positive value will be returned, cf. Return values. Extended messages
refer in particular to the column HRESULT in ADS Return Codes [} 32].

If the demanded interface is not available, the method returns ADSERR_DEVICE_NOINTERFACE.

Description

Query reference to an implemented interface by the IID. It is recommended to use smart pointers to initialize
and hold interface pointers.

Variant 1:
HRESULT GetTraceLevel(ITcUnkown* ip, TcTraceLevel& tl)
{
HRESULT hr = S_OK;
if (ip != NULL)
{
ITComObjectPtr spObj;
hr = ip->TcQueryInterface(spObj.GetIID(), &spObj);
if (SUCCEEDED(hr))
{
hr = spObj->TcGetObjPara(PID_TcTraceLevel, &tl, sizeof(tl));
}
return hr;
}
}

Appendix

TE1000 75Version: 1.4.0

The interface id associated with the smart pointer can be used as parameter in TcQueryInterface. The
operator “&” will return pointer to internal interface pointer member of the smart pointer. Variant 1 assumes
that interface pointer is initialized if TcQueryInterface indicates success. If scope is left the destructor of the
smart pointer spObj releases the reference.

Variant 2:

HRESULT GetTraceLevel(ITcUnkown* ip, TcTraceLevel& tl)
{
HRESULT hr = S_OK;
ITComObjectPtr spObj = ip;
if (spObj != NULL)
{
spObj->TcGetObjParam(PID_TcTraceLevel, &tl);
}
else
{
hr = ADS_E_NOINTERFACE;
}
return hr;
}

When assigning interface pointer ip to smart pointer spObj method TcQueryInterface is implicitly called with
IID_ITComObject on the instance ip refers to. This results in shorter code, however it loses the original return
code of TcQueryInterface.

8.2.2.3 Method ITcUnknown:TcRelease
This method decrements the reference counter.

Syntax
ULONG TcRelease()

Return Value

Resulting reference count value.

Description

Decrements the reference counter and returns the new value.

If reference counter gets zero, object deletes itself.

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/te1000

mailto:info@beckhoff.de?subject=TE1000
https://www.beckhoff.com
https://www.beckhoff.com/te1000

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security

	2 Introduction
	3 Function blocks
	3.1 TcBaseModuleRegistered
	3.1.1 TcAddRef
	3.1.2 TcGetObjectId
	3.1.3 TcGetObjectName
	3.1.4 TcGetObjPara
	3.1.5 TcGetObjState
	3.1.6 TcQueryInterface
	3.1.7 TcRelease
	3.1.8 TcSetObjId
	3.1.9 TcSetObjectName
	3.1.10 TcSetObjPara
	3.1.11 TcSetObjState

	3.2 TcBaseModuleRegistered2
	3.2.1 TcAddRef
	3.2.2 TcGetObjectId
	3.2.3 TcGetObjectName
	3.2.4 TcGetObjPara
	3.2.5 TcGetObjState
	3.2.6 TcQueryInterface
	3.2.7 TcRelease
	3.2.8 TcSetObjId
	3.2.9 TcSetObjectName
	3.2.10 TcSetObjPara
	3.2.11 TcSetObjState

	4 Functions
	4.1 FW_ObjMgr_CreateAndInitInstance
	4.2 FW_ObjMgr_CreateInstance
	4.3 FW_ObjMgr_DeleteInstance
	4.4 FW_ObjMgr_GetObjectInstance
	4.5 FW_SafeRelease
	4.6 FAILED
	4.7 SUCCEEDED
	4.8 ITCUNKNOWN_TO_PVOID
	4.9 PVOID_TO_ITCUNKNOWN
	4.10 GuidsEqual

	5 Global Constants
	5.1 GVL
	5.2 Global_Version

	6 Error Codes
	6.1 ADS Return Codes

	7 Samples
	7.1 TcCOM_Sample01_PlcToPlc
	7.1.1 Creating an FB which provides its functionality globally in the first PLC
	7.1.2 Creating an FB which likewise offers this functionality there as a simple proxy in the second PLC,
	7.1.3 Execution of the sample project

	7.2 TcCOM_Sample02_PlcToCpp
	7.2.1 Instantiating a TwinCAT++ class as a TwinCAT TcCOM Object
	7.2.2 Creating an FB in the PLC that, as a simple proxy, offers the functionality of the C++ object
	7.2.3 Execution of the sample project

	7.3 TcCOM_Sample03_PlcCreatesCpp
	7.3.1 Provision of a TwinCAT C++ driver and its classes
	7.3.2 Creating an FB in the PLC that creates the C++ object and offers its functionality
	7.3.3 Execution of the sample project

	7.4 TcCOM_Sample13_CppToPlc
	7.4.1 Implementation of the sample

	8 Appendix
	8.1 TcCOM Technology
	8.1.1 The TwinCAT Component Object Model (TcCOM) concept
	8.1.1.1 TwinCAT module properties
	8.1.1.2 TwinCAT module state machine

	8.2 Interfaces
	8.2.1 Interface ITComObject
	8.2.1.1 Method ITcComObject:TcGetObjectId(OTCID& objId)
	8.2.1.2 Method ITcComObject:TcSetObjectId
	8.2.1.3 Method ITcComObject:TcGetObjectName
	8.2.1.4 Method ITcComObject:TcSetObjectName
	8.2.1.5 Method ITcComObject:TcSetObjState
	8.2.1.6 Method ITcComObject:TcGetObjState
	8.2.1.7 Method ITcComObject:TcGetObjPara
	8.2.1.8 Method ITcComObject:TcSetObjPara
	8.2.1.9 Method ITcComObject:TcGetParentObjId
	8.2.1.10 Method ITcComObject:TcSetParentObjId

	8.2.2 Interface ITcUnknown
	8.2.2.1 Method ITcUnknown:TcAddRef
	8.2.2.2 Method ITcUnknown:TcQueryInterface
	8.2.2.3 Method ITcUnknown:TcRelease

		documentation@beckhoff.com
	2023-06-13T09:28:19+0200
	Beckhoff Automation, Verl
	Documentation Publishing

