
Manual | EN

TF8020
TwinCAT 3 | BACnet

2023-11-07 | Version: 1.1.2

Table of contents

TF8020 3Version: 1.1.2

Table of contents
1 Foreword.. 9

1.1 Notes on the documentation ... 9
1.2 For your safety .. 9
1.3 Notes on information security.. 11

2 Introduction ... 12
2.1 Overview ... 13
2.2 System Requirements... 13

3 Overview about BACnet properties... 14
3.1 Input, Output, Value object types .. 14
3.2 Most commonly used BACnet properties.. 14

3.2.1 Object_Identifier ... 14
3.2.2 Object_Name ... 15
3.2.3 Object_Type... 16
3.2.4 Present_Value.. 16
3.2.5 Description ... 16
3.2.6 Device_Type .. 16
3.2.7 Status_Flags .. 16
3.2.8 Event_State.. 16
3.2.9 Reliability.. 16
3.2.10 Out_of_Service .. 17
3.2.11 Update_Interval.. 17
3.2.12 Units ... 17
3.2.13 Min_Pres_Value... 17
3.2.14 Max_Pres_Value.. 17
3.2.15 Resolution .. 17
3.2.16 COV_Increment ... 17
3.2.17 Time_Delay .. 17
3.2.18 Notification_Class .. 17
3.2.19 High_Limit .. 17
3.2.20 Low_Limit ... 18
3.2.21 Deadband... 18
3.2.22 Limit_Enable .. 18
3.2.23 Event_Enable... 18
3.2.24 Acked_Transitions.. 18
3.2.25 Notify_Type .. 18
3.2.26 Event_Time_Stamps.. 18
3.2.27 Event_Message_Texts... 18
3.2.28 Profile_Name ... 19
3.2.29 Event_Message_Texts_Config .. 19
3.2.30 Event_Detection_Enable.. 19
3.2.31 Event_Algorithm_Inhibit_Ref.. 19
3.2.32 Event_Algorithm_Inhibit ... 19
3.2.33 TimeDelay_Normal .. 19
3.2.34 Reliability_Evaluation_Inhibit ... 19

Table of contents

TF80204 Version: 1.1.2

3.2.35 Property_List .. 19
3.2.36 Priority_Array ... 19
3.2.37 Relinquish_Default ... 19
3.2.38 Inactive_Text.. 20
3.2.39 Active_Text .. 20
3.2.40 Change_Of_State_Time .. 20
3.2.41 Change_Of_State_Count... 20
3.2.42 Time_Of_State_Count_Reset .. 20
3.2.43 Elapsed_Active_Time .. 20
3.2.44 Time_Of_Active_Time_Reset .. 20
3.2.45 Alarm_Value... 20
3.2.46 Minimum_Off_Time.. 20
3.2.47 Minimum_On_Time.. 20
3.2.48 Feedback_Value .. 20
3.2.49 Number_Of_States .. 21
3.2.50 State_Text.. 21
3.2.51 Alarm_Values... 21
3.2.52 Fault_Values .. 21
3.2.53 Date_List .. 21
3.2.54 Weekly_Schedule .. 21
3.2.55 Exception_Schedule .. 21

3.3 Understanding the PICS document... 21

4 Quickstart .. 23
4.1 Creating the TwinCAT project ... 23

4.1.1 Selecting the target system.. 24
4.1.2 Create a BACnet Adapter and Server.. 29
4.1.3 IP address settings... 31
4.1.4 Adjusting the BACnet Server settings .. 33
4.1.5 Persistence .. 34

4.2 Creating the BACnet PLC project ... 34
4.2.1 Creating the PLC project.. 34
4.2.2 Testing the BACnet server ... 42
4.2.3 Testing BACnet using the System Manager .. 43
4.2.4 Testing BACnet using a BACnet Explorer.. 45

5 PLC library: Tc3_BACnetRev14... 50
5.1 DUTs ... 50

5.1.1 Enumerations ... 50
5.1.2 Interfaces ... 50
5.1.3 Types ... 50

5.2 GVLs ... 50
5.2.1 Version ... 50
5.2.2 BACnet_Globals... 51
5.2.3 BACnet_Param .. 51

5.3 POUs... 52
5.3.1 Naming conventions... 52

Table of contents

TF8020 5Version: 1.1.2

5.3.2 FB_BACnet_Adapter.. 53

6 Programming a BACnet server.. 59
6.1 BACnet object POUs... 59

6.1.1 Function blocks without a suffix ... 60
6.1.2 Primitive Value object types ... 61

6.2 Typical BACnet scenarios ... 62
6.2.1 Command prioritization .. 62
6.2.2 Event reporting... 63
6.2.3 Scheduling ... 63
6.2.4 Trend-Logging.. 64
6.2.5 Event-Logging .. 64
6.2.6 Control Loops... 64
6.2.7 TimeSynchronization.. 65
6.2.8 Retrieving diagnosis information .. 65
6.2.9 Scanning other BACnet devices .. 66
6.2.10 Creating a structured view (DPAD) .. 66
6.2.11 Linking hardware using attributes .. 69

6.3 Important notes using the library... 69
6.3.1 Declaring properties at start-up.. 69

6.4 Parameter dialogs ... 71
6.4.1 Always call BACnet function blocks cyclically .. 71
6.4.2 Call BACnet function blocks using the same cycle time .. 72

6.5 Calculating the router memory .. 72
6.5.1 Example calculation of required router memory... 72

6.6 Specific Functionality .. 73
6.6.1 Generating an EDE file .. 73
6.6.2 Cycle time exceed counter... 74
6.6.3 Enable / Disable Properties.. 74
6.6.4 Writeprotect Properties .. 74
6.6.5 Enabling write access from the PLC .. 75
6.6.6 Adding a recipient to a recipient list ... 75
6.6.7 Using UTF-8 characters ... 75

6.7 FB_BACnet_Server... 76
6.8 FB_BACnet_Device .. 76
6.9 IO Code... 76
6.10 Recommended workflow / BACnet persistence .. 77
6.11 Persistence ... 78
6.12 Time synchronization .. 82
6.13 Recommended cycle time of the PLC task ... 84

7 Programming a BACnet client ... 85
7.1 Writemode... 85
7.2 Readmode... 85

7.2.1 Automatic mode ... 85
7.2.2 Applying the Readmode to the entire peer device ... 86
7.2.3 Applying the Readmode to single objects .. 86

Table of contents

TF80206 Version: 1.1.2

7.2.4 COV-Reporting... 87
7.3 Client POUs .. 87
7.4 FB Code .. 89
7.5 Calling the function FB Code .. 89

7.5.1 Calling FB Code from the Scan dialog ... 89
7.5.2 Calling FB Code from the Cyclic Data dialog ... 90

7.6 The client FB Code dialog... 90
7.6.1 The Select Objects window.. 91
7.6.2 Supported Services.. 91
7.6.3 Service Settings ... 92
7.6.4 The Settings window.. 93
7.6.5 The FB Code window... 93
7.6.6 Using the FB created by FB_Code .. 94
7.6.7 Using FB_Code to create device templates... 95

7.7 Client variables.. 95
7.8 Remote schedule objects .. 96
7.9 Acyclic read... 96

7.9.1 Example FB_BACnetRM_ReadProperty ... 96
7.9.2 Example FB_BACnetRM_ReadPropertyEx ... 97

7.10 Acyclic write... 97
7.10.1 Example FB_BACnetRM_WriteProperty.. 97
7.10.2 Example FB_BACnetRM_WritePropertyEx ... 98

7.11 Monitoring a client connection... 98
7.11.1 Example: Connection is successfully established.. 99
7.11.2 Example: Connection is interrupted ... 100

7.12 Use of ReadPropertyMultiple .. 101

8 Dynamic Object Manager ... 102
8.1 FB_BACnet_DynObjectManager .. 102
8.2 Cyclic calls... 102
8.3 Predefined object pool .. 102
8.4 Example .. 103
8.5 Complete initialization of the dynamic objects .. 104
8.6 Creating and deleting own BACnet function blocks (FB) .. 104

9 Samples ... 106
9.1 Variable Declaration.. 106
9.2 BACnet properties... 106
9.3 Link with the 'TcLinkTo' attribute ... 107
9.4 Property selection and write protection ... 108
9.5 Priority controller ... 108
9.6 Reset priorities .. 110
9.7 Control loops and loop objects.. 110
9.8 Set up alarm receiver .. 111
9.9 Receiving alarms and events from other devices ... 112
9.10 Prewarning limits ... 113
9.11 Calendar and schedule functions.. 114

Table of contents

TF8020 7Version: 1.1.2

9.12 Logging objects ... 116
9.13 Processing of the log memory in the PLC... 118
9.14 Primitive Value Objects ... 119
9.15 Structured View objects .. 120
9.16 Array initialization .. 122

10 Support and Service ... 124

Table of contents

TF80208 Version: 1.1.2

Foreword

TF8020 9Version: 1.1.2

1 Foreword

1.1 Notes on the documentation
This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.
For installation and commissioning of the components, it is absolutely necessary to observe the
documentation and the following notes and explanations.
The qualified personnel is obliged to always use the currently valid documentation.

The responsible staff must ensure that the application or use of the products described satisfies all
requirements for safety, including all the relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without notice.
No claims to modify products that have already been supplied may be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered and licensed trademarks of
Beckhoff Automation GmbH.
If third parties make use of designations or trademarks used in this publication for their own purposes, this
could infringe upon the rights of the owners of the said designations.

Patents

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
and similar applications and registrations in several other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The distribution and reproduction of this document as well as the use and communication of its contents
without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

1.2 For your safety
Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

Foreword

TF802010 Version: 1.1.2

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

 DANGER
Hazard with high risk of death or serious injury.

 WARNING
Hazard with medium risk of death or serious injury.

 CAUTION
There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

NOTICE
The environment, equipment, or data may be damaged.

Information on handling the product

This information includes, for example:
recommendations for action, assistance or further information on the product.

Foreword

TF8020 11Version: 1.1.2

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Introduction

TF802012 Version: 1.1.2

2 Introduction

The newly developed TwinCAT library Tc3_BACnetRev14 implements a fully object-oriented engineering
and configuration process to provide a convenient project planning of Beckhoff BACnet controllers.

Using the library does not require any OOP (Object-Oriented Programming) skills. However, for advanced
users, this architecture offers flexible extendable options.

So far, using the older library Tc2_BACnetRev12, the connection between the PLC variables and the
BACnet supplement was established using the automapping process. The BACnet function blocks were
complemented by comments describing the object properties which were parsed by the map or remap
function in the System Manager. This process is still available in TwinCAT 4024 and can be used by adding
the library Tc2_BacnetRev12. Please note that this function may no longer be supported in future TwinCAT
versions!

Using both libraries Tc3_BACnetRev14 and Tc2_BACnetRev12 within one project is not supported.

BACnet® is a registered trademark of ASHRAE.

Introduction

TF8020 13Version: 1.1.2

2.1 Overview
The components are provided by two libraries:

Tc3_BACnetRev14: This library provides function blocks, data types, global variables and parameters
required for the engineering of BACnet objects. This library is provided with the TwinCAT installation
(4024.11 or higher) as compiled library (without source-code). The uncompiled source-code is provided upon
request (e-mail: buildingautomation@beckhoff.com).

Please note, loading uncompiled libraries takes some time (the library is marked with a clock symbol in this
case). Wait until the clock symbols disappears before using the library.

Tc3_BA2_Common: This library contains all function blocks, data types, global variables and parameters
commonly used by BACnet and TwinCAT 3 Building Automation (Tc3BA). E. g. engineering units and a PID
controller are available in this library.

Please add this library in addition to Tc3_BACnet_Rev14 if you want to use these options.

Some function blocks may require additional libraries:

Tc2_Utilities: Contains general helper functions, e. g. to access the operating system, create csv
files or to convert and format data (like UTF-8 character set support).

Tc2_SUPS: Contains functions to use an uninterruptable power supply (UPS).

2.2 System Requirements
Target System: TwinCAT XAR 4024.17 or higher

Engineering-PC: TwinCAT XAE 4024.17 or higher.

mailto:buildingautomation@beckhoff.com
https://infosys.beckhoff.com/content/1033/tcplclib_tc3_ba2_common/index.html?id=3178903701020086065

Overview about BACnet properties

TF802014 Version: 1.1.2

3 Overview about BACnet properties
BACnet objects are composed using properties which are either specified in the BACnet standard or may be
proprietary. Some properties are required, where others may be optional. A few properties are required to be
writable, others may be made writable if needed. The conformance code in the PICS document describes
which properties belong to which group:

R = required

O = optional

W = writable

The column "CC" describes the requirements by the BACnet standard.
"WA" describes the write access options in TwinCAT.

The following table shows an example object (analog input, not all properties are shown) from the PICS
document (the document can be downloaded here: www.beckhoff.com/bacnet).

Analog Input

Property Data Type CC WA
Object_Identifier BACnetObjectIdentifier R R
Object_Name CharacterString R W
Object_Type BACnetObjectType R R
Present_Value REAL R R
Description CharacterString O W
Device_Type CharacterString O W
Status_Flags BACnetStatusFlags R R
Event_State BACnetEventState R R
Reliability BACnetReliability O R

3.1 Input, Output, Value object types
Analog, Binary and Multistate objects are the most commonly used objects. Analog objects represent a
floating point (REAL) information, Binary objects a digital (inactive / active) information and Multistate objects
a set of multiple states.

Input object types are typically used to represent a physical hardware input connected to the device, e. g. a
temperature or brightness sensor.

Output object types typically represent physical outputs like a 0-10V output or a percentage of a valve
actuator.

Value object types are used to represent virtual information like a setpoint or a control parameter.

3.2 Most commonly used BACnet properties
This chapter explains the meaning of the most commonly used BACnet object properties. For a complete list
of objects supported by TwinCAT, the supported properties of these objects and the implemented
conformance code refer to the PICS document.

3.2.1 Object_Identifier
This property consists of two elements, a 10-bit Object_Type and a 22-bit Object_Instance. The
Object_Type is defined in the BACnet standard:
AnalogInput :=0
AnalogOutput :=1
AnalogValue :=2

http://www.beckhoff.com/bacnet

Overview about BACnet properties

TF8020 15Version: 1.1.2

BinaryInput :=3
BinaryOutput :=4
BinaryValue :=5
Calendar :=6
Command :=7
Device :=8
EventEnrollment :=9
File :=10
Group :=11
Loop :=12
MultiStateInput :=13
MultiStateOutput :=14
NotificationClass :=15
Program :=16
Schedule :=17
Averaging :=18
MultiStateValue :=19
TrendLog :=20
LifeSafetyPoint :=21
LifeSafetyZone :=22
Accumulator :=23
PulseConverter :=24
EventLog := 25
GlobalGroup := 26
TrendLogMultiple := 27
LoadControl := 28
StructuredView := 29
AccessDoor := 30
unassigend31 := 31
AccessCredential := 32
AccessPoint := 33
AccessRights := 34
AccessUser := 35
AccessZone := 36
CredentialDataInput := 37
NetworkSecurity := 38
BitStringValue := 39
CharacterStringValue := 40
DatePatternValue := 41
DateValue := 42
DateTimePatternValue := 43
DateTimeValue := 44
IntegerValue := 45
LargeAnalogValue := 46
OctetStringValue := 47
PositiveIntegerValue := 48
TimePatternValue := 49
TimeValue := 50
NetworkPort := 51
AlertEnrollment := 52
Channel := 53

The Object_Instance is specified when the object is created and must be unique per object type. In the
TwinCAT 3 library Tc3_BACnetRev14 the instance numbers start at 10000 by default. The highest 22-bit
value = 4194303 cannot be assigned to object instances. This value is reserved by the BACnet standard as
a wildcard in case the actual object instance number is not known.

In the case of the Device_Objects, the Object_Instance must be unique within the entire BACnet
internetwork (across all BACnet data link layers).

3.2.2 Object_Name
This property contains the name of the object. In many cases this property contains the Data Point
Addressing Description (DPAD), i.e. it is a project or customer-specific naming convention for data points.

The Object_Name must contain at least one printable character that must be unique within the device. In
the case of the Object_Name of the device object, this property must be unique within the entire BACnet
internetwork (across all BACnet data link layers). The default character set in TwinCAT is UTF-8. The
maximum length of this string in TwinCAT is 255.

Overview about BACnet properties

TF802016 Version: 1.1.2

3.2.3 Object_Type
This property represents the 10 bit type information of the BACnet Object Identifier. If this property is
requested, the response only contains the object type. If the property ObjectIdentifier is requested, the 32 bit
Identifier (10 bit type and 22 bit instance number) is returned in the response.

3.2.4 Present_Value
This property is very likely the most important property. It represents the current process value of the object.

The data-type of this property is:

Analog objects: REAL (32-bit single accuracy floating point number according to ANSI-IEEE 754)

Binary objects: ENUMERATED 0=inactive, 1=active *

Multistate objects: UNSIGNED INT

* Please note that the library uses a BOOL data type and provides automatic conversion to the BACnet
enumeration.

3.2.5 Description
This optional property may contain an additional text information describing the object. The default character
set is UTF-8. The maximum length in TwinCAT is 255 characters.

3.2.6 Device_Type
(Available in input and output object types)

This optional text property may be used to specify the hardware type, e. g. a PT1000 sensor. It may contain
other information like the order number or similar information about the hardware connected. The default
character set is UTF-8. The maximum length in TwinCAT is 255 characters.

3.2.7 Status_Flags
This property represents four boolean status flags:

IN_ALARM: in case of an active alarm, this flag is set to TRUE.

FAULT: if the Reliability property is not equal to NO_FAULT_DETECTED, this flag is set to TRUE. Error states
include defect sensors, links, etc.

OVERRIDDEN: If the Present_Value property of the object is overridden locally by the application, this flag
is set to TRUE. The values of the properties Present_Value and Reliability are no longer taken from
the hardware. The definition of the overwritten state is done locally by the application.

OUT_OF_SERVICE: this value indicates the state of the property Out_of_Service.

3.2.8 Event_State
This property represents the event state in case of an active alarm, e.g. LOW_LIMIT. In the normal state or
in the absence of an alarm associated with the object, the value must be NORMAL.

3.2.9 Reliability
This property indicates whether the value of the property Present_Value is reliable
(NO_FAULT_DETECTED) and if not, why is not (e.g. short circuit, missing sensor, etc.).

Overview about BACnet properties

TF8020 17Version: 1.1.2

3.2.10 Out_of_Service
This Boolean property indicates whether the object is in service or not. In the case of Out_of_Service =
TRUE, Present_Value is no longer tracked by hardware and Present_Value becomes writable, even for
input object types. This allows to set a value in case of defective hardware.

3.2.11 Update_Interval
This optional property specifies the maximum time in hundredths of a second between updates of the
Present_Value if the input is not out of service and not overwritten.

3.2.12 Units
This property specifies the technical unit of the object. As these units are used for BACnet and for general
building automation purposes, the listed values can be retrieved from the library Tc3_BA2_Common. The list
can be found in the section DUTs/Enumerations/Units/E_BA_Unit.

3.2.13 Min_Pres_Value
This property specifies the lowest value in technical units that can be reliably determined for the
Present_Value property of the object. Currently not available in Analog Value objects.

3.2.14 Max_Pres_Value
This property specifies the highest value in technical units that can be reliably determined for the
Present_Value property of the object. Currently not available in Analog Value objects.

3.2.15 Resolution
This property specifies the lowest detectable change in the Present_Value property in technical units.

3.2.16 COV_Increment
This property specifies the hysteresis for Change-of-Value notifications. If the new value of the
Present_Value property exceeds the old value by COV_Increment, the recipients subscribed to this
object are informed about the value change.

Please note: a COV_Increment of zero means that every (even small) change is reported, which can lead
to a message flood in the network!

3.2.17 Time_Delay
This property specifies the minimum amount of time in seconds that Present_Value must be outside the
range defined by the High_Limit and Low_Limit properties before a TO-OFFNORMAL event is generated,
or within the same range, including the Deadband property, before a TO-NORMAL event is generated.

3.2.18 Notification_Class
This property specifies the instance number of the Notification Class object for the event-notification-
distribution.

3.2.19 High_Limit
This property specifies the limit value that Present_Value must exceed before an event is generated.

https://infosys.beckhoff.com/content/1033/tcplclib_tc3_ba2_common/index.html?id=3178903701020086065
https://infosys.beckhoff.com/content/1033/tcplclib_tc3_ba2_common/9917803147.html?id=2533652357500484113

Overview about BACnet properties

TF802018 Version: 1.1.2

3.2.20 Low_Limit
This property specifies the limit value below which Present_Value must fall before an event is generated.

3.2.21 Deadband
This property specifies a range between the High_Limit and Low_Limit properties in which
Present_Value must lie for a TO-NORMAL event to be generated.

The following conditions apply to the event generation:

• Present_Value must be below the High_Limit minus deadband and
• Present_Value must exceed the Low_Limit plus deadband and
• Present_Value must remain within this range for a minimum period specified in the Time_Delay

property, and
• either the HighLimitEnable or the LowLimitEnable flag must be set in the Limit_Enable

property, and
• the TO-NORMAL flag must be set in the Event_Enable property.

3.2.22 Limit_Enable
This property specifies two flags that enable and disable compliance with the upper alarm limit and lower
alarm limit separately.

Please note:
up to BACnet revision 12 there was an error in the description of the Property Description in the
BACnet standard. Only event reporting was enabled / disabled up to version 12. As of revision 13,
this specification was changed in the BACnet standard. Now, observation of these properties is
enabled / disabled.

3.2.23 Event_Enable
This property specifies three flags that separately enable and disable the reporting of TO-OFFNORMAL, TO-
FAULT and TO-NORMAL events.

3.2.24 Acked_Transitions
This property specifies three flags that indicate the receipt of acknowledgements for the TO-OFFNORMAL,
TO-FAULT and TO-NORMAL events separately.

3.2.25 Notify_Type
This property specifies whether the notifications generated by the object should be Events or Alarms.

3.2.26 Event_Time_Stamps
This property specifies the times of the last event notifications for the TO-OFFNORMAL, TO-FAULT and TO-
NORMAL events, respectively.

Please note: the property value can be a choice of DateTime (mostly used), Time (rarely used) or
Sequence Number (if the device does not support a clock).

3.2.27 Event_Message_Texts
This property specifies the message text of the last event notifications for the TO-OFFNORMAL, TO-FAULT
and TO-NORMAL events, respectively.

Overview about BACnet properties

TF8020 19Version: 1.1.2

3.2.28 Profile_Name
This property is the name of an object profile to which this object conforms. To ensure uniqueness, a profile
name must begin with a vendor identifier code (415 for Beckhoff Automation) in base-10 integer format,
followed by a dash.

3.2.29 Event_Message_Texts_Config
This property contains the strings that form the basis of the "Message Text" parameter for the event
notifications of the TO_OFFNORMAL, TO_FAULT and TO_NORMAL events.

3.2.30 Event_Detection_Enable
This property indicates whether or not intrinsic reporting is enabled in the object and controls whether or not
the object will be considered by event summarization services.

3.2.31 Event_Algorithm_Inhibit_Ref
This reference specifies the property that controls the value of the Event_Algorithm_Inhibit property.

3.2.32 Event_Algorithm_Inhibit
This property indicates whether or not the event algorithm has been disabled for the object.

3.2.33 TimeDelay_Normal
This property specifies the minimum time in seconds that Present_Value must remain within the range
defined by the properties High_Limit and Low_Limit, including the Deadband property, before a TO-
NORMAL event is generated.

Please note: up to BACnet revision 12, only Time_Delay was available in the BACnet standard for the two
transitions TO_OFFNORMAL and TO_NORMAL. From revision 13, this optional TimeDelay_Normal property is
used to specify a separate hysteresis for TO_NORMAL events.

3.2.34 Reliability_Evaluation_Inhibit
This property indicates whether or not reliability-evaluation is disabled in the object.

3.2.35 Property_List
This property is a BACnetARRAY of property identifiers. A property identifier for each property that exists
within the object.

3.2.36 Priority_Array
This property is a read-only array of prioritized values. See chapter Command prioritization [} 62].

3.2.37 Relinquish_Default
This property is the default value used for the Present_Value property when all command priority values in
the Priority_Array property have the value NULL. See chapter Command prioritization [} 62].

Overview about BACnet properties

TF802020 Version: 1.1.2

3.2.38 Inactive_Text
(Binary objects) This property represents a human-readable description of the INAKTIV state. For example,
if the binary object represents a switch, the inactive state can be represented as AUS.

3.2.39 Active_Text
(Binary objects) This property represents a human-readable description of the AKTIV state. For example, if
the Binary object represents a switch, the active state may be represented as ON.

3.2.40 Change_Of_State_Time
(Binary objects) This property represents the date and time at which the most recent change of state
occurred.

3.2.41 Change_Of_State_Count
(Binary objects) This property indicates how often the state of property Present_Value has changed since
property Change_Of_State_Count was last set to a null value.

3.2.42 Time_Of_State_Count_Reset
(Binary objects) This property represents the date and time when the Change_Of_State_Count property
was last set to a null value.

3.2.43 Elapsed_Active_Time
(Binary objects) This property represents the cumulative number of seconds Present_Value has had the
value ACTIVE since the Elapsed_Active_Time property was last set to a null value.

3.2.44 Time_Of_Active_Time_Reset
(Binary objects) This property represents the date and time when the Elapsed_Active_Time property was
last set to a null value.

3.2.45 Alarm_Value
(Binary objects) This property indicates the value Present_Value must have before an event is generated.

3.2.46 Minimum_Off_Time
(Binary objects) This property specifies the minimum number of seconds that Present_Value remains in
the INACTIVE state after a write operation in Present_Value has set this property to the INACTIVE state.
See chapter Command prioritization [} 62].

3.2.47 Minimum_On_Time
(Binary objects) This property specifies the minimum number of seconds that Present_Value remains in
the ACTIVE state after a write operation in Present_Value has set this property to the ACTIVE state. See
chapter Command prioritization [} 62].

3.2.48 Feedback_Value
This property indicates the actual value of the unit controlled by Present_Value.

Overview about BACnet properties

TF8020 21Version: 1.1.2

3.2.49 Number_Of_States
(Multistate objects) This property defines the number of states Present_Value can have.

3.2.50 State_Text
(Multistate objects) This property is a BACnetARRAY of strings representing descriptions of all possible
states of Present_Value. The number of descriptions corresponds to the number of states defined in the
Number_Of_States property.

3.2.51 Alarm_Values
(Multistate objects) This property specifies all states to which Present_Value must correspond before a
TO-OFFNORMAL event is generated.

3.2.52 Fault_Values
(Multistate objects) This property specifies all states to which Present_Value must correspond before a
TO-FAULT- event is generated.

3.2.53 Date_List
(Calendar object) This property is a BACnetLIST of BACnetCalendarEntry, each of which is either a specific
date or date pattern (Date), range of dates (BACnetDateRange), or month/week-of-month/day-of-week
specification (BACnetWeekNDay).

3.2.54 Weekly_Schedule
(Schedule object) This property is a BACnetARRAY containing exactly seven elements. Each of the
elements 1-7 contains a BACnetDailySchedule. A BACnetDailySchedule consists of a list of
BACnetTimeValues which describe the sequence of schedule actions on one day of the week when no
Exception_Schedule is in effect. Monday equals the first element (day 1) where Sunday equals the last
element (day 7).

3.2.55 Exception_Schedule
(Schedule object) This property is a BACnetARRAY of BACnetSpecialEvents. Each BACnetSpecialEvent
describes a sequence of schedule actions that takes precedence over the normal day's behavior on a
specific day or days. The special event may contain a Date, Date-range, WeekNDay information or a
Calendar reference (within the same BACnet device) to specify the exception period.

3.3 Understanding the PICS document
A PICS (Protocol Implementation Conformance Statement) is the "BACnet data sheet". This document
describes the scope of the BACnet device implementation.

The PICS document for Beckhoff controllers can be downloaded here: https://download.beckhoff.com/
download/Document/certificates/beckhoff_bacnet_ip_pics_en_rev14_ver4.0.pdf

The PICS describes the supported object types and for each object type, which properties are supported, the
read or write access (so-called conformance code) and possible property limitations.

In addition, the supported Data Link Layer, character sets, segmentation support, etc. is described as well.

The third element of the PICS document is the list of supported BIBBs (BACnet Interoperability Building
Blocks). The standard describes A-side and B-side BIBBs.
A-side BIBBs are those issued by a client requesting something from or to a B-side device (server).

https://download.beckhoff.com/download/Document/certificates/beckhoff_bacnet_ip_pics_en_rev14_ver4.0.pdf
https://download.beckhoff.com/download/Document/certificates/beckhoff_bacnet_ip_pics_en_rev14_ver4.0.pdf

Overview about BACnet properties

TF802022 Version: 1.1.2

To use a specific functionality, such as Change-of-Value, both sides, client and server, must support the
corresponding BIBB.

Example:

DS-COV-A: Client requests data using the subscribed Change-of-Value.

DS-COV-B: The server responds to COV subscriptions from the client and provides the data to the client
when the value has changed by sending a COV notification.

Quickstart

TF8020 23Version: 1.1.2

4 Quickstart
This example shows how to create a BACnet server containing a simple analog value object on a CX
controller.

4.1 Creating the TwinCAT project
1. Start TwinCAT.

2. Create a new, empty project.

Quickstart

TF802024 Version: 1.1.2

3. Select TwinCAT Projects in the list of project types, select TwinCAT XAE Project, name the project and
change the directory if necessary.

4.1.1 Selecting the target system
1. Select the target system from the list of controllers already connected via an ADS route.

2. If no ADS route to the controller exists, select the function Choose Target System.

Quickstart

TF8020 25Version: 1.1.2

3. Select Search (Ethernet) in this dialog.

Quickstart

TF802026 Version: 1.1.2

4. Select Broadcast Search.

5. Select the network adapters which are used to search for controllers.

Quickstart

TF8020 27Version: 1.1.2

ð All available controllers in the network are shown in this list. The letter "x" in the Connected column
means that an ADS route has already been set up.

6. Select the controller to be used for the BACnet project, select IP Address in the section Address Info and
select Add Route.

It is optionally possible to create a secure ADS route. Please refer to the Beckhoff Information
System for further information how to use Secure ADS.

Quickstart

TF802028 Version: 1.1.2

This example uses a regular ADS route. The standard password for the user Administrator is the number 1.
We strongly recommend changing the default to a more secure password and document it in the revision
documents of the project, at the latest when finishing the project.

The controller is now connected through ADS.

Quickstart

TF8020 29Version: 1.1.2

7. Close the dialog and select the controller from the list of available target systems.

4.1.2 Create a BACnet Adapter and Server
1. Right click to Devices and select Add New Item.

Quickstart

TF802030 Version: 1.1.2

2. Select BACnet IP Device from the list of available supplements.

3. Right click to menu item Device 1 (BACnet IP) and select Add New Item.

Quickstart

TF8020 31Version: 1.1.2

4. From the list of available TCOM objects select BACnet Server (Module).

4.1.3 IP address settings
1. Double click to BACnet Adapter Device 1 (BACnet IP), select the Adapter tab and check, if the IP

address was correctly set.
ð In the figure below the MAC address and IP address are set to zero, no adapter was selected.

Quickstart

TF802032 Version: 1.1.2

2. Select Search and select the network interface. Depending on the controller type the names and number
of network interfaces may vary.

3. Check if the IP address was set correctly.

Quickstart

TF8020 33Version: 1.1.2

4.1.4 Adjusting the BACnet Server settings
1. Double click to the BACnet server which was created in the Device 1 tree item.

2. Use the input box BACnet ID to set the instance number of the BACnet server.

The BACnet instance number is a 22-bit value (valid range from 0 – 4194302, 4194303 is reserved
as wildcard and cannot be used). Combined with the object type (10-bit), this information creates
the unique address of the device (the Device Object Identifier).

Every device in the network requires a unique Device Object Identifier. The uniqueness is required across
the entire BACnet internetwork, this means across all BACnet networks connected by BACnet routers. Talk
to the specialist planner or other parties involved in the BACnet installation to avoid duplicate addressing!

Quickstart

TF802034 Version: 1.1.2

4.1.5 Persistence
Persistent storage of values modified by BACnet clients (e. g. from the BMS) is provided as a file in the
TwinCAT boot directory (BACnetOnline_1010010.bootdata). To enable persistent storage, please activate
“Persist Server Online Data in the BACnet Server settings (as shown above).

In case a UPS is installed in the controller, the flag Use UPS may be activated. In this case, the UPS
function block must assure that persistent data is written in case of a power loss.

4.2 Creating the BACnet PLC project
This example shows how to create a first BACnet server project.

4.2.1 Creating the PLC project
1. Right click to PLC and select Add New Item.

Quickstart

TF8020 35Version: 1.1.2

2. Select Standard PLC Project and name the project.

3. Right click to References and select Add Library to add libraries to a PLC project.

4. Select the library Tc3_BACnetRev14.

If you enter the text rev14 in the full-text search field, only this library will be displayed. Select this
item and click OK.

Quickstart

TF802036 Version: 1.1.2

5. Double click the POU MAIN in the PLC project.

6. Add the following declaration in the variable window: fbAv : FB_BACnet_AV,

Quickstart

TF8020 37Version: 1.1.2

ð This command creates an instance of the function block FB_BACnet_AV with the name fbAv (which
represents an Analog Value object).

7. Add the following entry to the code window: fbAv();
ð This code is called at regular intervals according to the cycle time (default: 10 ms).

8. Build the project by selecting Build / Build Solution.

ð Alternatively, you can also call this function by right-clicking on the project name.

Quickstart

TF802038 Version: 1.1.2

9. Check if the build was successful and no error is displayed. If errors are displayed, check the project and
correct the errors.

10. After successful compilation the variable
Tc3_BACnetRev14.BACnet_Globals.DefaultAdapter.BACnet_AmsNetId is displayed in the process
image.

ð This variable is used to establish the BACnet connection between the PLC program and the BACnet
adapter.

Quickstart

TF8020 39Version: 1.1.2

11. Right click to this variable and select Change Link.

12. Select the variable of the same type in the BACnet adapter and create a link with OK.
ð The connection is indicated by a connection icon.

13. You can check the link at any time with the function Go To Link Variable.

Quickstart

TF802040 Version: 1.1.2

ð Using this function, the cursor moves to the connected variable.

14. Activate the project using the function Activate Configuration in the TwinCAT menu.

ð Alternatively this function is also available in the TwinCAT toolbar.

Quickstart

TF8020 41Version: 1.1.2

15. Check that the correct target system is selected and click OK.

ð If no licenses are available on the target system, so-called trial licenses can be generated. Trial
licenses are valid for a period of 7 days. The Beckhoff Information System provides further
information on TwinCAT licensing.

16. Enter the 5 letters from the upper field into the lower field.
The entry is case sensitive.

Quickstart

TF802042 Version: 1.1.2

17. To complete this process, TwinCAT requests a restart of the PLC. Click OK.
ð With these few and simple steps, a fully functional BACnet server was created. The server and the

contained objects are now available in the BACnet network.

4.2.2 Testing the BACnet server
1. Login into the PLC. Select Login from the PLC menu.

ð Alternatively, this function is also available via the TwinCAT toolbar.

Quickstart

TF8020 43Version: 1.1.2

2. Navigate to the POU MAIN, expand the display of the variable fbAv with the plus sign and check the
content of this function block representing the BACnet object.

ð The variable bReady indicates a successful start of this object. In this example, no specific configuration
of the object properties has been made, so the property values are default values.

4.2.3 Testing BACnet using the System Manager
The BACnet objects created by the PLC are similar to the objects created dynamically by BACnet clients
using the Create Object service. Follow these instructions to scan dynamic objects in the System Manager:

Quickstart

TF802044 Version: 1.1.2

1. Double click the BACnet server and navigate to the Settings page. Use the function Scan in the section
Dynamic Object Management.

ð The tree below the BACnet Server now shows the object fbAv (the one created in the example
above).

Quickstart

TF8020 45Version: 1.1.2

2. Double-click on this object.

ð The online view of this object opens.

4.2.4 Testing BACnet using a BACnet Explorer
In this example, the tool YABE - Yet Another BACnet Explorer is used. The tool can be downloaded from
here: https://sourceforge.net/projects/yetanotherbacnetexplorer/.
ü Start YABE.
1. Select Add device. This function can be accessed via the Functions menu , the green button with the

plus sign or by right-clicking on Devices.

https://sourceforge.net/projects/yetanotherbacnetexplorer/

Quickstart

TF802046 Version: 1.1.2

ð A dialog named Scan opens.
2. Select in the category BACnet/IP over UDP the standard BACnet port BAC0 (corresponds to 47808 in

decimal notation) and select the network adapter of your engineering PC (Local endpoint).
3. Select the Add button (the button to the right of the BACnet port).

ð The device created in TwinCAT should now appear.

4. Select the device. This resolves the Device Object Name and starts the evaluation of the BACnet objects
contained in the device.

ð In the device window the tree items represent the objects contained in the device.

5. Select ANALOG_VALUE:10000.

Quickstart

TF8020 47Version: 1.1.2

ð This starts the resolution of the object name (fbAv).

Using CTRL-N after selecting a device resolves all object names of all objects in the device. This
may take some time, especially if slower MS/TP devices are searched (MS/TP = Master Slave
Token Passing = serial BACnet based on RS485).

ð Selecting an object in the list of objects opens the object properties display in the right Properties
window.

This window does not update the property values automatically! To read the properties again, select
another object and return to the observed object.

Quickstart

TF802048 Version: 1.1.2

Subscribe for Change of Value (COV)

COV is a BACnet procedure to automatically report changes in Present Value and Status Flags to BACnet
clients subscribed to the object.

1. To use COV in YABE, right-click on the object and select Subscribe. Alternatively, you can drag and drop
the object into the Subscriptions window.

ð The selected object is now displayed in the Subscriptions window and is automatically updated when
the Present Value and/or the Status Flags of the object change. For analog object types, the COV
Increment property is used to suppress minor value changes. The subscription lifetime can be
adjusted in the Settings dialog (Subscriptions Lifetime).

2. Return to TwinCAT, log in to the PLC and open the POU MAIN.
3. Expand the display of FB fbAv by clicking on the plus symbol.

4. Navigate to the variables bEnPgm and fValPgm.

Quickstart

TF8020 49Version: 1.1.2

5. Insert the following values in the Prepared value column. If bEnPgm is set to TRUE, the value fValPgm is
set to the Present Value with the specified priority for the program (default: 15).

6. Select Write Values from the PLC menu.
7. Switch to the online view in the TwinCAT System Manager or switch back to YABE.
ð The Present Value property should now display the value "42".

PLC library: Tc3_BACnetRev14

TF802050 Version: 1.1.2

5 PLC library: Tc3_BACnetRev14
This library provides the following items:

DUTs = Data Unit Types

GVLs = Global Variable Lists

POUs = Program Organizational Units

Version = Global Version

5.1 DUTs
The datatypes are separated into three major items:

5.1.1 Enumerations
This section contains the required BACnet list. One exception is the list of enumerated technical units
(E_BA_Unit). This can be found in the Tc3_BA2_Common library (as this is often shared between BACnet
and the building automation libraries).

5.1.2 Interfaces
This section provides al list of interfaces, most of them used in the Base Object Types.

5.1.3 Types
This section provides a list of specific data-types, like ObjectIdentifier or PropertyList.

5.2 GVLs
The global variable lists are split into two parts:

5.2.1 Version
The variable stLibVersion_Tc3_BACnetRev14 of type ST_LibVersion can be used to compare the version of
the library with the version stored as project information.

The TwinCAT3 library version consists of the following elements:

iMajor = Major release number
iMinor = Minor release number
iBuild = Build number
iRevision = Revision number

In addition, this structure contains the version information in the form of a string separated by dots.

https://infosys.beckhoff.com/content/1033/tcplclib_tc3_ba2_common/index.html?id=3178903701020086065

PLC library: Tc3_BACnetRev14

TF8020 51Version: 1.1.2

5.2.2 BACnet_Globals
This part of the library specifies global settings like the Default Adapter, BACnet-specific values like
supported object types and Error-, Abort- and Reject-Codes.

5.2.3 BACnet_Param
Global settings and parameters for the library instance in the project can be defined and changed in this part
of the library. Variables declared as CONSTANT are called parameters in TwinCAT and can be changed and
adapted according to the requirements of the specific project.

Please note that the default parameters from the library repository remain unchanged. To restore the default
values, simply remove the BACnet Rev14 library and add it back to the project.

PLC library: Tc3_BACnetRev14

TF802052 Version: 1.1.2

The default values provided by the library can be changed using the Value (Editable) column.

Example: Extending the text length of state text properties.

The following figure shows a default text length of 40 characters for text information provided in multistate
and binary objects.

For larger text information, the value can be changed from 40 to 60 characters by editing the value.

Important: These parameters (like other variable initializations in TwinCAT) are only applied after activating
the project or after a reset origin and restart of the PLC.

5.3 POUs
The function blocks in the POUs library section are intended for programming BACnet servers and BACnet
clients.

The POUs section is divided into these sections:

Dynamic Objects: The Dynamic Object Manager is mainly used for applications that create or delete
objects based on a configuration file or at runtime (e.g. a visualization).

Helper: This section contains helper functions such as conversion functions, functions for generating
complex data types, etc.

Local: This section contains function blocks for local / server applications. This means that TwinCAT
provides BACnet objects as a server, which represent values from the PLC.

Remote: This section contains function blocks for remote/client applications. This means that TwinCAT
accesses other devices as a client and processes values from other devices in the PLC.

FB_BACnet_Adapter: This function block represents a BACnet adapter in the System Manager. Please
note that the Default Adapter is already present in the GVL BACnet_Globals and is automatically called as
soon as a BACnet function block is called in the PLC code.

5.3.1 Naming conventions
Local / server object function block names start with the prefix “FB_BACnet_” followed by the shortcut of the
object type (e. g. ACC = Accumulator, AI = Analog Input, etc.).

PLC library: Tc3_BACnetRev14

TF8020 53Version: 1.1.2

Remote / client object function block names start with the prefix “FB_BACnetRM_” followed by the shortcut of
the object type.

5.3.2 FB_BACnet_Adapter
The function block FB_BACnet_Adapter represents one BACnet device configured under I/O devices in the
TwinCAT system manager. To avoid confusion with BACnet’s device object, a BACnet device will be called
BACnet adapter in the context of this library. A BACnet adapter is connected to a network adapter if BACnet/
IP is used and in case of MS/TP one BACnet adapter is connected to an EL6861 terminal.

A connection between an instance of FB_BACnet_Adapter with its according I/O device can be established
by connecting its AmsNetId variables.

5.3.2.1 Default Adapter
By adding the library Tc3_BACnetRev14 a default adapter is automatically generated. This adapter is
configured as global variable within the library.

This adapter needs to be connected to the device (e. g. BACnet/IP).

PLC library: Tc3_BACnetRev14

TF802054 Version: 1.1.2

5.3.2.2 Using multiple BACnet adapters
The following example illustrates how to use multiple BACnet adapters connecting to different devices.

The example below uses a total of three adapters, 1 x BACnet/IP and 2 x MS/TP using terminals EL6861.
The next picture shows the overview in the TwinCAT system manager.

The device BACnet/IP is connected to the network adapter FEC1 of the CX9020.

PLC library: Tc3_BACnetRev14

TF8020 55Version: 1.1.2

The first MS/TP device Device 2 (BACnet MSTP) is connected to the terminal named Term 2 (EL6861).

PLC library: Tc3_BACnetRev14

TF802056 Version: 1.1.2

The second MS/TP device Device 3 (BACnet MSTP) is connected to the terminal named Term 3 (EL6861).

PLC library: Tc3_BACnetRev14

TF8020 57Version: 1.1.2

All three devices are now connected to the PLC.

In this example devices connected to the network have already been scanned and are available as BACnet
client references. Using the function FB Code (see separate chapter for details) code was generated to
access the objects through function blocks from the BACnet library.

The next window shows the variables and code in the POU MAIN copied from the created client function
blocks.

PLC library: Tc3_BACnetRev14

TF802058 Version: 1.1.2

The code {attribute ‚TcLinkTo‘ := … generates a dynamic connection to the referenced BACnet device. The
dynamic connection symbol is marked in green in the system manager.

The default adapter is connected using a manual connection.

The three connections look like this:

Programming a BACnet server

TF8020 59Version: 1.1.2

6 Programming a BACnet server
A BACnet server is a device that provides objects and services for other devices, e.g. an MBE (management
operating device). Each BACnet server requires a device object. The ObjectList and StructuredObjectList
properties of the Device object provide access to the server "database" (the objects contained in the device).

The function blocks that represent BACnet objects in a server are located in the folder POUs/Local/Objects.

In the following, the function blocks for BACnet objects are presented, followed by typical use cases, how
and which function blocks are used.

6.1 BACnet object POUs
This chapter describes the function blocks used to program a BACnet server.

Programming a BACnet server

TF802060 Version: 1.1.2

6.1.1 Function blocks without a suffix
ACC Accumulator This object type represents accumulated (pulse) values.
AI Analog Input This object type represents physical analog input information, e.g. a sensor

value.
AO Analog Output This object type represents physical analog output information, e.g. via a

0-10V output.
AV Analog Value This object type represents a (virtual) analog value information, e.g. a

setpoint.
BI Binary Input This object type represents a binary input information, e.g. the state of a

lamp or a fuse.
BO Binary Output This object type represents a binary output information, e.g. via a switching

output.
BV Binary Value This object type represents a (virtual) binary value information, e.g. an error

state.
CAL Calendar This object type represents calendar (date-based) information.
Device Device This object type represents the physical device. It contains information such

as the local clock, vendor, model name and more.
EE EventEnrollment This object type is used to apply event monitoring in addition to intrinsic

reporting, e.g. to implement warning limits.
ELOG Eventlog This object type represents an event log buffer, e.g. to store alarms locally.
File File This object type represents files, e.g. the current configuration or persistent

data.
Loop Control Loop This object type represents control loops, e.g. a PI or PID loop.
MI Multistate Input This object type represents a physical multistate input information, e.g. a

local operating modes switch.
MO Multistate Output This object type represents a physical multistate output information, e.g. an

operating modes switch controlled by the PLC.
MV Multistate Value This object type represents a (virtual) multistate value information, e.g. a

program parameter.
NC Notification Class This object type represents an alarm class to notify recipients.
PC Pulse Converter This object type represents converted pulse information, e.g. energy

consumption in kWh.
Prog Program This object type represents the PLC program.
SchedA Schedule Analog This object type represents a schedule with analog values.
SchedB Schedule Binary This object type represents a list of binary values.
SchedM Schedule

Multistate
This object type represents a schedule with multistate values.

TLM Trendlog Multiple This object type represents a trendlog object that supports multiple
channels.

Tlog Trendlog This object type represents a trendlog object that supports a single channel.
View Structured View This object type represents a user-oriented object hierarchy.

Programming a BACnet server

TF8020 61Version: 1.1.2

6.1.2 Primitive Value object types
Date Single Date Value This object type represents a certain single date information (day,

month, year-1900, weekday).
DateP Date Pattern Value This object type represents a date pattern. The pattern value 255 can

be used as a wildcard.
DateTime Date and Time Value This object type represents a combination of a specific date and time.
DateTimeP Date and Time Pattern

Value
This object type represents a combination of date and time patterns.

INT Signed Integer Value This object type represents a signed integer value.
LAV Large Analog Value

(LREAL)
This object type represents a large analog value (8 BYTE LREAL).

String Character String Value This object type represents string information.
Time Time Value This object type represents a specific time (hour, minute, second,

hundredths of a second).
TimeP Time Pattern Value This object type represents a time value that supports patterns.
UINT Unsigned Integer Value This object type represents a positive integer value (UNSIGNED).

Some function block names contain a suffix:

_IO: These FBs are intended for connection to hardware terminal channels. The required AT%I* and AT%Q*
variables are specified in the FB implementation.
E.g. a BinaryOutput_IO provides these variables to connect to terminal channels:
bRawOvrrd AT %I* : BOOL; // Raw overridden (Optional)
bRawValFdbk AT %I* : BOOL; // Raw feedback Value (Optional)
bRawVal AT %Q* : BOOL; // Raw value

_ECAT: These FBs are intended for connection to EtherCAT hardware terminal channels. The difference to
the FBs with the suffix _IO is the variable nRawState, which is used to determine the Underrange/Overrange
state.

_Raw: If the PLC provides the value for the BACnet object, the raw value and the raw state can be provided
by the PLC program.
Example: FB_BACnet_AI_Raw:
nRawState : USINT; // Raw state
// - Underrange: 0x01
// - Overrange: 0x02
// - Error: 0x04
nRawVal : INT; // Raw value

_Disp: These function blocks refer to value object types that represent read-only values such as the current
room temperature. Present_Value is not writable.

_Event: These function blocks refer to a value object similar to the type _Disp (read-only). In addition, these
function blocks support Event Reporting. Present_Value is not writable.

_Setp: These function blocks refer to setpoints. Setpoints are writable BACnet objects without command
prioritization ("last writer wins"). Present_Value is writable, but not commandable.

_Buf: These function blocks implement a log buffer in the PLC. This can be used for local visualizations of
trend log or event log information.

_5P: These function blocks refer to commandable output or value objects that provide a set of 5 priorities for
command prioritization. The priority level of each of the 5 priorities can be set in the global BACnet_Param
settings.

Default settings:

Programming a BACnet server

TF802062 Version: 1.1.2

Priority category Default value
Life-Safety 1
Critical Equipment Control 5
Minimum on/off times 6 (defined by the BACnet standard, cannot be

changed)
Manual Local Operator 7 (local visualization)
Manual operator 8 (BMS)
Program (PLC) 15

_IO5P: Same as _5P, but used for connection to hardware terminals.

_Raw5P: Same as _5P, but the process value is provided by the PLC.

_Ref: (Loop object type) These function blocks refer to loop objects that support external analog objects for
the setpoint, manipulated variable and feedback value. See chapter Control loops.

6.2 Typical BACnet scenarios
This chapter introduces typical scenarios which are commonly used for BACnet projects.

6.2.1 Command prioritization
Command prioritization provides a mechanism to determine which process or user role has precedence over
lower prioritized processes or user-roles. BACnet specifies 16 levels of priorities, where 1 is specified as the
highest (Manual Life-Safety) Priority where 16 specifies the lowest and default priority.

The Present_Value is always taken from the value in the highest prioritized slot. A client may remove a
priority at a specific slot by writing a value of NULL at the given priority.

If no priority is active (all 16 slots having a value NULL), the value for the Present_Value property is taken
from the Relinquish_Default property.

The priority is specified using a WriteProperty or WritePropertyMultiple service. If the priority is missing, 16
will be used as the default priority.

Priority Meaning
1 Manual Life-Safety
2 Automatic Life-Safety
3 Available
4 Available
5 Critical Equipment Control, e. g. defrost
6 Minimum On-/Off
7 Available
8 Manual Operator, e. g. BMS
9 Available
10 Available
11 Available
12 Available
13 Available
14 Available
15 Available
16 Available (Default, if no priority is specified)

Function blocks with the suffix “_5P” implement a total of 5 of the 16 possible priorities (which is normally
enough for most projects).

Programming a BACnet server

TF8020 63Version: 1.1.2

6.2.2 Event reporting
BACnet provides two different procedures to implement event reporting:

Intrinsic Reporting and Algorithmic Change Reporting.

The determination whether an event is a non-critical information, e. g. an operational message or an
abnormal state, e. g. an alarm is specified by the Notify_Type property.

6.2.2.1 Intrinsic Reporting
Intrinsic reporting observes the Present_Value property, the event parameters are specified within the same
object (e. g. High_Limit, TimeDelay, Alarm_Value, etc.).

Event generating objects have a connection to a NotificationClass object within the same device (referenced
by the same instance number in the event generating object and the NotificationClass object).

Events are being notified to recipients which are present in the Recipient_List property of the
NotificationClass and which match the active days / active time in the subscription.

6.2.2.2 Algorithmic Change Reporting
Algorithmic Change Reporting uses the Event Enrollment object to specify the event algorithm and the event
parameters. The Event Enrollment object has a logical connection to a Notification Class object like every
other event-generating object.

A typical scenario in projects implements an Event Enrollment providing warning limits notified to a Warning
Notification Class. Intrinsic Reporting may then be used to detect alarm conditions (High- and Low-Limit)
being notified to another Notification Class for alarms.

6.2.3 Scheduling
BACnet time scheduling provides strategies to implement date- and/or time-based functionality.

For this, BACnet uses two object types, Calendar and Schedule.

The Calendar object type provides information if TODAY matches one or more entries in the Date_List
property. This is used e. g. to determine, if TODAY is a public holiday or not (assuming the date-list contains
this information). An entry in the Date_List property may be a single Date, a DateRange or a WeekNDay
(which is a combination of days, weeks and months).

The Schedule object type is mainly based upon two properties.

The Weekly_Schedule property represents a Schedule program (time/value list) for each of the days from
Monday to Sunday.

The Exception_Schedule property specifies a list of exceptions which have precedence over the
WeeklySchedule. The exceptions may be specified as a single Date, DateRange or WeekNDay or may be
based upon a Calendar reference within the same device. Unfortunately, it is not possible from the BACnet
standard to specify a global Calendar and refer to this object from other devices. If needed, the content of a
global calendar may need to be copied to local calendar objects in every BACnet device.

Schedule objects contain a Schedule_Default property which specifies the fallback value at midnight, except
the value is repeated at 00.00.00:00 the next day.

The schedule object has no specific data-type. The actual data-type is determined by the Weekly- and
ExceptionSchedule, Schedule_Default and the list of ObjectPropertyReferences.

ObjectPropertyReferences may contain properties in objects within the same or in foreign devices.

The priority of the Schedule process is specified using the Priority_For_Writing property in the range from
1-16.

Programming a BACnet server

TF802064 Version: 1.1.2

6.2.4 Trend-Logging
Trendlog objects are used to log values from a single source, Trendlog Multiple objects provide multiple
channels (but are rarely used).

Logging can be based on cyclic polling, COV (Tlog only) or triggered data acquisition (Trigger).

In addition to the values of the referenced object property, other events are also recorded (e.g. activation/
deactivation of recording, emptying the buffer, etc.).

The size of the log buffer is determined by the BUFFER_SIZE property.

Record_Count provides information about the current utilization of the log buffer. Writing a null value to
Record_Count clears the buffer.

Trendlog objects can be combined with event creation. In this case, a Notification_Threshold can be
specified to notify clients to retrieve the values before logging ends or older values are overwritten.

6.2.5 Event-Logging
Event logging provides strategies to locally store events or alarms e. g. in case the connection to the BMS is
interrupted.

In a BACnet server implementation specifying event log objects require to use the same instance number as
the Notification Class objects. In this case the Event log object is automatically assigned and retrieves all
events/alarms which are distributed through this notification class object.

6.2.6 Control Loops
BACnet specifies a Loop object type to provide the parameters for control loops (e. g. P, I, D, Bias,
Maximum_Output, etc.). These values are provided as properties of the Loop object type.

In case the setpoint, manipulated variable value and the controlled variable value should be visible for
BACnet clients, analog objects may be specified in addition to the loop object. TwinCAT provides two
implementations for control loops:

FB_BACnet_Loop: Loop object w/o external references, the setpoint and manipulated and control values are
taken from internal variables.

FB_BACnet_Loop_Ref: Loop object with external references. A typical implementation may include an
Analog Value object for the setpoint, Analog Output for the manipulated variable value and an Analog Input
for the controlled variable value.

Example:
VAR
// control loop using internal variables
 fbLoopInternal : FB_BACnet_Loop := (
 bEn := TRUE,
 sDescription := 'Loop using internal control parameters',
 eOutputUnit := E_BA_Unit.eOther_Percent,
 eAction := E_BA_Action.eReverse,
 fProportionalConstant := 5.0,
 fIntegralConstant := 180,
 fSetpoint := 20
);
 fCtrlVal : REAL := 18;

// control loop using external BACnet objects
 fbLoopRef_Setpt : FB_BACnet_AV_Setp := (fValue := 20);
 fbLoopRef_CtrlVar : FB_BACnet_AI := (fVal := 18);
 fbLoopRef_Y : FB_BACnet_AO := ();
 fbLoopRef : FB_BACnet_Loop_Ref := (
 bEn := TRUE,
 sDescription := 'Loop using reference objects',
 stControlledVariableReference :=
 F_BACnet_Reference(fbLoopRef_CtrlVar, PropPresentValue),
 stSetpointReference :=
 F_BACnet_Reference(fbLoopRef_Setpt, PropPresentValue),

Programming a BACnet server

TF8020 65Version: 1.1.2

 stManipulatedVariableReference :=
 F_BACnet_Reference(fbLoopRef_Y, PropPresentValue),
 eOutputUnit := E_BA_Unit.eOther_Percent,
 eAction := E_BA_Action.eReverse,
 fProportionalConstant := 5.0,
 fIntegralConstant := 180
);
END_VAR
--
// internal control loop
fbLoopInternal.fCtrlVar := fCtrlVal;
fbLoopInternal();

// control loop using external object references
fbLoopRef_Setpt();
fbLoopRef_CtrlVar();
fbLoopRef_Y();
fbLoopRef();

6.2.7 TimeSynchronization
BACnet TimeSynchronization may be based upon the local time. In this case both the time master and the
time recipients must be location within the same time zone. If the devices are located in different time zones,
UTC-TimeSynchronization may be used instead. For this, the property UTC_Offset in the device object must
be set to the offset in minutes to UTC. In addition, daylight saving information must be provided by the
device and must be calculated in addition to the UTC time.

Implementing a BACnet server does normally not require any specific action. In case a TimeSynchronization
message is received, the internal controller clock is updated.

If the controller is acting as a time master, the function block FB_BACnet_Adapter provides two methods to
synchronize clocks in other BACnet devices.

TimeSync

TimeSyncEx

TimeSynchronization is an unconfirmed service. A response from the time recipients to the time master is not
expected. All devices receiving the time synchronization message shall adjust their local clock.

Example for a time master functionality:
VAR
 stDateTimeSync : ST_BA_DateTime;
 bSuccess : BOOL;
 bSync : BOOL;
END_VAR
--
If bSync then
 bSync := FALSE;
 bSuccess := BACnet_Globals.DefaultAdapter.TimeSync(pDateTime := ADR(stDateTimeSync),
bSendBroadcast := TRUE);
END_IF

6.2.8 Retrieving diagnosis information
To retrieve BACnet diagnosis information the FB_BACnet_Adapter provides this method: GetDiagnosis.

GetDiagnosis provides access to the built-in diagnosis in the TwinCAT System Manager, which can be
viewed under the "Diagnosis" tab of a BACnet device. In addition, each FB_BACnet_Client provides
additional diagnosis information (m_stDiag) for each client and thus offers two further options for monitoring
client connections:

Roundtrip measurement: It is possible to determine the time of a complete cyclic request.

Diagnosis of the different request types, this is displayed per client connection in the diagnosis.

Sample to retrieve diagnosis information:
VAR
 fbDevice : FB_BACnet_Device;
 stDiagnosis : ST_BACnet_Diagnosis;

Programming a BACnet server

TF802066 Version: 1.1.2

 bSuccess : BOOL;
 bGetDiagnosis : BOOL;
END_VAR
--
fbDevice();
IF bGetDiagnosis THEN
 bGetDiagnosis := FALSE;
 bSuccess := BACnet_Globals.DefaultAdapter.GetDiagnosis(ADR(stDiagnosis));
END_IF

6.2.9 Scanning other BACnet devices
In some cases it is necessary to scan the BACnet network (e. g. from a visualization) to identify external
BACnet devices. The FB_BACnet_Adapter provides two methods to start a scan process:

StartScan

StartScanEx

Calling one of these functions generates a BACnet Who-Is request to the network. All devices receiving this
request and matching the request parameters shall respond using the I-Am service. The result of this scan
process can be retrieved using the FB_BACnet_Adapter method GetScanResult after waiting an appropriate
time.

GetScanResult returns the number of external devices found on the network, regardless of the buffer size to
store the results. In case of an error this function returns -1.

Example scanning for other BACnet devices:
VAR
 fbDevice : FB_BACnet_Device;
 a_stScanResult : ARRAY[0..MAX_SCANRESULTS] OF ST_BACnetRM_ScanResult;
 bSuccessScan : BOOL;
 bScan : BOOL;
 fbWaitTimer : TON;
 nScanResult : DINT;
END_VAR
VAR CONSTANT
 MAX_SCANRESULTS : UDINT := 200;
 tWaitTime : TIME := T#5S;
END_VAR
--
fbDevice();
fbWaitTimer(IN := NOT fbWaitTimer.Q, PT := tWaitTime);

IF bScan THEN
 bScan := FALSE;
 nScanResult := -1;
 bSuccessScan := BACnet_Globals.DefaultAdapter.StartScan();
END_IF

IF bSuccessScan AND fbWaitTimer.Q THEN
 bSuccessScan := FALSE;
 nScanResult := BACnet_Globals.DefaultAdapter.GetScanResult(ADR(a_stScanResult),
MAX_SCANRESULTS);
END_IF

6.2.10 Creating a structured view (DPAD)
A DPAD (Data Point Addressing Description) is used to navigate to BACnet objects using the facility view,
not the technical view. A facility manager knows in which facility, building, floor, room, etc. a BACnet object is
located.

It is good practice to place a shortcut for the DPAD into the object name property of the BACnet objects and
a (most likely larger) information into the description property. In addition the object type Structured View
(FB_BACnet_View) may be used to provide the user-view to the facility hierarchy.

The following code illustrates how to create a navigation using the operator ‘\/’ (Backslash and Slash). This
operator can be placed to the following properties (type Character String):

Object Name

Programming a BACnet server

TF8020 67Version: 1.1.2

Description

Event Message Text

At runtime the separator is replaced by the characters specified in the Global / BACnet_Param section.

Code example for creating a DPAD structure
PROGRAM MAIN
VAR
 fbDPADFirstLevel : FB_BACnet_View := (
 eNodeType := E_BACnet_NodeType.eArea,
 sObjectName := '\/A',
 sDescription := '\/Facilities');

 fbDPADSecondLevel : FB_BACnet_View := (
 iParent := fbDPADFirstLevel,
 eNodeType := E_BACnet_NodeType.eOrganizational,
 sObjectName := '\/B',
 sDescription := '\/Building');

 fbDPADThirdLevel : FB_BACnet_View := (
 iParent := fbDPADSecondLevel,
 eNodeType := E_BACnet_NodeType.eNetwork,
 sObjectName := '\/C',
 sDescription := '\/Floor');

 fbAi : FB_BACnet_AI := (
 iParent := fbDPADThirdLevel,
 sObjectName := '\/ObjectName',
 sDescription := '\/Description',
 sDeviceType := 'TemperatureSensor',
 eUnit := E_BA_Unit.eTemperature_DegreesCelsius,
 fMinPresValue := -50.0,
 fMaxPresValue := 150.0,
 fHighLimit := 100,
 fLowLimit := -25,
 bHighLimitEnable := TRUE,
 bLowLimitEnable := TRUE,
 nNotificationClass := 10,
 aEventEnable := [TRUE, TRUE, FALSE],
 aEventMessageTextsConfig := ['\/Alarm', '\/Fault', '\/Normal']);
END_VAR
--
fbDPADFirstLevel();
fbDPADSecondLevel();
fbDPADThirdLevel();
fbAi();

This code generates three Structured View objects and one Analog Input object and connects the DPAD
through the iParent elements referring to the calling function block.

The selection how the tree items are displayed in the system manager can be specified in the Global Params
of the library instance:

eSymbolName: The symbol name from the PLC is used as tree item name.

Programming a BACnet server

TF802068 Version: 1.1.2

eObjectName: The BACnet object name is used as tree item name.

eDescription: The BACnet description is used as tree item name.

The system manager tree looks like this (in the example below, the object name was used):

The separators used for the three properties possibly containing a DPAD (Object Name, Description and
Event Message Texts) can be individually specified in the Global Params setting of the library.

Programming a BACnet server

TF8020 69Version: 1.1.2

6.2.11 Linking hardware using attributes
Using the attribute “TcLinkTo”, hardware terminals can be connected the raw value and raw state variables.
To determine the TIID path, navigate to the terminal and copy the path.

Example:
{attribute 'TcLinkTo' :=
 '.nRawVal := TIID^Device 2 (EtherCAT)^Term 1 (EK1200)^Term 4 (EL3214)^RTD Inputs Channel
1^Value;
 .nRawState := TIID^Device 2 (EtherCAT)^Term 1 (EK1200)^Term 4 (EL3214)^RTD Inputs Channel
1^Status' }
fbAi_IO : FB_BACnet_AI_IO := (
 fMinPresValue := -150.0,
 fMaxPresValue := 150.0
);

The links established using this procedure are shown as green arrow symbols in the system manager.

6.3 Important notes using the library
This chapter contains notes and recommendations how to use the library when programming a BACnet
server.

6.3.1 Declaring properties at start-up
In normal PLC programming you will probably find calls like this:

Programming a BACnet server

TF802070 Version: 1.1.2

If the values are constantly written by the PLC, writing from the BACnet would have no effect, the values
would be overwritten immediately. Therefore, especially the properties that do not change often or at all
should be declared as initial parameters in the variable area. The following code shows an example of
initialization of properties at the time of the first PLC start.
PROGRAM test
VAR
 fbBI : FB_BACnet_BI := (
 sObjectName := 'Name',
 sDescription := 'Description',
 bEventDetectionEnable := TRUE
);
 bDescriptionChanged : BOOL;
END_VAR

fbBI();
IF bDescriptionChanged THEN
 bDescriptionChanged := FALSE;
 fbBI.sDescription := 'New Description';
END_IF

In the above example, the property values (only those that require configuration) are taken from the
declaration at the time of the first PLC start. If a configuration property needs to be changed, we recommend
a write-on-change procedure, as shown here, rather than cyclic writing. Furthermore, the implementation of a
cyclic writing would lead to the fact that no more values are accepted that were written by BACnet.

Programming a BACnet server

TF8020 71Version: 1.1.2

6.4 Parameter dialogs
Using CFC (Continuous Function Chart), accessing the configuration parameters is provided by parameter
dialogs. Open the parameter dialog by using the button in the left corner.

Values shown in this dialog may be changed in the column Value and can be written to the PLC by using the
write values function in the TwinCAT PLC menu. The values are also stored persistently using the PLC
persistence.

6.4.1 Always call BACnet function blocks cyclically
It is very important that all BACnet function blocks are called once per cycle and only once!

Programming a BACnet server

TF802072 Version: 1.1.2

Do not call the function blocks in this way:

This would create a BACnet object that is no longer updated if bCondition is FALSE. The object looks faulty
to the client trying to access it.

However, it is possible to declare a BACnet object as a variable and not call it at all. In this case the BACnet
object is not generated and therefore does not exist in the BACnet server.

6.4.2 Call BACnet function blocks using the same cycle time
Calling different BACnet FBs using different cycle times leads to runtime errors caused by delayed library
calls. The BACnet supplement and the PLC library require a synchronization at start-up. Calling BACnet FBs
delayed in any way is not possible. If objects need to be created or deleted at runtime, refer to the section
Dynamic Object Manager in this manual.

6.5 Calculating the router memory
Memory for the BACnet object representation in the PLC is taken from the router memory. The default
setting in TwinCAT is 32MB and may need to be increased in case of a larger BACnet object database. The
log-buffer of Trendlog or Eventlog objects is taken from the router memory as well.

As an average the properties of BACnet objects require 20 KB each.

To reserve some memory space for other purposes, the library raises an error condition when more 60% of
the available router memory is requested by the BACnet library. In this case, further BACnet objects are not
created anymore so the project database may be incomplete.

On Windows Embedded compact (Windows CE) systems, the maximum router memory is limited to 200MB.
On Big-Windows (Windows 10) or BSD the router memory depends on the non-paged pool. E. g. if the total
non-paged pool is 1 GB, the router memory may be increased to 600-700MB. Please note, increasing the
router memory may require a reboot of the PLC.

6.5.1 Example calculation of required router memory
The example below shows a calculation of the required router memory.

Example requirement:

280 digital and analog objects = 280 x 20 KB = 5,600 KB

280 Trendlog = 280 x 20 KB = 5,600 KB (properties only)

Trendlog buffer size (7 days / 10 min. interval) = 1440 / 10 * 7 = 1008 records per Trendlog

Memory requirement for Trendlog buffer: 280 * 1008 * 56 = 15,805,440 (56 bytes per data record in log
memory)

Total Router Memory required

5,600,000 bytes normal objects

5,600,000 bytes Trendlog objects

15,805,440 bytes Trendlog buffer

Total Router memory for BACnet

27,005,440 bytes

Programming a BACnet server

TF8020 73Version: 1.1.2

Please note that the total BACnet router memory is only 60 % of the total required router memory, so the
default value of 32 MB would not be sufficient for this example and must be increased.

The amount of router memory can be specified in the Real-Time settings of TwinCAT. Please note, that the
router memory will be assigned after restarting the controller.

6.6 Specific Functionality
This chapter describes specific functionality using the BACnet supplement or the library.

6.6.1 Generating an EDE file
When exporting an EDE file, it is important to check the “Use Online Data” checkbox as shown below. Due to
the dynamic creation by the BACnet Rev 14 library, the objects need to be visible at the time of the EDE file
creation.

Programming a BACnet server

TF802074 Version: 1.1.2

6.6.2 Cycle time exceed counter
At the time of the PLC start exceeds of the cycle time may happen and are normal. The synchronization
between the BACnet supplement and the PLC may take longer than the cycle time. Exceeds should not
happen after the initialization phase though.

6.6.3 Enable / Disable Properties
To disable properties that are not needed for a particular object instance, the "aDisabled" array of the
"stSettings" structure can be used.

The structure "stSettings" is also available in the Global Params. The settings in the Global Params affect all
objects.

Please note that related properties (with the same number in the footnotes of the BACnet standard) must all
be disabled or enabled!

6.6.4 Writeprotect Properties
To apply a write protection to specific properties, the array “aWriteProtected” of the structure “stSettings” can
be used.

The structure “stSettings” is available in the Global Params, too. The settings in the Global Params affect all
objects.

In case of a WriteProperty or WritePropertyMultiple request to those properties an error message
“Write_Access_Denied” is returned to the BACnet client.

6.6.4.1 Example Disable/Writeprotect
The following example shows how to disable and writeprotect properties using stSettings.

Programming a BACnet server

TF8020 75Version: 1.1.2

fbBi : FB_BACnet_BI := (
 sObjectName := 'Example Binary Input Object',
 sDescription := 'Objectname and Description properties are read-only',
 stSettings := (
 aDisabled := [
 E_BACnetPropIdentifier.PropChangeOfStateCount,
 E_BACnetPropIdentifier.PropChangeOfStateTime,
 E_BACnetPropIdentifier.PropTimeOfStateCountReset
],
 aWriteProtected := [
 E_BACnetPropIdentifier.PropObjectName,
 E_BACnetPropIdentifier.PropDescription
]
)
);

6.6.5 Enabling write access from the PLC
Objects representing an input information like ACC, AI, BI, etc. provide an input variable (nVal, fVal or bVal)
whose value is transferred to the Present_Value property without further processing.

Objects representing an output information like AO, AV, etc. provide an input variable representing the PLC
value (nVal, fVal, bVal). In addition, to activate the value at the specified program priority the variable
bEnPgm needs to be set to TRUE. In case the value of bEnPgm is set to FALSE, the value will be set to
NULL at the specified program priority.

In case of _5P function blocks for each of the priorities (with the exception of manual operator which is likely
provided from the BMS) a separate flag is provided.

The currently active Priority can be determined from the variable eActPrio (1-16, 17=Relinquish_Default).

6.6.6 Adding a recipient to a recipient list
Entries in the recipient list property of Notification Class objects are complex data-types supporting two
options. Either the device instance number may be used to identify the recipient or, as an alternative, the
BACnet MAC-address (physical address) may be specified.

The example below shows both options for the variable aRecipientList:
aRecipientList := [
(
 stValidDays :=
 (bMonday:=TRUE, bTuesday:=TRUE, bWednesday:=TRUE, bThursday:=TRUE, bFriday:=TRUE),
 stFromTime := F_BA_ToSTTime(T#0H),
 stToTime := F_BA_ToSTTime(T#23H59M59S),
 stRecipient :=
 F_BACnet_DeviceRecipient(nDeviceInstance:=42),
 nProcessId := 10000,
 bIssueConfirmed := FALSE,
 stEventTransitions :=
 (bToOffNormal:=TRUE, bToFault:=TRUE, bToNormal:=TRUE)
),
(
 stValidDays := (bSunday:=TRUE, bSaturday:=TRUE),
 stFromTime := F_BA_ToSTTime(T#7H),
 stToTime := F_BA_ToSTTime(T#15H30M),
 stRecipient :=
 F_BACnet_EthernetRecipient(nIPAddress1:=192,168,10,200, nPort:=47808, nNetworkNr:=444),
 nProcessId := 30100,
 bIssueConfirmed := TRUE,
 stEventTransitions := (bToOffNormal:=TRUE)
)
]

6.6.7 Using UTF-8 characters
UTF-8 is the default character set used in the BACnet supplement. The UTF-8 character set covers all
Unicode characters and requires up to 4 BYTE per character depending on the language.

Regular strings without special characters do not need any specific handling. Latin-1 characters like
äöüÄÖÜß©ÔØ, etc. do not require a specific handling either.

Programming a BACnet server

TF802076 Version: 1.1.2

In case of Cyrillic, African or Asian characters, a conversion is required. In this case the attribute
‘TcEncoding’ needs to be set to ‘UTF-8’. Like every attribute this applies to the variable below the attribute
and needs to be repeated for each variable containing UTF-8 characters.

Example using UTF-8 characters:

{attribute 'TcEncoding' := 'UTF-8'}
sMyUTF8Text : STRING := wsLiteral_TO_UTF8("äöüßéèêµ€° Ἀθῆναι İstanbul Київ");

Please note to use double quotation marks in case of WSTRING variables!

6.7 FB_BACnet_Server
This function block represents the BACnet server in the PLC. In addition to information about memory usage
and memory state, there are various options, such as acknowledging alarms, writing persistent data,
resetting the server's error state, or iterating over the object database.

This function block is called automatically and normally does not have to be called within the PLC
program.
If you want to access the properties of the server, use the already existing instance from the
BACnet Globals.

6.8 FB_BACnet_Device
This function block may be used to change settings of the device object at runtime.

Example:
VAR
 fbDevice : FB_BACnet_Device;
 bChangeDeviceObj : BOOL;
END_VAR
--
fbDevice();
IF bChangeDeviceObj THEN
 bChangeDeviceObj := FALSE;
 fbDevice.sObjectName := 'TEST_ObjName';
 fbDevice.sDescription := 'TEST_Description';
 fbDevice.sLocation := 'TEST_Location';
END_IF

6.9 IO Code
This function may be used to automatically generate the necessary program code for referencing hardware
terminals to the PLC and BACnet objects. The generated code is created as a program in the PLC.

1. To start the IO Code generation, navigate to the BACnet server and select the Settings dialog.

Programming a BACnet server

TF8020 77Version: 1.1.2

2. Select the hardware and use the button IO Code.
ð Digital and Analog input and output terminals and channels are detected and the program code is

generated.
• Digital input channels are mapped to BACnet Binary-Input objects.
• Digital output channels are mapped to BACnet Binary-Output objects.
• Analog input channels are mapped to BACnet Analog-Input objects.
• Analog output channels are mapped to BACnet Analog-Output objects.

3. Using the button Create in Plc generates the code as a program in the folder POUs/BACnet_IoBus.
4. Call this program cyclically, e. g. from the POU MAIN.
IoBus_0_Device_2_EtherCAT();

6.10 Recommended workflow / BACnet persistence
In building automation projects, changes of parameter settings very often happen while programming and
configuring the application.

Programming a BACnet server

TF802078 Version: 1.1.2

It is recommended to adjust parameters like P, I, D or Hi-Limit / Lo-Limit, even Description texts, etc. without
using the BACnet persistence as long as possible. As final step before handing over the building automation
application, the BACnet persistence should be activated.

Normally the values are synchronized at start-up from the BACnet supplement to the PLC. If BACnet
persistence is activated, values previously written from BACnet will overwrite values in the PLC.

The FB_BACnet_Server provides a variable eInitMode to define the direction of this synchronization:

• eInitReset: This value is set after a Reset to Origin was performed. BACnet objects in the stack will be
removed and eInitMode will be set to eInitToPlc.

• eInitToPlc (default): Values are synchronized from BACnet to the PLC.
• eInitForceFromPlc: Values are synchronized from the PLC to BACnet.

6.11 Persistence
The property values changed at runtime are stored in the file BACnetOnline_1010010.bootdata in the
TwinCAT boot folder. Additionally there is a backup file named BACnetOnline_1010010.bootdata-old.

Switch on and configure BACnet persistence

In the settings of the BACnet server, persistence can be switched on and off in the dialog box Device
Management.

Without using an uninterruptible power supply (UPS), persistence is performed at a configurable interval.
The default value of 30 minutes should not be undercut, otherwise the flash medium could be subject to
greater wear.

If a UPS is used, the property Use UPS can be activated. In this case, the PLC program must ensure that
the function blocks of the UPS are used to detect a power supply failure. In this case, the function for
persisting the data must be called on the part of the PLC.

Calling persistence from the PLC program

Two different methods are available to trigger persistence.

1. Setting the variable bWritePersistent::
BACnet_Globals.DefaultServer.bWritePersistent := TRUE;
The variable must also be reset from the PLC program.

2. Calling the SavePersistentStackData method:
bSuccess := BACnet_Globals.DefaultServer.SavePersistentStackData();
The return value can be used to detect whether the call was successful.

View and edit persistence data
ü You have opened the Device Management dialog box.
1. Select the Online Data > … option.
ð The dialog for editing the persistence data appears, the contents of which are explained below.

Programming a BACnet server

TF8020 79Version: 1.1.2

Option Description
Enable Switch on persistence.
Disable Switch off persistence.
Transfer Allows copying the persistent data to the default settings of the objects (Settings).
Delete Deletes the files that contain the persistence data.
Save Saves changed data in the persistence file.
Open Can load and display a persistence file.

Accessing the persistence file with the FILE object

The persistence file is represented via BACnet within the server by the File object with instance number 1.

1. Double-click the Value field of the ObjectName to view the currently existing contents of the persistence
file.

ð If the persistence file contains data, the Bootdata Viewer is called and the changed properties are
displayed.

Bootdata Viewer

In the window Bootdata Viewer the changed properties from the persistence file are displayed and can also
be marked and copied from there for further processing.

Programming a BACnet server

TF802080 Version: 1.1.2

In this example, in the Analog Value object with instance number 10000, the properties ObjectName,
Description, HighLimit, EventDetectionEnable and PlcSymbolName have been changed.

Delete persistence data

Call Dialog Online Data
1. In the BACnet server, open the Settings tab.

Programming a BACnet server

TF8020 81Version: 1.1.2

2. Click the menu item Online Data > …

ð The dialog box Persistent Data Online Management opens.

3. Click the Disable button.

Programming a BACnet server

TF802082 Version: 1.1.2

4. Then click the Delete button in the same menu.

5. Note the status display.
This provides information on whether the function could be executed successfully.

6. Finally, restart via the TwinCAT main menu by clicking the Runtime Mode button.

6.12 Time synchronization
In this description, the term time stands for the combination of date and time (Date and Time).

BACnet time synchronization

In BACnet, time synchronization is performed via two services:

TimeSynchronization synchronizes the time based on the local time, i.e. the timer and the time receiver must
be in the same time zone.

Programming a BACnet server

TF8020 83Version: 1.1.2

When using UTCTimeSynchronization (UTC=Universal Time Coordinated) the time is transmitted as GMT
(Greenwich Mean Time = local time London). The timer converts the time to GMT before sending. Using the
local settings UTC_Offset and DaylightSavingsStatus (in the device object of the server), the time receiver
then converts back to the local time.

UTC_Offset specifies the value in minutes relative to GMT. A positive value is to be used westward from
GMT, a negative value eastward from GMT.
Western Europe has an offset of -60 minutes from GMT. This is set as the default value in the TwinCAT
BACnet server and may have to be adjusted when used in other time zones with the use of UTC.

• The time synchronization has a direct effect on the recording of BACnet logging objects
(Trendlog, Trendlog-Multiple and Eventlog). If the time changes, this is accepted as an entry in
the log memory. Short time synchronization intervals can therefore result in many (unnecessary)
entries in the log memory of the logging objects.

• There should be only one timer in a BACnet network. This must be ensured by the operator or
specialist planner.
Even if it is basically possible according to the BACnet standard to send the time synchronization
to only one group of participants (multicast) or to only one single participant (unicast), in practice
the time is often sent as a broadcast to all participants of the network.

TwinCAT as BACnet time receiver

If a TwinCAT controller receives a BACnet time synchronization, the internal time of the controller is set with
this time.

TwinCAT as BACnet timer

If a TwinCAT controller is used as a BACnet timer, it must determine the exact time from an external
location, e.g. by using the NTP service on an external NTP server (NTP = Network Time Protocol). For
example, time.windows.com is available as a publicly available time server.

The method TimeSyncEx im FB_BACnet_Adapter is available for taking over the time and, if necessary,
broadcasting in the network.

The following values are passed to the call as parameters:

Programming a BACnet server

TF802084 Version: 1.1.2

Name Type Description
pDateTime ST_BA_DateTime Pointer to a structure of type ST_BA_DateTime (see library

Tc3_BA2_Common). In this structure the date and time to be
set is passed or returned in case of eSyncMode = 3.

eSyncMode E_BACnet_TimeSyncMod
e

Enumeration
The value determines the type of synchronization:
eSyncAndSendLocalTime := 0
Sets pDateTime in the BACnet stack (as Local Time) and
sends the time as broadcast (TimeSync request)
Use case: The controller receives the time via NTP and
sends the local BACnet time to other controllers as
broadcast.
eSyncOnly := 1
Sets pDateTime in the BACnet stack (as Local Time)
Use case: All controllers receive the time via NTP and
synchronize their own BACnet clock.
eSyncAndSendUtcTime := 2
Sets pDateTime in the BACnet stack (as UTC Time) and
sends the time as broadcast (UTC Time Sync request)
Use case: The controller receives the time via NTP and
sends the BACnet time as UTC to other controllers as
broadcast.
eSyncGetTime := 3
Returns the current time in the BACnet stack in pDateTime.
Use case: Is rather rarely used. A possible use case would
be, for example, a comparison of the BACnet clock with the
trend recording.

6.13 Recommended cycle time of the PLC task
The default value for the PLC cycle time (PLC task) is 10 ms. In many cases this is not necessary for
processing the BACnet data.

It is recommended to use a cycle time of 40-50 ms for the PLC task.

Even higher values (i.e. a slower cycle time) are not recommended, otherwise the communication via
BACnet, e.g. with a MBE (Management Bedieneinrichtung, management operating equipment), will be
slowed down.

https://infosys.beckhoff.com/content/1033/tcplclib_tc3_ba2_common/index.html?id=3178903701020086065

Programming a BACnet client

TF8020 85Version: 1.1.2

7 Programming a BACnet client
A BACnet client is a reference to an external peer BACnet device. As a client, the TwinCAT BACnet
supplement provides access to objects and services provided by an external device.

For each external device one reference needs to be established.

The function blocks to access BACnet objects as a client are located in the section POUs/Remote/Objects.

Difference between server and client FBs

Client FBs are designed to provide cyclic data-exchange to an external device, mostly the present value and
status flags are transferred. Other properties like description, limits, state-texts, minimum-/maximum present
value, etc. are not part of the standard FB implementation. Even though, the function blocks
FB_BACnet_ReadProperty and FB_BACnet_WriteProperty may be used to access properties other than the
standard ones provided in the FB implementation. These function blocks provide acyclic access to BACnet
property data.

7.1 Writemode
Writing to the third-party device is implemented as WriteOnChange by default. This means that values are
only written if the value has changed. A periodic writing can be set in the client FBs.

Typ E_BACnet_Writemode specifies write access to client properties:

eAuto = Automatic, the mode is determined from the properties of the client device if TRUE

eCyclic = Cyclic writing, cycle time is taken from tWriteCycleTime

eOnChange = Writing is only triggered if the value has changed

7.2 Readmode
Using the remote function blocks as a client requires specifying the access mode to the peer objects. The
variable eReadMode of type E_BACnet_CommMode specifies the access method.

eAuto = Automatic

eCov = Unconfirmed COV

eCovC = Confirmed COV

eCovU = Unsubscribed COV

eRp = Read Property

eRpm = RPM=Read Property Multiple

7.2.1 Automatic mode
The following description explains the implementation of the Automatic readmode. During startup in
automatic mode important properties such as ProtocolServicesSupported, ApduSize are read from the peer
device. Using these property data the read mode will be calculated using the following rules. It will also be
calculated how many properties in one Rpm request are optimal to avoid segmentation.

7.2.1.1 Case 1: Devices with small APDU size
MS/TP or BACnet over LonTalk devices support only small APDU (Application Protocol Data Unit) sizes. MS/
TP supports a maximum of 480 bytes, BACnet over LonTalk only up to 206 Bytes.

The maximum number of parallel requests is set to 1. This means only 1 request is sent and the response is
awaited before continuing with the next request.

Programming a BACnet client

TF802086 Version: 1.1.2

If the APDU size is less or equal to 480 bytes (e. g. MS/TP devices), then the ReadPropertyMultiple
threshold will be set to 5. Change-of-Value will not be used in this case.

The number of properties per RPM request is limited 20 properties.

If the APDU size is less or equal to 206 bytes (BACnet over LonTalk devices), the number of properties per
RPM request is limited 10 properties.

7.2.1.2 Case 2: BACnet/IP devices
BACnet/IP devices support an APDU size of up to 1476 bytes.

If the APDU size is greater than 480 bytes (e. g. 1476 for BACnet/IP), then the number of parallel requests is
set to 50, this means there may be up to 50 requests awaiting the responses.

The ReadPropertyMultiple threshold will be set to 300.This means, if more than 300 properties are requested
cyclically RPM will be used in available instead of COV.

7.2.1.3 ReadPropertyMultiple threshold and selected read service
If the total number of properties to be read in one cycle exceeds the ReadPropertyMultiple threshold and
ReadPropertyMultiple is supported by the peer device, the readmode is set to ReadPropertyMultiple.

If the total number of properties to be read in one cycle is less or equal than the ReadPropertyMultiple
threshold and ChangeOfValue is supported by the peer device, the readmode is set to ChangeOfValue.

If the total number of properties to be read in one cycle is less or equal than the ReadPropertyMultiple
threshold and ChangeOfValue is not supported by the peer device, the readmode is set to
ReadPropertyMultiple.

If the total number of properties to be read in one cycle is less or equal than the ReadPropertyMultiple
threshold and ReadPropertyMultiple is not supported by the peer device, the readmode is set to
ReadProperty.

7.2.2 Applying the Readmode to the entire peer device
The access mode can be specified for the entire client connection (i.e. this setting is applied to all objects of
the peer device).
Client : FB_BACnet_Client :=
(eReadMode:=E_BACnet_CommMode.eCovU,bSuppCov:=TRUE,bSuppCovP:=TRUE,bSuppRpm:=TRUE,tReadCycleTime:=T#
2S550ms,tWriteCycleTime:=T#2S550ms);

7.2.3 Applying the Readmode to single objects
Devices from various vendors claim support for Change-of-Value, but not for all objects in a device. In this is
the case trying to apply COV to all objects fails. Knowing which objects support COV (taken from the device
manual or from other sources like the PICS = Protocol Implementation Conformance Statement document)
allows to setup a COV access to those objects supporting this feature.

Example: Object AV:2 is requested using Readmode COVC (Confirmed COV).
Actual_Flow_Rate_feedback : FB_BACnetRM_AV :=
(Client:=Client,nObjectInstance:=2,eReadMode:=E_BACnet_CommMode.eCovC);

No fallback procedure is provided in case the peer device runs out of memory and is unable to
accept further COV subscriptions. In this case the FB will enter an error state. In case you are
uncertain, use RP/RPM polling instead of COV.

Programming a BACnet client

TF8020 87Version: 1.1.2

7.2.4 COV-Reporting
COV (Change-of-Value) reporting provides a functionality to automatically receive notifications in case of
value changes. Normally only the Present_Value and Status_Flags properties are being notified. As a client,
to receive COV-Notifications it is required to subscribe for COV for a period of time (even though infinite
subscriptions are possible, it is good practice to use limited lifetimes only). If the subscription succeeds, a
simple acknowledge is returned by the server. The current value is being reported as the initial value as soon
as the device can provide it (normally within a few seconds).

The list of active COV subscriptions can be obtained from the property Active_COV_Subscriptions from the
Device object.

In case the subscription is not repeated after the subscription lifetime expired, the subscription is silently
removed and no COV messages are reported for this subscription anymore.

After the subscription is renewed the current value will be provided again as the initial value, this can be
used as a heartbeat, especially for binary objects which do not change very often.

The number of subscriptions is not clearly specified in the BACnet standard. In addition, there are devices on
the market which claim support for COV, but not for all objects. Or the number of subscriptions may be
limited to just a few per object or per device. Other client processes like the BMS may use COV as well
which may cause a BACnet device to run out of space for further subscriptions.

In case of BACnet error messages, especially issued by smaller MS/TP devices we recommend using a
ReadProperty / ReadProperty Multiple polling instead of using COV.

7.3 Client POUs
Remote FBs for programming a BACnet client are named "FB_BACnetRM_" followed by the abbreviation
given in the following table, e.g.
the FB_BACnetRM_AI represents a remote FB for accessing an analog input object in a peer device.

Programming a BACnet client

TF802088 Version: 1.1.2

ACC Accumulator This object type represents accumulated (pulse) values.
AI Analog Input This object type represents physical analog input information, e.g. a sensor

value.
AO Analog Output This object type represents physical analog output information, e.g. via a

0-10V output.
AV Analog Value This object type represents a (virtual) analog value information, e.g. a

setpoint.
AV_Disp Analog Value

Display
This object type represents read-only analog value information.

AV_Setp Analog Value
Setpoint

This object type represents writable but not commandable analog value
information, priority array and relinquish default are not provided.

AVG Averaging This object type represents an averaging object that provides statistical
information.

BI Binary Input This object type represents a binary input information, e.g. the state of a
lamp or a fuse.

BO Binary Output This object type represents a binary output information, e.g. via a switch.
BV Binary Value This object type represents a (virtual) binary value information, e.g. an error

state.
BV_Disp Binary Value

Display
This object type represents read-only binary value information.

BV_Setp Binary Value
Setpoint

This object type represents a writable but not commandable binary value
information, priority array and relinquish default are not provided.

CAL Calendar This object type represents calendar (date-based) information.
CMD Command This object type represents command information (scene information).
Device Device This object type represents the physical device. It contains information such

as the local clock, vendor, model name and more.
EE EventEnrollment This object type is used to apply event monitoring in addition to intrinsic

reporting, e.g. to implement warning limits.
ELOG Eventlog This object type represents an event log buffer, e.g. to store alarms locally.
File File This object type represents files, e.g. the current configuration or persistent

data.
Group Group This object type represents a group of objects.
Loop Control Loop This object type represents control loops, e.g. a PI or PID loop.
Loop_Cnv Control Loop Like Loop object, additionally P, I and D and the respective units are

provided.
MI Multistate Input This object type represents a physical multistate input information, e.g. a

local operating modes switch.
MO Multistate Output This object type represents a physical multistate output information, e.g. an

operating modes switch controlled by the PLC.
MV Multistate Value This object type represents a (virtual) multistate value information, e.g. a

program parameter.
MV_Disp Multistate Value

Display
This object type represents read-only multistate value information.

MV_Setp Multistate Value
Setpoint

This object type represents writable but not commandable multistate value
information, priority array and relinquish default are not provided.

NC Notification Class This object type represents an alarm class to notify recipients.
PC Pulse Converter This object type represents converted pulse information, e.g. energy

consumption in kWh.
Prog Program This object type represents the PLC program.
SchedA Schedule Analog This object type represents a schedule with analog values.
SchedB Schedule Binary This object type represents a list of binary values.
SchedM Schedule

Multistate
This object type represents a schedule with multistate values.

Programming a BACnet client

TF8020 89Version: 1.1.2

TLM Trendlog Multiple This object type represents a trendlog object that supports multiple
channels.

Tlog Trendlog This object type represents a trendlog object that supports a single channel.

7.4 FB Code
This function may be used to automatically generate the necessary function code for referencing BACnet
clients in the PLC. The remote function blocks referring to the BACnet remote objects are automatically
referenced in the code generation.

7.5 Calling the function FB Code
FB Code may be called from different menu items in the system manager.

7.5.1 Calling FB Code from the Scan dialog
Using the Scan function, BACnet devices are automatically detected using the BACnet services Who-Is / I-
Am.

After scanning for devices, the dialog shows all available devices found in the network. Right click to a
device and select FB Code to start the code generation. Make sure, a PLC project already exists.

Programming a BACnet client

TF802090 Version: 1.1.2

7.5.2 Calling FB Code from the Cyclic Data dialog
If the device has been scanned and added to the System Manager as a BACnet client reference, the FB
Code can be called via the Cyclic Data dialog.

Select the client device in the System Manager tree and select the Cyclic Data dialog.

7.6 The client FB Code dialog
After calling the function FB Code the dialog shown below opens the code generation window.

The BACnet objects contained in the selected device are shown in the tree in the left window.

If using FB Code from the Scan dialog, searching for all objects in a device may take some time.
This is shown by animated dots. Please be patient to read the entire device, especially when
scanning slower MS/TP devices!

Programming a BACnet client

TF8020 91Version: 1.1.2

After scanning the entire device, the dialog displays all objects contained in the device.

7.6.1 The Select Objects window
This window shows the objects contained in the device. Objects which should not be included in the code
generation may be disabled by using the checkboxes.

7.6.2 Supported Services
This window displays the supported services of the peer device.

ReadProperty

Programming a BACnet client

TF802092 Version: 1.1.2

Cyclic polling is performed to determine the property values. Read Property reads only individual properties.
Read Property Polling is therefore very slow due to its principle.

RPM = Read Property Multiple

RPM is a cyclic polling that polls multiple values at once to determine the property values. This process is
faster than polling with Read Property. In some cases, the PropsRPM value must be lowered to a lower
value, especially for devices with limited resources.

COV = Change of Value

This setting uses COV to poll the property values (Present Value and Status Flags).

Note: Some devices, especially MS/TP devices, may support COV only for some, not all, objects contained
in the device. In this case, deselect COV from the supported services and, if necessary, add COV support in
the PLC code only to the objects that support COV. In the data sheet of the BACnet device you will find the
corresponding objects. If you are not sure, disable COV and use RP/RPM polling instead.

COV-P = Change of Value Property

With this service TwinCAT subscribes as a client to individual properties. Note: Not all BACnet devices
support this service!

7.6.3 Service Settings
Resub (s)

This setting specifies the interval to resubscribe for Change-of-Value. This value also specifies the heartbeat
(every subscription causes a value update).

Props/RPM

This setting specifies the number of properties per ReadPropertyMultiple request. Please note, some
BACnet devices may not be able to handle higher quantities of properties per request. In this case this value
may be decreased for a proper communication.

Read Mode

Automatic

Unconfirmed COV

Confirmed COV

Unsubscribed COV

Read Property

RPM=Read Property Multiple

The calculation of the number of ReadPropertyMultiple requests is determined by the settings in the
ReadProperty Multiple Settings dialog.

Programming a BACnet client

TF8020 93Version: 1.1.2

The first item specifies the maximum number of properties requested in a single RPM-request.

The second item specifies the maximum number of RPM requests.

Please note: These settings are optimized for Beckhoff peer devices and may be reduced in case other
devices cannot handle large amounts of requests or properties per request.

7.6.4 The Settings window
Max parallel Requests

This setting specifies how many requests may be sent before waiting for the response of the peer device.
Please note that some devices may not support a large number of parallel requests. If you are not sure, use
the value 1 and watch for possible timeout messages in the error log window.

Read Cycle (ms)

This value specifies the read request interval in milliseconds.

Write Cycle (ms)

This value specifies the write interval in milliseconds.

7.6.5 The FB Code window
This window displays the code generated from the object information of the selected device in structured text
(ST).

This window is divided into three sections.

The (* Usage *) section shows how to create instances of this function block and adds a TcLinkTo... attribute
in the case of MS/TP

Sample:
{attribute 'TcLinkTo' := '.BACnet_AmsNetId := TIID^Device 3 BACnet MSTP)^Inputs^AmsNetId'}
fbMstpDevice_3 : FB_BACnet_Adapter;
fb_101_Novos_Touch_BACnet_MSTP : FB_BACnet_101_Novos_Touch_BACnet_MSTP :=(Client:=(Adapter :=
fbMstpDevice_3, nDeviceInstance := 101));

The (* Declaration *) section shows the variables of the function blocks used.

Sample:
FUNCTION_BLOCK FB_BACnet_101_Novos_Touch_BACnet_MSTP
VAR_INPUT CONSTANT
 Client : FB_BACnet_Client:=
 (tReadCycleTime:=T#2S550ms,tWriteCycleTime:=T#2S550ms);
 _101_Novos_Touch_BACnet_MSTP: FB_BACnetRM_Device:=
 (Client:=Client);
 Internal_Fan_Stage: FB_BACnetRM_MI :=
 (Client:=Client,nObjectInstance:=104);
 ECO_Colour: FB_BACnetRM_MV :=
 (Client:=Client,nObjectInstance:=102);
 External_Fan_Stage: FB_BACnetRM_MV :=
 (Client:=Client,nObjectInstance:=105);
END_VAR

The (* Code *) section shows the instance calls of the function blocks.

Sample:
Client();
_101_Novos_Touch_BACnet_MSTP();
Internal_Fan_Stage();
ECO_Colour();
External_Fan_Stage();

The footer of this dialog contains a switch that influences the code generation. It is possible to generate the
code for BACnet revision 12 using the automapping comments or for BACnet revision 14 using the PLC
code.

Programming a BACnet client

TF802094 Version: 1.1.2

Selecting Create in PLC starts the code generation. After successful creation, a message is displayed in the
footer. Click Close to close the dialog and return to the TwinCAT System Manager.

After this step it is only necessary to place the function block call (e.g. in the POU MAIN) as shown above.

The contents of the FB Code window can also be copied to the clipboard for further editing.

7.6.6 Using the FB created by FB_Code
The code generated by FB_Code is not called automatically. The first lines in the variable declaration of the
generated FB contain the usage information.

Sample BACnet IP
(* Usage :
fbBeckhoff_1062412 : FB_BACnet_Beckhoff_1062412 :=(Client:=(nDeviceInstance := 42));
*)

Cyclic call, e.g. in POU Main

Sample BACnet MS/TP
(* Usage :
{attribute 'TcLinkTo' := '.BACnet_AmsNetId := TIID^Device 3 (BACnet MSTP)^Inputs^AmsNetId'}
fbMstpDevice_3 : FB_BACnet_Adapter;
fb_101_Novos_Touch_BACnet_MSTP : FB_BACnet_101_Novos_Touch_BACnet_MSTP :=(Client:=(Adapter :=
fbMstpDevice_3, nDeviceInstance := 101));
*)

Cyclic call, e.g. in POU Main

Programming a BACnet client

TF8020 95Version: 1.1.2

Please note that the MS/TP adapter FB must be called cyclically in addition to the FB representing
the MS/TP device.

7.6.7 Using FB_Code to create device templates
If there are several identical devices, FB_Code can be used to create a template. Multiple instances of the
generated FB can be accessed via the device instance number of the peer device.

In the following sample, the generated FB has been renamed to represent a more general FB
implementation. It is recommended to use the refactoring function of TwinCAT to avoid naming conflicts.

Three instances are declared in MAIN and called cyclically.

Please note that you call the adapter FB only once!

Sample:

Rename FB_Code

Cyclic calls in MAIN:

7.7 Client variables
The client FBs provide various information about the status of the peer connection.

Programming a BACnet client

TF802096 Version: 1.1.2

Adapter:

eDevState: Describes the state machine in the connection phase. Should be eComplete if all steps were
successful.

bEthLink: TRUE if the connection has been established.

bGateway: TRUE if the IP address setting contains gateway information (IT router).

_bHasStarted: TRUE if the state machine is started.

_nUpdateCount: This value is incremented in each cycle.

Client:

bAutoResetObjError: If set to TRUE, the client state machine is automatically reset in case of
communication interruption.

bSuppRpm: TRUE, if the peer device supports ReadPropertyMultiple.

bSuppCov: TRUE means that the peer device supports ChangeOfValue.

bSuppCovP: TRUE means that the peer device supports ChangeOfValueProperty.

bReady: The FB is initialized and ready to request data from the peer device.

bConnected: TRUE means that a connection to the peer device has been successfully established.

If the client does not use automatic mode, these variables determine which services are used to retrieve the
values: bSuppRpm, bSuppCov, bSuppCovP

7.8 Remote schedule objects
BACnet schedule objects do not have a specific data type. The data type used for the schedule is
determined by the Weekly-Schedule, Exception-Schedule, Schedule-Default and
ListofObjectPropertyReferences properties. To reference external schedule objects, the corresponding
function block must be selected manually (FB_BACnetRM_SchedA for analog schedule,
FB_BACnetRM_SchedB for binary schedule, FB_BACnetRM_SchedM for multistate schedule).

7.9 Acyclic read
To read properties from the object of a peer device, the library provides two functions for acyclic reading:

FB_BACnetRM_ReadProperty

FB_BACnetRM_ReadPropertyEx

The BACnet object of the peer device is referenced by a pointer to the FB remote instance (variable iObject).
Compared to the basic function block FB_BACnetRM_ReadProperty, the function block
FB_BACnetRM_ReadPropertyEx provides two additional variables for specifying the object type and
instance number (variables eObjType and nObjInst).

7.9.1 Example FB_BACnetRM_ReadProperty
This sample shows how to use the FB_BACnetRM_ReadProperty function block to read the value of the
high_limit property from the analog input object, instance number 1 in the peer device instance number 42.
Please note that the object referenced by iObject must be called cyclically.
VAR
 fbClient : FB_BACnet_Client := (nDeviceInstance :=
2,tReadCycleTime:=T#10S,nMaxParallelRequests:=255);
 fbDevice : FB_BACnetRM_Device := (Client:=fbClient);
 fbAI : FB_BACnetRM_AI := (Client:=fbClient,nObjectInstance:=1);

 fbRead : FB_BACnetRM_ReadProperty := (Client := fbClient);

Programming a BACnet client

TF8020 97Version: 1.1.2

 bReadHighLimit : BOOL;
 fHighLimit : REAL;
END_VAR
--
fbClient();
fbDevice();
fbAI();

// Read HighLimit using FB_BACnetRM_ReadProperty
fbRead.bExecute := bReadHighLimit;
IF fbRead.bExecute THEN
 bReadHighLimit := FALSE;
 fbRead.pData:= ADR(fHighLimit);
 fbRead.nData:= SIZEOF(fHighLimit);
 fbRead.ePropID:= E_BACnet_PropertyIdentifier.PropHighLimit;
 fbRead.iObject := fbAI;
END_IF
fbRead();

7.9.2 Example FB_BACnetRM_ReadPropertyEx
The following example shows the use of the FB_BACnetRM_ReadPropertyEx function block.
VAR
 fbClient : FB_BACnet_Client := (nDeviceInstance :=
42,tReadCycleTime:=T#10S,nMaxParallelRequests:=255);
 fbDevice : FB_BACnetRM_Device := (Client:=fbClient);

 fbReadEx : FB_BACnetRM_ReadPropertyEx := (Client := fbClient);
 bReadLowLimitEx : BOOL;
 fLowLimitEx : REAL;
END_VAR
--
fbClient();
fbDevice();

// Read LowLimit using FB_BACnetRM_ReadPropertyEx
fbReadEx.bExecute := bReadLowLimitEx;
IF fbReadEx.bExecute THEN
 bReadLowLimitEx := FALSE;
 fbReadEx.pData:= ADR(fLowLimitEx);
 fbReadEx.nData:= SIZEOF(fLowLimitEx);
 fbReadEx.ePropID:= E_BACnet_PropertyIdentifier.PropLowLimit;
 fbReadEx.nObjInst:= 1;
 fbReadEx.eObjType:= E_BACnet_ObjectType.ObjAnalogInput;
END_IF
fbReadEx();

7.10 Acyclic write
To write properties to the object of a peer device, the library provides two functions for acyclic writing:

FB_BACnetRM_WriteProperty

FB_BACnetRM_WritePropertyEx

The BACnet object of the peer device is referenced by a pointer to the FB remote instance (variable iObject).
Compared to the basic function block FB_BACnetRM_WriteProperty, the function block
FB_BACnetRM_WritePropertyEx provides two additional variables for specifying the object type and
instance number (variables eObjType and nObjInst).

7.10.1 Example FB_BACnetRM_WriteProperty
This example shows how to use the function block FB_BACnetRM_WriteProperty to write the value of the
out_of_service property of the object binary output, instance number 0 in the peer device instance number
42. Please note that the object referenced by iObject must be called cyclically.
VAR
 fbClient : FB_BACnet_Client := (nDeviceInstance :=
42,tReadCycleTime:=T#10S,nMaxParallelRequests:=255);
 fbDevice : FB_BACnetRM_Device := (Client:=fbClient);
 fbBO : FB_BACnetRM_BO := (Client:=fbClient,nObjectInstance:=0);

Programming a BACnet client

TF802098 Version: 1.1.2

 fbWrite : FB_BACnetRM_WriteProperty := (Client := fbClient);
 bWriteOoS : BOOL;
 bOutofService : BOOL;
END_VAR
--
fbClient();
fbDevice();
fbBO();

// Write OutOfService using FB_BACnetRM_WriteProperty
fbWrite.bExecute := bWriteOoS;
IF fbWrite.bExecute THEN
 bWriteOoS := FALSE;
 fbWrite.pData:= ADR(bOutOfService);
 fbWrite.nData:= SIZEOF(bOutOfService);
 fbWrite.ePropID:= E_BACnet_PropertyIdentifier.PropOutOfService;
 fbWrite.iObject := fbBO;
END_IF
fbWrite();

7.10.2 Example FB_BACnetRM_WritePropertyEx
The following example shows the usage of function block FB_BACnetRM_WritePropertyEx.
VAR
 fbClient : FB_BACnet_Client := (nDeviceInstance :=
42,tReadCycleTime:=T#10S,nMaxParallelRequests:=255);
 fbDevice : FB_BACnetRM_Device := (Client:=fbClient);

 fbWriteEx : FB_BACnetRM_WritePropertyEx := (Client := fbClient);
 bWriteOoSEx : BOOL;
 bOutofServiceEx : BOOL;
END_VAR
--
fbClient();
fbDevice();

// Write OutOfService using FB_BACnetRM_WritePropertyEx
fbWriteEx.bExecute := bWriteOoSEx;
IF fbWriteEx.bExecute THEN
 bWriteOoSEx := FALSE;
 fbWriteEx.pData:= ADR(bOutOfServiceEx);
 fbWriteEx.nData:= SIZEOF(bOutOfServiceEx);
 fbWriteEx.ePropID:= E_BACnet_PropertyIdentifier.PropOutOfService;
 fbWriteEx.nObjInst:= 1;
 fbWriteEx.eObjType:= E_BACnet_ObjectType.ObjBinaryOutput;
END_IF
fbWriteEx();

7.11 Monitoring a client connection
To monitor a client connection, it is necessary to call the FB_BACnetRM_Device function block cyclically.

The current status of the connection can be taken from the FB_BACnet_Client function block.

If the connection is interrupted, e.g. by disconnecting the peer device or by a defective network cable, the
BACnet supplement attempts to re-establish the connection. If after these attempts (variable nErrorCnt in
function block FB_BACnetRM_Device) the connection is still interrupted, it is assumed that the device or the
network connection is no longer present. This process may take 30 seconds or longer to safely detect the
interrupted connection.

In this case the variable eSysState of the FB_BACnetRM_Device takes the value eNoCommunication and
bOperational is set to FALSE. The variables bReady and bConnected of the function block
FB_BACnet_Client are set to FALSE, the variable eState takes the value eInit.

The BACnet supplement continues to attempt to connect to the peer device. Once the connection is re-
established, the state machine behaves as it did when it was first started.

Programming a BACnet client

TF8020 99Version: 1.1.2

7.11.1 Example: Connection is successfully established
FB_BACnet_Client

FB_BACnetRM_Device

Programming a BACnet client

TF8020100 Version: 1.1.2

7.11.2 Example: Connection is interrupted
FB_BACnet_Client

FB_BACnetRM_Device

Programming a BACnet client

TF8020 101Version: 1.1.2

7.12 Use of ReadPropertyMultiple
If several properties are to be read from a connected BACnet device, it is recommended to use the service
ReadPropertyMultiple (RPM). In contrast to the use of the ReadProperty service, which can only read
individual properties, ReadPropertyMultiple combines several queries into one telegram and therefore works
considerably more efficiently.

The following example shows the use of RPM. However, it requires that connected devices support this
service. The three read commands shown in this example are combined into a single RPM.

Variables
 {attribute 'TcLinkTo' := '.BACnet_AmsNetId := TIID^Device 1 (BACnet MSTP)^Inputs^AmsNetId'}
 fbMstpDevice_1 : FB_BACnet_Adapter;

 fbClient : FB_BACnet_Client := (Adapter := fbMstpDevice_1,nDeviceInstance := 116005,
tReadCycleTime:=T#10S, nMaxParallelRequests:=20);
 fbDevice : FB_BACnetRM_Device := (Client:=fbClient);

 fbTon : TON;

 fbReadEx1 : FB_BACnetRM_ReadPropertyEx := (Client := fbClient);
 fbReadEx2 : FB_BACnetRM_ReadPropertyEx := (Client := fbClient);
 fbReadEx3 : FB_BACnetRM_ReadPropertyEx := (Client := fbClient);

 bRead : BOOL;

 fPVSupplyTemp : REAL;
 fPVReturnTemp : REAL;
 fDesignFlow : REAL;

Code
fbMstpDevice_1();
fbClient();
fbDevice();

fbTon(IN:= NOT fbTon.Q, PT:= T#5S);
IF fbTon.Q THEN
 bRead := TRUE;
END_IF

fbReadEx1.bExecute := bRead;
fbReadEx2.bExecute := bRead;
fbReadEx3.bExecute := bRead;

IF bRead THEN
 bRead := FALSE;

 fbReadEx1.pData:= ADR(fPVSupplyTemp);
 fbReadEx1.nData:= SIZEOF(fPVSupplyTemp);
 fbReadEx1.ePropID:= E_BACnet_PropertyIdentifier.PropPresentValue;
 fbReadEx1.nObjInst:= 1;
 fbReadEx1.eObjType:= E_BACnet_ObjectType.ObjAnalogInput;

 fbReadEx2.pData:= ADR(fPVReturnTemp);
 fbReadEx2.nData:= SIZEOF(fPVReturnTemp);
 fbReadEx2.ePropID:= E_BACnet_PropertyIdentifier.PropPresentValue;
 fbReadEx2.nObjInst:= 2;
 fbReadEx2.eObjType:= E_BACnet_ObjectType.ObjAnalogInput;

 fbReadEx3.pData:= ADR(fDesignFlow);
 fbReadEx3.nData:= SIZEOF(fDesignFlow);
 fbReadEx3.ePropID:= E_BACnet_PropertyIdentifier.PropPresentValue;
 fbReadEx3.nObjInst:= 0;
 fbReadEx3.eObjType:= E_BACnet_ObjectType.ObjAnalogValue;
END_IF

fbReadEx1();
fbReadEx2();
fbReadEx3();

Dynamic Object Manager

TF8020102 Version: 1.1.2

8 Dynamic Object Manager
Using the Dynamic Object Manager allows to create or delete BACnet objects at runtime.

To use this feature, the pragma “DynamicCreation” needs to be set in the compiler settings as shown below:

8.1 FB_BACnet_DynObjectManager
The FB_BACnet_DynObjectManager provides the ability to dynamically create or delete objects at
runtime. Typical use cases are local visualizations or the creation of BACnet objects based on configuration
files.

It is possible to use the Dynamic Object Manager together with statically created objects.
However, please note that the object instance numbers must be unique!

8.2 Cyclic calls
The Dynamic Object Manager and all dynamically created objects must be called cyclically (like all other
objects once and only once per cycle). Setting the bCycleObjects := TRUE flag enables cyclic calls of
the created objects. In this case, no further cyclic calls may be made (except calling the instance of
FB_BACnet_DynObjectManager).

8.3 Predefined object pool
Dynamic objects are created with the __NEW operator. If the number of objects to be created is known or can
be estimated at the time of the first PLC start, the library provides a predefined object pool. This is more
memory efficient than using the __NEW operator. The elements named nPool_XX in the BACnet_Param
section of the library GVLs can be set up to save resources.

Dynamic Object Manager

TF8020 103Version: 1.1.2

For example, if 42 instances of a FB_BACnet_AV are used, the variable nPoolAV can be set to 42 as the
default value. If more objects are created than are available in the pool, the creation process will continue to
use the __NEW operator.

8.4 Example
The following code shows how to use the dynamic creation/deletion feature.

Variables:
PROGRAM DYN_OBJECTS
VAR
 fbDynObject : FB_BACnet_DynObjectManager := (bCycleObjects := TRUE);

 bCreate : BOOL;
 bDelete : BOOL;

 DynView : POINTER TO FB_BACnet_View;
 DynAV01 : POINTER TO FB_BACnet_AV;
 DynBV01 : POINTER TO FB_BACnet_BV;
 nCounter : UDINT;
END_VAR

Code:
// Management FB has to be called in every cycle
fbDynObject();

IF (fbDynObject.Ready) THEN
 IF (bCreate) THEN
 bCreate := FALSE;
 // [Variant 1] Create standard object types:
 IF (fbDynObject.CreateObject(
 DynView,
 E_BACnet_CreateObjType.eStructuredView,
 BACnet_Globals.nBACnetInstId_Auto,
 'DynView',
 'Dynamic View',
 0))
 THEN
 // [Optional] set object properties...
 END_IF
 IF (fbDynObject.CreateObject(
 DynAV01,
 E_BACnet_CreateObjType.eAnalogValue,
 BACnet_Globals.nBACnetInstId_Auto,
 '\/DynAV01',
 '\/Dynamic AV 1',
 DynView))
 THEN
 // [Optional] set object properties...
 DynAV01^.eUnit := E_BA_Unit.eTemperature_DegreesCelsius;
 END_IF
 IF (fbDynObject.CreateObject(
 DynBV01,

Dynamic Object Manager

TF8020104 Version: 1.1.2

 E_BACnet_CreateObjType.eBinaryValue,
 BACnet_Globals.nBACnetInstId_Auto,
 '\/DynBV01',
 '\/Dynamic BV 1',
 DynView))
 THEN
 // [Optional] set object properties...
 DynBV01^.sInactiveText := 'Off';
 DynBV01^.sActiveText := 'On';
 END_IF
 END_IF

 IF (bDelete) THEN
 bDelete := FALSE;
 // [Variant 1] Delete all objects conveniently via object manager:
 fbDynObject.Reset();

 // [Variant 2] Delete all objects manually:
 (*
 fbDynObject.DeleteObject(DynAV01);
 fbDynObject.DeleteObject(DynBV01);
 fbDynObject.DeleteObject(DynView);
 *)
 END_IF

 // Sample PLC code:
 // > Take care of valid object pointers!
 IF (fbDynObject.CreatedObjects > 0) THEN
 nCounter := (nCounter+1);
 // Simulate changing value:
 DynAV01^.bEnPgm := TRUE;
 DynAV01^.fValPgm := (TO_REAL(nCounter MOD 1000)/100);

 // [Variant 2] Call created objects manually
 IF (NOT fbDynObject.bCycleObjects) THEN
 DynView^();
 DynAV01^();
 DynBV01^();
 END_IF
 END_IF
END_IF

8.5 Complete initialization of the dynamic objects
The initialization of the dynamically created objects is usually done automatically a few cycles after the last
object was created.

If, however, the initialization is to be completed by PLC program (because, for example, reading out a
configuration file could take longer), the Dynamic Object Manager can be called in such a way that the end
of the initialization takes place from the PLC program.
For this purpose, the second parameter bAutoFinishInit must be set to the value FALSE, e.g.
fbDynMngr : FB_BACnet_DynObjectManager := (bCycleObjects := TRUE,
bAutoFinishInit := FALSE);

To complete the initialization, the method FinishInit must then be called, e.g.
fbDynMngr.FinishInit();

8.6 Creating and deleting own BACnet function blocks (FB)
If own BACnet FBs are to be instantiated in addition to the FBs available in the Tc3_BACnetRev14 library,
these must be deleted in a method FB_exit when the PLC program is terminated so that the dynamically
allocated memory is released again.

Dynamically created FB instances of function blocks from the Tc3_BACnetRev14 library are automatically
deleted and removed from the memory via the method FB_exit of the Dynamic Object Manager.

The following example shows the dynamic creation of FB instances of own FBs (the implementations
themselves are not shown in this example) as well as the deletion of these instances in the method
FB_exit.

Dynamic Object Manager

TF8020 105Version: 1.1.2

Care must be taken to ensure that the correct type of FB is used for the enable.

Variable MAIN
PROGRAM MAIN
VAR
 fbDynObj : FB_DYN_OBJECTS;
END_VAR

Code MAIN
fbDynObj();

Variables FB_DynObj
FUNCTION_BLOCK FB_DYN_OBJECTS
VAR
 DynMgmt : FB_BACnet_DynObjectManager := (bCycleObjects := TRUE, bAutoFinishInit := FALSE);

 bCreate : BOOL := TRUE;
 bDelete : BOOL;

 TestFbBVOwn : POINTER TO FB_BACnet_BV_Event;
 TestFbAVOwn : POINTER TO FB_BACnet_AV_EventSetp;
END_VAR

Code FB_DynObj
DynMgmt();
IF (DynMgmt.Ready) THEN
 IF (bCreate) THEN
 bCreate := FALSE;

 TestFbBVOwn := __NEW(FB_BACnet_BV_Event);
 IF (DynMgmt.CreateObjectEx(TestFbBVOwn, BACnet_Globals.nBACnetInstId_Auto, '\/TestBV own',
'\/TestBV own', 0)) THEN
 // Initialize properties:
 TestFbBVOwn^.sInactiveText := 'AUS';
 TestFbBVOwn^.sActiveText := 'EIN';
 END_IF

 TestFbAVOwn := __NEW(FB_BACnet_AV_EventSetp);
 IF (DynMgmt.CreateObjectEx(TestFbAVOwn, BACnet_Globals.nBACnetInstId_Auto, '\/TestEvent own',
'\/TestEvent own', 0)) THEN
 // Initialize properties:
 TestFbAVOwn^.fHighLimit := 470;
 TestFbAVOwn^.fLowLimit := -100;
 END_IF
 DynMgmt.FinishInit();
 END_IF

 IF (bDelete) THEN
 bDelete := FALSE;
 FB_exit(FALSE);
 END_IF
END_IF

Variables of the FB_DynObj.FB_exit method
METHOD FB_exit : BOOL
VAR_INPUT
 bInCopyCode : BOOL; // if TRUE, the exit method is called for exiting an instance that is copied
afterwards (online change).
END_VAR

Code of the FB_DynObj.FB_exit method
DynMgmt.RemoveObjectEx(TestFbAVOwn);
__DELETE(TestFbAVOwn);
DynMgmt.RemoveObjectEx(TestFbBVOwn);
__DELETE(TestFbBVOwn);

Samples

TF8020106 Version: 1.1.2

9 Samples

9.1 Variable Declaration
The default values of the BACnet properties should be specified in the variable declaration and should only
be written conditionally at runtime (so that write access by BACnet is still possible). In the following example,
the Description property is modified at runtime.

To use the BACnet EngineeringUnit (unit of measurement) the library Tc3_BA2_Common must be included.

Variables
fbAv : FB_BACnet_AV := (
 sObjectName := 'X51LU01xAMH_-SW31',
 sDescription := 'SetpointVariable Ventilator',
 eUnit := E_BA_Unit.ePressure_Pascals,
 fRelinquishDefault := 250
);
bDescriptionChanged : BOOL;

Code
if bDescriptionChanged then
 fbAV.sDescription := 'TEST';
 bDescriptionChanged := FALSE;
END_IF
fbAv();

9.2 BACnet properties
This example shows the presetting of further BACnet properties, such as the status texts or Change-of-
Value settings (COV). Also shown is how function blocks can be called using a for loop.

For multistate objects, the number of stages is defined via the stage texts (Property State_Text). The
default value is a limit of 12 states. This number can be changed in the Global Variables in the parameter list
BACnet_Param.

Variables
// optional unit, range and COV properties
fbAi : FB_BACnet_AI := (
 eUnit := E_BA_Unit.eTemperature_DegreesCelsius,
 fCovIncrement := 2.0,
 fMinPresValue := 0.0,
 fMaxPresValue := 100.0
);

// optional state text information
fbBi : FB_BACnet_BI := (
 sInactiveText := 'DOWN',
 sActiveText := 'UP'
);

// number of states determined by aStateText
fbMi : FB_BACnet_MI := (
 aStateText := ['AUTO', 'Low', 'Medium', 'High', 'Turbo']
);

// array of BACnet FBs
afbAV : ARRAY[0..499] of FB_BACnet_AV;
nCount : INT;

Code
fbAi();
fbBi();
fbMi();

FOR nCount := 0 to 499 do

https://infosys.beckhoff.com/content/1033/tcplclib_tc3_ba2_common/index.html?id=3178903701020086065

Samples

TF8020 107Version: 1.1.2

 afbAV[nCount]();
END_FOR

9.3 Link with the 'TcLinkTo' attribute
This example shows how the 'TcLinkTo' attribute can be used for linking with EtherCAT or K-bus terminals.
The FB variants with the suffix IO (K-bus) and ECAT (EtherCAT Terminals) are available.

The 'TcLinkToOSO' attribute in the EL3068 terminal example also shows how the underrange and overrange
states can be mapped to the terminal channel state (nRawState).

In general, the state of the terminal channel is mapped via the variable nRawState. The variable
nRawECatState is used to additionally map the EtherCAT status of the communication with the terminal.

The TIID path can be taken from the properties of the respective terminal channel in the development
environment and copied from there.

Variables
// general structured view object
View : FB_BACnet_View := (sObjectName:='IoBus_0_Device_3_EtherCAT');

// EtherCAT terminals

(* Term 2 (EL1809) *)
{attribute 'TcLinkTo' :=
 '.bRawVal :=TIID^Device 3 (EtherCAT)^Term 1 (EK1100)^Term 2 (EL1809)^Channel 1^Input;
 .nRawECatState:=TIID^Device 3 (EtherCAT)^Term 1 (EK1100)^Term 2 (EL1809)^InfoData^State'}
Term_2_EL1809_Chn1 : FB_BACnet_BI_ECAT := (iParent:=View, sObjectName:='Term_2_EL1809_Chn1',
nIoBusNr:=0, sDeviceType:='EL1809 16Ch. Dig. Input 24V, 3ms');

(* Term 3 (EL2809) *)
{attribute 'TcLinkTo' :=
 '.bRawVal :=TIID^Device 3 (EtherCAT)^Term 1 (EK1100)^Term 3 (EL2809)^Channel 1^Output;
 .nRawECatState:=TIID^Device 3 (EtherCAT)^Term 1 (EK1100)^Term 3 (EL2809)^InfoData^State'}
Term_3_EL2809_Chn1 : FB_BACnet_BO_ECAT := (iParent:=View, sObjectName:='Term_3_EL2809_Chn1',
nIoBusNr:=0, sDeviceType:='EL2809 16Ch. Dig. Output 24V, 0.5A');

(* Term 4 (EL3068) *)
{attribute 'TcLinkTo' :=
 '.nRawVal :=TIID^Device 3 (EtherCAT)^Term 1 (EK1100)^Term 4 (EL3068)^AI Standard Channel
1^Value;
 .nRawECatState:=TIID^Device 3 (EtherCAT)^Term 1 (EK1100)^Term 4 (EL3068)^InfoData^State'}
{attribute 'TcLinkToOSO' :=
 '.nRawState:=<0,1,0>TIID^Device 3 (EtherCAT)^Term 1 (EK1100)^Term 4 (EL3068)^AI Standard Channel
1^Status^Underrange;
 .nRawState:=<1,1,0>TIID^Device 3 (EtherCAT)^Term 1 (EK1100)^Term 4 (EL3068)^AI Standard Channel
1^Status^Overrange'}
Term_4_EL3068_Chn1 : FB_BACnet_AI_ECAT := (iParent:=View, sObjectName:='Term_4_EL3068_Chn1',
nIoBusNr:=0, sDeviceType:='EL3068 8Ch. Ana. Input 0-10V');

(* Term 5 (EL4132) *)
{attribute 'TcLinkTo' :=
 '.nRawVal :=TIID^Device 3 (EtherCAT)^Term 1 (EK1100)^Term 5 (EL4132)^Channel 1^Output;
 .nRawECatState:=TIID^Device 3 (EtherCAT)^Term 1 (EK1100)^Term 5 (EL4132)^InfoData^State'}
Term_5_EL4132_Chn1 : FB_BACnet_AO_ECAT := (iParent:=View, sObjectName:='Term_5_EL4132_Chn1',
nIoBusNr:=0, sDeviceType:='EL4132 2Ch. Ana. Output +/-10V');

// Bus Terminals (K-Bus)

(* Term 2 (KL1104) *)
{attribute 'TcLinkTo' :=
 '.bRawVal :=TIID^Device 3 (EtherCAT)^Box 6 (BK1150)^Term 2 (KL1104)^Channel 1^Input'}
Term_2_KL1104_Chn1 : FB_BACnet_BI_IO := (iParent:=View, sObjectName:='Term_2_KL1104_Chn1',
nIoBusNr:=0, sDeviceType:='KL 1104, 4 Ch. Input (24V, 3.0ms)');

(* Term 3 (KL2408) *)
{attribute 'TcLinkTo' :=
 '.bRawVal :=TIID^Device 3 (EtherCAT)^Box 6 (BK1150)^Term 3 (KL2408)^Channel 1^Output'}
Term_3_KL2408_Chn1 : FB_BACnet_BO_IO := (iParent:=View, sObjectName:='Term_3_KL2408_Chn1',
nIoBusNr:=0, sDeviceType:='KL 2408, 8 Ch. Output (24V, 0.5 A, 3 A max)');

(* Term 4 (KL3208-0010-4) *)
{attribute 'TcLinkTo' :=

Samples

TF8020108 Version: 1.1.2

 '.nRawVal :=TIID^Device 3 (EtherCAT)^Box 6 (BK1150)^Term 4 (KL3208-0010-4)^Channel 1^Data In;
 .nRawState:=TIID^Device 3 (EtherCAT)^Box 6 (BK1150)^Term 4 (KL3208-0010-4)^Channel 1^State'}
Term_4_KL3208_0010_4_Chn1 : FB_BACnet_AI_IO := (iParent:=View,
sObjectName:='Term_4_KL3208_0010_4_Chn1', nIoBusNr:=0, sDeviceType:='KL 3208-0010, 4 of 8 Ch. ana.
Input PT1000, Ni1000 (RTD)');

(* Term 6 (KL4022) *)
{attribute 'TcLinkTo' :=
 '.nRawVal :=TIID^Device 3 (EtherCAT)^Box 6 (BK1150)^Term 6 (KL4022)^Channel 1^Data Out'}
Term_6_KL4022_Chn1 : FB_BACnet_AO_IO := (iParent:=View, sObjectName:='Term_6_KL4022_Chn1',
nIoBusNr:=0, sDeviceType:='KL 4022, 2 Ch. ana. Output (4...20mA)');

Code
View();
Term_2_EL1809_Chn1();
Term_3_EL2809_Chn1();
Term_4_EL3068_Chn1();
Term_5_EL4132_Chn1();
Term_2_KL1104_Chn1();
Term_3_KL2408_Chn1();
Term_4_KL3208_0010_4_Chn1();
Term_6_KL4022_Chn1();

9.4 Property selection and write protection
This example shows how properties of BACnet objects can be write-protected. Furthermore, the example
shows how unneeded properties can be removed from objects.

By default, all properties (which may be writeable according to the BACnet standard) are executed as
writeable. All properties possible in the respective object type are also included.

Properties that are to be read-only are listed in the array aWriteProtected. Properties that are not used
and thus should be removed from the object are listed in the array aDisabled.

Related properties (these are marked in the standard with a footnote of the same name) must be
present in their entirety or removed in their entirety. In the example below, the properties
ChangeOfStateCount, ChangeOfStateTime and TimeOfStateCountReset are disabled.

Variables
fbBi : FB_BACnet_BI := (
 sObjectName := 'Example Binary Input Object',
 sDescription := 'Objectname and Description properties are read-only',
 stSettings := (
 aDisabled := [
 E_BACnetPropIdentifier.PropChangeOfStateCount,
 E_BACnetPropIdentifier.PropChangeOfStateTime,
 E_BACnetPropIdentifier.PropTimeOfStateCountReset
],
 aWriteProtected := [
 E_BACnetPropIdentifier.PropObjectName,
 E_BACnetPropIdentifier.PropDescription
]
)
);

Code
fbBi();

9.5 Priority controller
This example shows the use of the function blocks ending with _5P (5 priorities). From the available 16
priorities of the BACnet standard, 5 priorities were selected, which are sufficient for building automation
projects in most cases:

Samples

TF8020 109Version: 1.1.2

LifeSafety (1): For example, emergency shutdown

Critical Equipment Control (5): For example, frost protection

Manual Local Operator (7): For example on-site operation at the control cabinet

Manual Operator (8): For example operator at the BACnet management and operating level

PLC (15): Priority of the PLC program

The number in brackets indicates the default value of the priority. This can be changed globally in the
BACnet_Param section of the Tc3_BACnetRev14 library.

The following boolean flags are available for controlling the priority:

bEnSfty: Override of the LifeSafety priority by the PLC program. The value is given by the variables
fValSfty (analog), bValSfty (binary) and nValSfty (multistate).

bEnCrit: Override of the critical equipment priority. The value is given by the variables fValCrit (analog),
bValCrit (binary) and nValCrit (multistate).

bEnManLoc: Override of the manual operator priority. The value is given by the variables fValManLoc
(analog), bValManLoc (binary) and nValManLoc (multistate).

bEnPgm: PLC priority override. The value is given by the variables fValPgm (analog), bValPgm (binary)
and nValPgm (multistate).

bEnManualOperator: Override of the operator priority. The value is given by the variables
fValManualOperator (analog), bValManualOperator (binary) and nValManualOperator
(multistate).

This priority level is used in BACnet projects for access by the MBE (management operating
equipment) and should therefore only be used if this access is not to be made on the part of
BACnet or in the absence of an MBE.

Variables
// Analog objects supporting 5 priorities
fbAO5P : FB_BACnet_AO_5P;
fbAOIO5P : FB_BACnet_AO_IO5P;
fbAORaw5P : FB_BACnet_AO_RAW5P;
fbAV5P : FB_BACnet_AV_5P;

// Binary objects supporting 5 priorities
fbBO5P : FB_BACnet_BO_5P;
fbBOIO5P : FB_BACnet_BO_IO5P;
fbBORaw5P : FB_BACnet_BO_RAW5P;
fbBV5P : FB_BACnet_BV_5P;

// Multistate objects supporting 5 priorities
fbMO5P : FB_BACnet_MO_5P;
fbMOIO5P : FB_BACnet_MO_IO5P;
fbMORaw5P : FB_BACnet_MO_RAW5P;
fbMV5P : FB_BACnet_MV_5P;

Code
fbAO5P();
fbAOIO5P();
fbAORaw5P();
fbAV5P();
fbBO5P();
fbBOIO5P();
fbBORaw5P();
fbBV5P();
fbMO5P();
fbMOIO5P();
fbMORaw5P();

// example access to critical equipment control priority
fbMV5P.bEnCrit := TRUE;

Samples

TF8020110 Version: 1.1.2

fbMV5P.nValCrit := 3; // select state no. 3
fbMV5P();

9.6 Reset priorities
In some cases it may be necessary to reset priority levels described via BACnet from the PLC or
visualization (i.e. write the value NULL to this priority level).
This can be done on the server side with the call WritePropertyNull.

It should be noted that for binary objects, priority level 6 is reserved for the minimum switch-on and switch-off
times and therefore cannot be written.

Variables
fbBV : FB_BACnet_BV;
nCount : INT;
bEmptyPrioArray : BOOL;
nRet : DINT;

Code
fbBV();
IF bEmptyPrioArray THEN
 bEmptyPrioArray := FALSE;
 FOR nCount := 1 TO 16 DO
 IF nCount = 6 THEN
 CONTINUE;
 END_IF
 nRet := fbBV.WritePropertyNull(E_BACnetPropIdentifier.PropPresentValue, bPrio :=
TO_BYTE(nCount));
 END_FOR
END_IF

9.7 Control loops and loop objects
For the mapping of control loops the BACnet standard provides the Loop object. The control parameters,
such as P, I, D, limits of the control range or the operating direction are passed on to the controller function
block as properties of the loop object type. The type of the controller itself is not specified in the BACnet
standard.

The library Tc3_BA2_Common contains the implementation of the PID controller (FB_BA_PIDCtrl), which is
mapped via the function blocks FB_BACnet_Loop and FB_BACnet_LoopRef respectively.

FB_BACnet_Loop implements a controller whose setpoint, output value and actual value are mapped via
function block-internal variables.

FB_BACnet_LoopRef uses a reference to an Analog Value object as the setpoint, a reference to an Analog
Output object as the output value, and a reference to an Analog Input object for the actual value.

While the function block type FB_BACnet_Loop is sufficient for most applications, the function block type
FB_BACnet_LoopRef allows the operator of the management and operating level to access the controller
values (setpoint, output value and actual value) via BACnet. However, this increases the number of BACnet
objects per control loop to 4.

The following examples show the realization of a PI controller.

Variables
// control loop using internal variables
fbLoopInternal : FB_BACnet_Loop := (
 bEn := TRUE,
 sDescription := 'Loop using internal control parameters',
 eOutputUnit := E_BA_Unit.eOther_Percent,
 eAction := E_BA_Action.eReverse,
 fProportionalConstant := 5.0,
 fIntegralConstant := 180,
 fSetpoint := 20
);
fCtrlVal : REAL := 18;

https://infosys.beckhoff.com/content/1033/tcplclib_tc3_ba2_common/index.html?id=3178903701020086065

Samples

TF8020 111Version: 1.1.2

// control loop using external BACnet objects
fbLoopRef_Setpt : FB_BACnet_AV_Setp := (
 fValue := 20);
fbLoopRef_CtrlVar : FB_BACnet_AI := (
 fVal := 18);
fbLoopRef_Y : FB_BACnet_AO := ();
fbLoopRef : FB_BACnet_Loop_Ref := (
 bEn := TRUE,
 sDescription := 'Loop using reference objects',
 stControlledVariableReference :=
 F_BACnet_Reference(fbLoopRef_CtrlVar, PropPresentValue),
 stSetpointReference :=
 F_BACnet_Reference(fbLoopRef_Setpt, PropPresentValue),
 stManipulatedVariableReference :=
 F_BACnet_Reference(fbLoopRef_Y, PropPresentValue),
 eOutputUnit := E_BA_Unit.eOther_Percent,
 eAction := E_BA_Action.eReverse,
 fProportionalConstant := 5.0,
 fIntegralConstant := 180
);

Code
// internal control loop
fbLoopInternal.fCtrlVar := fCtrlVal;
fbLoopInternal();

// control loop using external object references
fbLoopRef_Setpt();
fbLoopRef_CtrlVar();
fbLoopRef_Y();
fbLoopRef();

9.8 Set up alarm receiver
BACnet allows alarm receivers (e.g. the MBE) to register in one or more Notification Class objects in the
recipient list (Recipientlist).

If the receivers are already defined at the time of PLC programming, they can also be specified by the PLC
program.

Either the Device instance number can be used as a reference to the receiver. In this case TwinCAT
resolves the actual address with a Who-Is telegram (the response I-Am of the receiver contains the actual
address).

Alternatively, this address can be specified directly in the recipient list, but this option is rarely used in
practice.

The following example shows a Notification Class NC1 without receiver specifications (i.e. the receivers
register themselves via BACnet). Notification Class 2 contains an example of a receiver referenced by the
Device instance number as well as a receiver referenced by the IP address, UDP port and BACnet network
number.

The order of the alarm types in the arrays aEventEnable and aEventMessageTextsConfig as well as
aAckRequired and aPriority corresponds to the order in the BACnet standard:

TO_OFFNORMAL: Coming alarm / event

TO_FAULT: Sensor error, encoder malfunction

TO_NORMAL: Return to normal range

Variables
// simple Notification class object with empty recipient list
fbBV1 : FB_BACnet_BV := (
 nNotificationClass := 1,
 aEventEnable := [TRUE,TRUE,TRUE],
 bAlarmValue := TRUE,

Samples

TF8020112 Version: 1.1.2

 aEventMessageTextsConfig := ['ALARM', 'FAULT', 'NORMAL']
);
fbNC01_Standard : FB_BACnet_NC := (
 nObjectInstance := 1,
 nNotificationClass := 1,
 sDescription := 'NC01 Standard',
 aAckRequired := [TRUE, TRUE, FALSE],
 aPriority := [10, 11, 12]
);

// Notification class object with pre-defined recipient (Notification Sink module)
fbBV2 : FB_BACnet_BV := (
 nNotificationClass := 2,
 aEventEnable := [TRUE,TRUE,TRUE],
 bAlarmValue := TRUE
);
fbNC02_Recipient : FB_BACnet_NC := (
 nObjectInstance := 2,
 nNotificationClass := 2,
 sDescription := 'NC02 RecipientTest',
 aAckRequired := [TRUE, TRUE, TRUE],
 aPriority := [224, 223, 222],
 aRecipientList := [
 (
 stValidDays := (bMonday:=TRUE, bTuesday:=TRUE, bWednesday:=TRUE, bThursday:=TRUE,
bFriday:=TRUE),
 stFromTime := F_BA_ToSTTime(T#0H),
 stToTime := F_BA_ToSTTime(T#23H59M59S),
 stRecipient := F_BACnet_DeviceRecipient(nDeviceInstance:=42),
 nProcessId := 10000, // Notification Sink module
 bIssueConfirmed := FALSE,
 stEventTransitions := (bToOffNormal:=TRUE, bToFault:=TRUE, bToNormal:=TRUE)
),
 (
 stValidDays := (bSunday:=TRUE, bSaturday:=TRUE),
 stFromTime := F_BA_ToSTTime(T#7H),
 stToTime := F_BA_ToSTTime(T#15H30M),
 stRecipient := F_BACnet_EthernetRecipient(
 nIPAddress1:=192,168,10,200,
 nPort:=47808,
 nNetworkNr:=444
),
 nProcessId := 30100,
 bIssueConfirmed := TRUE,
 stEventTransitions := (bToOffNormal:=TRUE)
)
]
);

Code
fbBV1();
fbNC01_Standard();

fbBV2();
fbNC02_Recipient();

9.9 Receiving alarms and events from other devices
This example shows the use of an Eventlog object as a receiver for alarms and events of an external
BACnet device. The Eventlog object of the alarm receiver is entered in the notification class of the alarm
transmitter. The assignment is made via the process identifier.

Device 1: Alarm transmitter

Variables
// Notification Class object in the alarm generating device
fbNC01 : FB_BACnet_NC := (
 nObjectInstance := 1,
 nNotificationClass := 1,
 sDescription := 'NC01',
 aAckRequired := [TRUE, TRUE, TRUE],
 aPriority := [224, 223, 222],
 aRecipientList :=

Samples

TF8020 113Version: 1.1.2

 [
 (
 stValidDays := (
 bMonday:=TRUE,
 bTuesday:=TRUE,
 bWednesday:=TRUE,
 bThursday:=TRUE,
 bFriday:=TRUE,
 bSaturday:=TRUE,
 bSunday:=TRUE
),
 stFromTime := F_BA_ToSTTime(T#0H),
 stToTime := F_BA_ToSTTime(T#23H59M59S),
 stRecipient := F_BACnet_DeviceRecipient(nDeviceInstance:=12345),
 nProcessId := 42,
 bIssueConfirmed := FALSE,
 stEventTransitions := (bToOffNormal:=TRUE, bToFault:=TRUE, bToNormal:=TRUE)
)
]
);

Device 2: Alarm receiver (Device 12345)

Variables
fbELogBuf : FB_BACnet_ELogBuf := (
 sObjectName := 'Event Log for external alarms',
 bLogEnable := TRUE,
 nProcessId := 42
);

9.10 Prewarning limits
With the help of the EventEnrollment object BACnet allows the monitoring of properties from BACnet objects.
A typical application in building automation is prewarning limits, which draw attention to an alarm that may
follow later.

The following example shows how the object-internal alarm detection (Instrinsic Reporting) is combined with
an additional pair of prewarning limits (Algorithmic Change Reporting) and how these states (prewarning and
alarm) can be reported via two different Notification Class objects.

Here, the BACnet object fbAV, whose Present Value is specified from the REAL variable fRealValue, serves
as the trigger for the warnings and alarms.

Variables
fRealValue : REAL := 50;

// Analog Value object using Intrinsic Reporting
fbAv : FB_BACnet_AV := (
 sObjectName := 'AV using Intr. Reporting',
 aEventEnable := [TRUE, TRUE, TRUE],
 eNotifyType := E_BACnet_NotifyType.eAlarm,
 bLowLimitEnable := TRUE,
 fLowLimit := 15.0,
 bHighLimitEnable := TRUE,
 fHighLimit := 87.0,
 fDeadband := 3,
 nTimeDelay := 2, // waits 2 seconds before TO_OFFNORMAL
 nTimeDelayNormal := 4, // wait 4 seconds before TO_NORMAL
 bEventDetectionEnable := TRUE,
 nNotificationClass := 10, // alarm class
 aEventMessageTextsConfig := ['Alarm', 'Fault', 'Warning'],
 bEnPgm := TRUE,
 eUnit := E_BA_Unit.eOther_Percent
);

// Additional warning limits using Algorithmic Change Reporting
fbEE : FB_BACnet_EE := (
 sObjectName := 'Event Enrollment',
 nNotificationClass := 20,
 eNotifyType := E_BACnet_NotifyType.eNotifyEvent,
 aEventEnable := [TRUE, TRUE, TRUE],
 aEventMessageTextsConfig := ['Warning', 'Fault', 'Normal'],
 stEventParameter := (

Samples

TF8020114 Version: 1.1.2

 eEventType := E_BACnet_EventType.eOutOfRange,
 stEventArgs := (
 stOutOfRange := (
 nTimeDelay := 0,
 fLowLimit := 25.0,
 fHighLimit := 82.0,
 fDeadband := 0.0
)
)
),
 stObjectPropertyReference := F_BACnet_Reference(fbAv,PropPresentValue)
);

// Notification Classes 10=alarms, 20=warnings
fbNC10 : FB_BACnet_NC := (
 sObjectName := 'NC10',
 sDescription := 'Alarms',
 nObjectInstance := 10,
 nNotificationClass := 10,
 aAckRequired := [TRUE, TRUE, TRUE],
 aPriority := [10, 11, 12]
);
fbNC20 : FB_BACnet_NC := (
 sObjectName := 'NC20',
 sDescription := 'Warnings',
 nObjectInstance := 20,
 nNotificationClass := 20,
 aAckRequired := [FALSE, TRUE, FALSE],
 aPriority := [100, 110, 120]
);

Code
fbAv.fValPgm := fRealValue;
fbAv();
fbEE();
fbNC10();
fbNC20();

9.11 Calendar and schedule functions
For the implementation of schedule functions the BACnet standard provides the schedule object. It allows
the use of recurring weekly programs (Weekly_Schedule) as well as the definition of exceptions
(Exception_Schedule). Exceptions can either be entered directly in the schedule object or these are
determined on the basis of a Calendar object (which must be located in the same device). A single date, a
date range or a combined type of day, week and month can be used to specify an exception.

The weekly schedule is noted using the array aWeek.
Calendar-based exceptions are noted using the array aCalendar.
Exceptions contained directly in the schedule are noted using the array aException.

Help functions are available for specifying the dates, e.g. F_BA_DateVal.

For dates, according to the BACnet standard, the year starts from 1900. The Month element can contain odd
(13) and even (14) months in addition to the regular month information. The day of the month may include
odd (33) and even (34) days of the month in addition to the regular day information, as well as the last day
(32) of the month.

When specifying specific dates, it is important that the day of the week matches the specified date.

Functions are also available for defining the time/value pairs of the schedule, e.g.
F_BACnet_SchedWeekly3xA. Here, 3x indicates the number (3 entries). The indicator A stands for analog
values (REAL), the indicator B for binary values (BOOL) and M for multistate states (integer).

If the schedule is to directly influence one or more properties from BACnet objects, these references can be
specified in the aObjectPropertyReferences element. If this specification is missing, an empty list is
created in the property ListofObjectPropertyReferences and the schedule does not access external objects/
properties. This can be used if the state of the schedule is to be monitored within the PLC, but no BACnet
objects are to be directly influenced.

Samples

TF8020 115Version: 1.1.2

Variables
// Calendar object examples
fbCAL01 : FB_BACnet_Cal := (
 sObjectName := 'Calendar 1',
 sDescription := 'demonstrates a date-list for each choice',
 aDateList := [
 (
 eType := E_BA_DateValChoice.eDate,
 uDate := F_BA_DateVal(2021,E_BA_Month.eJanuary,19)
),
 (
 eType := E_BA_DateValChoice.eDateRange,
 uDate := F_BA_DateRangeVal(nFromYear:=2021,E_BA_Month.eJanuary,19,
nToYear:=2021,E_BA_Month.eJanuary,21)
),
 (
 eType := E_BA_DateValChoice.eWeekNDay,
 uDate := F_BA_WeekNDayVal(E_BA_Weekday.eFriday, E_BA_Week.eWeek1,
E_BA_Month.eFebruary)
)
]
);
fbCAL02 : FB_BACnet_Cal := (
 sObjectName := 'Calendar 2'
);
fbCAL03 : FB_BACnet_Cal := (
 sObjectName := 'Calendar 3'
);

// schedule object for analog scheduling
fbAnalogOutput : FB_BACnet_AO;
fbSchedA : FB_BACnet_SchedA := (
 sObjectName := 'Schedule Analog',
 aObjectPropertyReferences :=
 [
 (iObject := fbAnalogOutput, ePropertyId := PropPresentValue)
],

 aWeek := F_BACnet_SchedWeekly3xA(E_BA_Weekday.eMonday, E_BA_Weekday.eFriday, T#0H, 0.0, T#6H,
5.0, T#20H, 0.0),

 aCalendar := [(
 iRefCalendar := fbCAL01,
 aEntry := F_BACnet_SchedEntry1xA(T#0H, 2.0)
),
 (
 iRefCalendar := fbCAL02,
 aEntry := F_BACnet_SchedEntry1xA(T#10H, 3.4)
),
 (
 iRefCalendar := fbCAL03,
 aEntry := F_BACnet_SchedEntry3xA(T#0H, 5, T#6H, 7, T#20H, 8)
)],

 aException := [
 (
 eType := E_BA_DateValChoice.eDate,
 uDate := F_BA_DateVal(2020,E_BA_Month.eApril,10),
 aEntry := F_BACnet_SchedEntry1xA(T#0H, 0.0)
),
 (
 eType := E_BA_DateValChoice.eDateRange,
 uDate := F_BA_DateRangeVal(nFromYear:=2020,E_BA_Month.eApril,10,
nToYear:=2021,E_BA_Month.eMay,11),
 aEntry := F_BACnet_SchedEntry3xA(T#0H, 0.0, T#6H, 5.0, T#20H, 0.0)
),
 (
 eType := E_BA_DateValChoice.eWeekNDay,
 uDate := F_BA_WeekNDayVal(E_BA_Weekday.eFriday, E_BA_Week.eWeek1, E_BA_Month.eFebruary),
 aEntry := F_BACnet_SchedEntry3xA(T#0H, F_BA_NullA(), T#6H, 5.0, T#20H, F_BA_NullA())
),
 (
 eType := E_BA_DateValChoice.eDate,
 uDate := F_BA_DateVal(2019,E_BA_Month.eJune,20),
 aEntry := [
 (
 eState := E_BA_SchedEntryState.eValue,
 stTime := F_BA_ToSTTime(T#10H),
 uValue := F_BA_RVal(1.0)

Samples

TF8020116 Version: 1.1.2

),
 (
 eState := E_BA_SchedEntryState.eNull,
 stTime := F_BA_ToSTTime(T#11H)
)
]
)]);

// schedule object for binary scheduling
bScheduledValue : BOOL;
fbSchedB : FB_BACnet_SchedB := (
 sObjectName := 'Schedule Bool',
 aWeek := F_BACnet_SchedWeekly3xB(E_BA_Weekday.eMonday, E_BA_Weekday.eFriday, T#0H, FALSE, T#6H,
TRUE, T#20H, FALSE),
 aCalendar := [
 (
 iRefCalendar := fbCAL01,
 aEntry := F_BACnet_SchedEntry1xB(T#0H, FALSE)
),
 (
 iRefCalendar := fbCAL02,
 aEntry := F_BACnet_SchedEntry1xB(T#10H, TRUE)
),
 (
 iRefCalendar := fbCAL03,
 aEntry := F_BACnet_SchedEntry3xB(T#0H, F_BA_NullB(), T#6H, TRUE, T#20H, FALSE)
)]);

// schedule object for multistate scheduling
nMultistateValue : UDINT;
bSchedM_AssignCalReference : BOOL;
fbSchedM : FB_BACnet_SchedM :=
 (
 sObjectName := 'Schedule Multistate',
 aWeek := F_BACnet_SchedWeekly3xM(E_BA_Weekday.eMonday, E_BA_Weekday.eFriday, T#0H, 1, T#6H,
2, T#20H, 1),
 nScheduleDefault := 3
);

Code
fbCAL01();
fbCAL02();
fbCAL03();

fbAnalogOutput();
fbSchedA();

fbSchedB();
bScheduledValue := fbSchedB.bPresVal;

// example how to assign a calendar reference at runtime
IF(bSchedM_AssignCalReference) THEN
 bSchedM_AssignCalReference := FALSE;
 fbSchedM.aCalendar[1].iRefCalendar := fbCAL01;
 fbSchedM.aCalendar[1].aEntry := F_BACnet_SchedEntry1xM(T#11H, 2);
 fbSchedM.bWriteException := TRUE;
END_IF
fbSchedM();
nMultistateValue := fbSchedM.nPresVal;

9.12 Logging objects
BACnet allows the use of three different objects for log data storage:

Trendlog: This object type represents the recorded log data of a single data source, e.g. the Present Value
of an Analog Input object.

Here, recording can be done by polling (i.e., at a fixed recording interval in 1/100s), by Change of Value
(COV), or by using a Boolean trigger.

Trendlog Multiple: This object type allows simultaneous recording of data from multiple sources. In
principle, recording is only possible via polling or trigger, but not via COV. In practice, this object type is
rarely used in BACnet projects.

Samples

TF8020 117Version: 1.1.2

Eventlog: This object type allows the storage of BACnet event messages (events and alarms). If a
Notification Class object with the same instance number exists in the server for the instance number of an
Eventlog object, the Notification Class object is automatically configured as the data source of the Eventlog
object. Alarms reported via this notification class are therefore automatically stored in the log memory of the
Eventlog object.

The following example shows the use of these three object types.

Variables
 fAnalogValue : REAL;
 fbTon : TON;
 fbAv : FB_BACnet_AV := (
 sObjectName := 'Object to simulate changes and generate alarms',
 fLowLimit := 1.0,
 bLowLimitEnable := TRUE,
 fHighLimit := 8.0,
 bHighLimitEnable := TRUE,
 bEnPgm := TRUE,
 bEventDetectionEnable := TRUE,
 nNotificationClass := 42,
 aEventEnable := [TRUE,TRUE,TRUE],
 eUnit := E_BA_Unit.eElectrical_Volts,
 nTimeDelay := 0,
 nTimeDelayNormal := 0,
 fDeadband := 0.0
);

 fbNC42 : FB_BACnet_NC := (
 nObjectInstance := 42,
 nNotificationClass := 42,
 sDescription := 'NC42',
 aAckRequired := [TRUE, TRUE, TRUE],
 aPriority := [1, 2, 3]
);

 fbELog_NC42 : FB_BACnet_ELogBuf := (
 sObjectName := 'Event Log for NC42',
 nObjectInstance := 42,
 bLogEnable := TRUE
);

 fbTLog : FB_BACnet_TLog := (
 sObjectName := 'Trend',
 nNotificationClass := 42,
 aEventEnable := [TRUE, TRUE, FALSE],
 stStartTime := F_BA_ToSTDateTime(DT#2010-01-01-00:00),
 bLogEnable := TRUE,
 eLoggingType := E_BA_LoggingType.ePolled,
 nLogInterval := 3 * 100, // log every 3 seconds, value in 1/100 seconds!
 stObjectPropertyReference := F_BACnet_Reference(fbAv, PropPresentValue)
);
 fbTLogCov : FB_BACnet_TLog := (
 sObjectName := 'Trend Cov',
 bLogEnable := TRUE,
 stObjectPropertyReference := F_BACnet_Reference(fbAv, PropPresentValue),
 eLoggingType := E_BA_LoggingType.eCOV,
 nCOVResubscriptionInterval := 600,
 stClientCOV := (
 eChoice := E_BACnet_ClientCOVChoice.eCovReal,
 fIncrement := 5.0
)
);

 fbTLogBuf : FB_BACnet_TLogBuf := (
 sObjectName := 'Trend with PLC buffer',
 bLogEnable := TRUE,
 eLoggingType := E_BA_LoggingType.eTriggered,
 stObjectPropertyReference := F_BACnet_Reference(fbAv, PropPresentValue)
);

 fbTLogM : FB_BACnet_TLM := (
 sObjectName := 'Trend Multiple',
 bLogEnable := TRUE,
 eLoggingType := E_BA_LoggingType.ePolled,
 nLogInterval := 50, // log every 0.5 seconds, value in 1/100 seconds!
 aObjectPropertyReferences := [
 (iObject := fbAv, ePropertyId := PropPresentValue),

Samples

TF8020118 Version: 1.1.2

 (iObject := fbAv, ePropertyId := PropStatusFlags),
 (iObject := fbAv, ePropertyId := PropEventState)]
);

Code
// generate value changes every second
fbTon(IN:= NOT fbTon.Q, PT:=T#1S);
IF fbTon.Q THEN
 fAnalogValue := fAnalogValue + 1.0;
 IF fAnalogValue > 10.0 THEN
 fAnalogValue := 0;
 END_IF
END_IF
fbAv.fValPgm := fAnalogValue;
fbAv();

// Notification Class
fbNC42();

// Event Log with buffer in PLC
fbELog_NC42();

// Trend Log every 3 seconds
fbTLog();

// COV based Trend Log
fbTLogCov();

// Trigger based Trend Log with buffer in PLC
fbTlogBuf();

// Trendlog Multiple
fbTLogM();

9.13 Processing of the log memory in the PLC
BACnet defines the CHOICE data type for various properties. This represents a selection of different
possible property values.

To be able to process these data types in the PLC, the PLC data type UNION is used together with an
enumeration. The enumeration contains the information which element of the union must be accessed.

Log memory of the Trendlog object

The following example shows the processing of the log memory of a Trendlog object.

An object of the type FB_BACnet_TLogBuf is used for this purpose. This provides a log memory whose
contents can be read out by the PLC. The variable aLogBuffer is available as an array of the type
T_BACnet_TLogBuffer. The individual elements of the log buffer are of type ST_BA_TrendEntry with
the following elements:

dtTime: Contains the date and time of the log entry in BACnet format (ST_BA_Date and ST_BA_Time).

eType: Contains the information about the type of the log entry:

 eBinary: The log entry contains a value of type BinaryPV. In the element uValue the value of the
variable bVal is to be processed.

 eAnalog: The log entry contains a value of type REAL. In the element uValue the value of the variable
fVal is to be processed.

 eMultistate: The log entry contains a value of type UDINT. In the element uValue the value of the
variable udiVal is to be processed.

 eEvent: The log entry contains an event. Four bits are available in the stEvent structure:

 bStart: Recording has been started.

 bStop: Recording has been stopped.

Samples

TF8020 119Version: 1.1.2

 bBufferPurged: The log memory has been cleared.

 bInterrupted: Recording was interrupted (e.g. due to a network interruption)

In addition, the four status flags are available in the stState structure element:

 bInAlarm: The object is in an active alarm state.

 bFault: The object is in a faulty state, e.g. encoder malfunction.

 bOverridden: The object has been overridden by an internal mechanism, e.g. by the PLC.

 bOutOfService: The object was put out of operation. Values are simulated.

Log memory of the Eventlog object

The following example shows the processing of the log memory of an Eventlog object.

An object of the type FB_BACnet_ELogBuf is used for this purpose. This provides a log memory whose
contents can be read out by the PLC. The variable aLogBuffer is available as an array of the type
T_BACnet_ELogBuffer. The individual elements of the log buffer are of type
ST_BACnet_EventLogEntry with the following elements:

dtTime: Contains the date and time of the log entry in BACnet format (ST_BA_Date and ST_BA_Time).

eType: Contains the information about the type of the log entry:

 eStatus: The log entry contains the information of the StatusFlags. Four bits are available in the stStatus
structure:

 bInAlarm: The object is in an active alarm state.

 bFault: The object is in a faulty state, e.g. encoder malfunction.

 bOverridden: The object has been overridden by an internal mechanism, e.g. by the PLC.

 bOutOfService: The object was put out of operation. Values are simulated.

 eTimesync: A time synchronization message has been received. The fTimeSync element contains the
delta to the previous time.

 eNotification: The log entry contains an event message. In the structure stNotification the
parameters of the event message are available, e.g. the process ID, the triggering device and object, the
alarm priority, etc.

9.14 Primitive Value Objects
Primitive Value objects can be used to represent simple data types, such as strings, integer values, or for
date or time specifications.

For dates, according to the BACnet standard, the year starts from 1900. The Month element can contain odd
(13) and even (14) months in addition to the regular month information. The day of the month may include
odd (33) and even (34) days of the month, as well as the last day (32) of the month, in addition to the regular
day information.

When specifying specific dates, it is important that the day of the week matches the specified date.

For clock times, the range is 0-23 hours, 0-59 minutes, 0-59 seconds, and 0-99 hundredths of a second.

The value 255 stands as a placeholder for any value (e.g. every year or every hour) for the objects of the
type Pattern. For the enumeration types, the enumerated value Unspecified can be used alternatively.

Variables
fbPositiveInteger : FB_BACnet_INT;
fbLargeAnalog : FB_BACnet_LAV;
fbCharacterString : FB_BACnet_String;
fbUnsignedInteger : FB_BACnet_UINT;

Samples

TF8020120 Version: 1.1.2

nValue : INT := 15;
fValue : LREAL := 42.3;
sValue : STRING := 'TwinCAT BACnet';
uiValue : UINT := 12345;

fbDate : FB_BACnet_Date;
fbDatePattern : FB_BACnet_DateP;
fbDateTime : FB_BACnet_DateTime;
fbDatetimePattern : FB_BACnet_DateTimeP;
fbTime : FB_BACnet_Time;
fbTimePattern : FB_BACnet_TimeP;

// specific date
stDate : ST_BA_Date := (nYear := 122, eMonth := E_BA_MONTH.eDecember, nDay := E_BA_DAY.eDay02,
eDayOfWeek := E_BA_WEEKDAY.eFriday);

// every year christmas eve (regardsless of the day of week)
stDatePattern : ST_BA_Date := (nYear := 255, eMonth := E_BA_MONTH.eDecember, nDay :=
E_BA_DAY.eDay24, eDayOfWeek := E_BA_WEEKDAY.Unspecified);

// specific date and specific time
stDateTime : ST_BA_DateTime := (
stDate := (nYear := 122, eMonth := E_BA_MONTH.eDecember, nDay := E_BA_DAY.eDay02, eDayOfWeek :=
E_BA_WEEKDAY.eFriday),
stTime := (nHour := 17, nMinute := 53, nSecond := 42, nHundredths := 19));

// every year where the 1st of May is a Monday each hour / minute at 11 seconds
stDateTimePattern : ST_BA_DateTime:= (
stDate := (nYear := 255, eMonth := E_BA_MONTH.eMay, nDay := E_BA_DAY.eDay01, eDayOfWeek :=
E_BA_WEEKDAY.eMonday),
stTime := (nHour := 255, nMinute := 255, nSecond := 11, nHundredths := 0));

// specific time
stTime : ST_BA_Time := (nHour := 11, nMinute := 42, nSecond := 38, nHundredths := 45);

// every hour at minute 42
stTimePattern : ST_BA_Time := (nHour := 255, nMinute := 42, nSecond := 0, nHundredths := 0);

Code
fbPositiveInteger.nValue := nValue;
fbPositiveInteger();

fbLargeAnalog.fValue := fValue;
fbLargeAnalog();

fbCharacterString.sValue := sValue;
fbCharacterString();

fbUnsignedInteger.nValue := uiValue;
fbUnsignedInteger();

fbDate.stValue := stDate;
fbDate();

fbDatePattern.stValue := stDatePattern;
fbDatePattern();

fbDateTime.stValue := stDateTime;
fbDateTime();

fbDatetimePattern.stValue := stDateTimePattern;
fbDatetimePattern();

fbTime.stValue := stTime;
fbTime();

fbTimePattern.stValue := stTimePattern;
fbTimePattern();

9.15 Structured View objects
Structured View objects allow the operator view to be mapped to the objects present in a BACnet device,
often using a data point addressing description.

Samples

TF8020 121Version: 1.1.2

With the exception of the top level (root level), all elements are connected to the respective parent object
with the help of the iParent element.

The \/ (backslash and slash) characters can be used to create a text composition with the respective parent
object.

For the properties Objectname, Description and EventMessageTextsConfig the separator is used, which is
defined in the BACnet_Param of the library instance.

To use the function STRING_TO_UTF8 the library Tc2_Utilities must be integrated.

Variables
// use \/ to concat to the string provided by parent node
// countries (root level)
fbGermany : FB_BACnet_View := (
 eNodeType := E_BACnet_NodeType.eOrganizational,
 sObjectName := 'Germany',
 sDescription := 'BECKHOFF offices in Germany');

fbSwitzerland : FB_BACnet_View := (
 eNodeType := E_BACnet_NodeType.eOrganizational,
 sObjectName := 'Switzerland',
 sDescription := 'BECKHOFF offices in Switzerland');

fbSpain : FB_BACnet_View := (
 eNodeType := E_BACnet_NodeType.eOrganizational,
 sObjectName := 'Spain',
 sDescription := 'BECKHOFF offices in Spain');

// view structure Verl
fbVerl : FB_BACnet_View := (
 iParent := fbGermany,
 eNodeType := E_BACnet_NodeType.eOrganizational,
 sObjectName := '\/Verl',
 sDescription := '\/Verl offices');

fbEiserstr : FB_BACnet_View := (
 iParent := fbVerl,
 eNodeType := E_BACnet_NodeType.eOrganizational,
 sObjectName := '\/Eiserstr',
 sDescription := '\/Eiserstr offices');

fbFirstFloor : FB_BACnet_View := (
 iParent := fbEiserstr,
 eNodeType := E_BACnet_NodeType.eOrganizational,
 sObjectName := '\/Floor 2',
 sDescription := '\/Hardware Development');

fbCabinet : FB_BACnet_View := (
 iParent := fbFirstFloor,
 eNodeType := E_BACnet_NodeType.eCollection,
 sObjectName := '\/Controllers',
 sDescription := '\/Cabinet 07');

fbAv01 : FB_BACnet_AV := (
 sObjectName := '\/AV01',
 sDescription := '\/Analog Value01',
 iParent := fbCabinet);

fbController : FB_BACnet_View := (
 iParent := fbCabinet,
 eNodeType := E_BACnet_NodeType.eDevice,
 sObjectName := '\/C6015',
 sDescription := '\/Edge Device');

fbAv02 : FB_BACnet_AV := (
 sObjectName := '\/AV02',
 sDescription := '\/Analog Value02',
 iParent := fbController);

// view structure Madrid
fbMadrid : FB_BACnet_View := (
 iParent := fbSpain,
 eNodeType := E_BACnet_NodeType.eOrganizational,
 sObjectName := '\/Madrid',

https://infosys.beckhoff.com/content/1033/tcplclib_tc2_ethercat/index.html?id=6117323245270783445

Samples

TF8020122 Version: 1.1.2

 sDescription := '\/Madrid offices');

fbAv03 : FB_BACnet_AV := (
 sObjectName := '\/AV03',
 sDescription := '\/Test äöüÄÖÜß',
 iParent := fbMadrid);

bChangeAv03 : BOOL;
sTest : STRING(255);

Code
// Germany
fbGermany();
fbVerl();
fbEiserstr();
fbFirstFloor();
fbCabinet();
fbAv01();
fbController();
fbAv02();

// Switzerland
fbSwitzerland();

// Spain
fbSpain();
fbMadrid();

IF bChangeAv03 THEN
 bChangeAv03 := FALSE;
 sTest := 'ßÄÖÜäöü This is a test';
 // requires library Tc2_Utilities
 STRING_TO_UTF8(ADR(fbAv03.sDescription), ADR(sTest), SIZEOF(fbAv03.sDescription));
END_IF

fbAv03();

9.16 Array initialization
If the property values of BACnet FBs are to be initialized as an array with identical values, the syntax
described below can be used. The Server and iParent properties are assigned to all elements of the AI, AO
and AV arrays. This example also shows the cyclic call using a for loop.

Variables
FUNCTION_BLOCK FB_BACnetServer
VAR
 Adapter : FB_BACnet_Adapter;
 Server : FB_BACnet_Server := (Adapter := Adapter);

 View_AI : FB_BACnet_View := (Server := Server, sObjectName := 'AI_Objects', sDescription :=
'Collector AI Objects');

 View_AO: FB_BACnet_View := (Server := Server, sObjectName := 'AO_Objects', sDescription :=
'Collector AO Objects');

 View_AV : FB_BACnet_View := (Server := Server, sObjectName := 'AV_Objects', sDescription :=
'Collector AV Objects');

 AI : ARRAY[1..MAX_OBJECTS] OF FB_BACnet_AI := [MAX_OBJECTS((Server := Server, iParent :=
View_AI))];

 AO : ARRAY[1..MAX_OBJECTS] OF FB_BACnet_AO := [MAX_OBJECTS((Server := Server, iParent :=
View_AO))];

 AV : ARRAY[1..MAX_OBJECTS] OF FB_BACnet_AV := [MAX_OBJECTS((Server := Server, iParent :=
View_AV))];

 iFor : INT;
END_VAR
VAR CONSTANT
 MAX_OBJECTS : INT := 50;
END_VAR

Samples

TF8020 123Version: 1.1.2

Code
Adapter();
Server();
View_AI();
View_AO();
View_AV();

FOR iFor := 1 TO MAX_OBJECTS DO
 AI[iFor]();
 AO[iFor]();
 AV[iFor]();
END_FOR

Support and Service

TF8020124 Version: 1.1.2

10 Support and Service
Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Download finder

Our download finder contains all the files that we offer you for downloading. You will find application reports,
technical documentation, technical drawings, configuration files and much more.

The downloads are available in various formats.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on our internet
page: www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:

• support
• design, programming and commissioning of complex automation systems
• and extensive training program for Beckhoff system components

Hotline: +49 5246 963-157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

• on-site service
• repair service
• spare parts service
• hotline service

Hotline: +49 5246 963-460
e-mail: service@beckhoff.com

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20
33415 Verl
Germany

Phone: +49 5246 963-0
e-mail: info@beckhoff.com
web: www.beckhoff.com

https://www.beckhoff.com/en-gb/support/download-finder/index-2.html
https://www.beckhoff.com/support
https://www.beckhoff.com/
https://www.beckhoff.com/

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/tf8020

mailto:info@beckhoff.de?subject=TF8020
https://www.beckhoff.com
https://www.beckhoff.com/tf8020

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security

	2 Introduction
	2.1 Overview
	2.2 System Requirements

	3 Overview about BACnet properties
	3.1 Input, Output, Value object types
	3.2 Most commonly used BACnet properties
	3.2.1 Object_Identifier
	3.2.2 Object_Name
	3.2.3 Object_Type
	3.2.4 Present_Value
	3.2.5 Description
	3.2.6 Device_Type
	3.2.7 Status_Flags
	3.2.8 Event_State
	3.2.9 Reliability
	3.2.10 Out_of_Service
	3.2.11 Update_Interval
	3.2.12 Units
	3.2.13 Min_Pres_Value
	3.2.14 Max_Pres_Value
	3.2.15 Resolution
	3.2.16 COV_Increment
	3.2.17 Time_Delay
	3.2.18 Notification_Class
	3.2.19 High_Limit
	3.2.20 Low_Limit
	3.2.21 Deadband
	3.2.22 Limit_Enable
	3.2.23 Event_Enable
	3.2.24 Acked_Transitions
	3.2.25 Notify_Type
	3.2.26 Event_Time_Stamps
	3.2.27 Event_Message_Texts
	3.2.28 Profile_Name
	3.2.29 Event_Message_Texts_Config
	3.2.30 Event_Detection_Enable
	3.2.31 Event_Algorithm_Inhibit_Ref
	3.2.32 Event_Algorithm_Inhibit
	3.2.33 TimeDelay_Normal
	3.2.34 Reliability_Evaluation_Inhibit
	3.2.35 Property_List
	3.2.36 Priority_Array
	3.2.37 Relinquish_Default
	3.2.38 Inactive_Text
	3.2.39 Active_Text
	3.2.40 Change_Of_State_Time
	3.2.41 Change_Of_State_Count
	3.2.42 Time_Of_State_Count_Reset
	3.2.43 Elapsed_Active_Time
	3.2.44 Time_Of_Active_Time_Reset
	3.2.45 Alarm_Value
	3.2.46 Minimum_Off_Time
	3.2.47 Minimum_On_Time
	3.2.48 Feedback_Value
	3.2.49 Number_Of_States
	3.2.50 State_Text
	3.2.51 Alarm_Values
	3.2.52 Fault_Values
	3.2.53 Date_List
	3.2.54 Weekly_Schedule
	3.2.55 Exception_Schedule

	3.3 Understanding the PICS document

	4 Quickstart
	4.1 Creating the TwinCAT project
	4.1.1 Selecting the target system
	4.1.2 Create a BACnet Adapter and Server
	4.1.3 IP address settings
	4.1.4 Adjusting the BACnet Server settings
	4.1.5 Persistence

	4.2 Creating the BACnet PLC project
	4.2.1 Creating the PLC project
	4.2.2 Testing the BACnet server
	4.2.3 Testing BACnet using the System Manager
	4.2.4 Testing BACnet using a BACnet Explorer

	5 PLC library: Tc3_BACnetRev14
	5.1 DUTs
	5.1.1 Enumerations
	5.1.2 Interfaces
	5.1.3 Types

	5.2 GVLs
	5.2.1 Version
	5.2.2 BACnet_Globals
	5.2.3 BACnet_Param

	5.3 POUs
	5.3.1 Naming conventions
	5.3.2 FB_BACnet_Adapter
	5.3.2.1 Default Adapter
	5.3.2.2 Using multiple BACnet adapters

	6 Programming a BACnet server
	6.1 BACnet object POUs
	6.1.1 Function blocks without a suffix
	6.1.2 Primitive Value object types

	6.2 Typical BACnet scenarios
	6.2.1 Command prioritization
	6.2.2 Event reporting
	6.2.2.1 Intrinsic Reporting
	6.2.2.2 Algorithmic Change Reporting

	6.2.3 Scheduling
	6.2.4 Trend-Logging
	6.2.5 Event-Logging
	6.2.6 Control Loops
	6.2.7 TimeSynchronization
	6.2.8 Retrieving diagnosis information
	6.2.9 Scanning other BACnet devices
	6.2.10 Creating a structured view (DPAD)
	6.2.11 Linking hardware using attributes

	6.3 Important notes using the library
	6.3.1 Declaring properties at start-up

	6.4 Parameter dialogs
	6.4.1 Always call BACnet function blocks cyclically
	6.4.2 Call BACnet function blocks using the same cycle time

	6.5 Calculating the router memory
	6.5.1 Example calculation of required router memory

	6.6 Specific Functionality
	6.6.1 Generating an EDE file
	6.6.2 Cycle time exceed counter
	6.6.3 Enable / Disable Properties
	6.6.4 Writeprotect Properties
	6.6.4.1 Example Disable/Writeprotect

	6.6.5 Enabling write access from the PLC
	6.6.6 Adding a recipient to a recipient list
	6.6.7 Using UTF-8 characters

	6.7 FB_BACnet_Server
	6.8 FB_BACnet_Device
	6.9 IO Code
	6.10 Recommended workflow / BACnet persistence
	6.11 Persistence
	6.12 Time synchronization
	6.13 Recommended cycle time of the PLC task

	7 Programming a BACnet client
	7.1 Writemode
	7.2 Readmode
	7.2.1 Automatic mode
	7.2.1.1 Case 1: Devices with small APDU size
	7.2.1.2 Case 2: BACnet/IP devices
	7.2.1.3 ReadPropertyMultiple threshold and selected read service

	7.2.2 Applying the Readmode to the entire peer device
	7.2.3 Applying the Readmode to single objects
	7.2.4 COV-Reporting

	7.3 Client POUs
	7.4 FB Code
	7.5 Calling the function FB Code
	7.5.1 Calling FB Code from the Scan dialog
	7.5.2 Calling FB Code from the Cyclic Data dialog

	7.6 The client FB Code dialog
	7.6.1 The Select Objects window
	7.6.2 Supported Services
	7.6.3 Service Settings
	7.6.4 The Settings window
	7.6.5 The FB Code window
	7.6.6 Using the FB created by FB_Code
	7.6.7 Using FB_Code to create device templates

	7.7 Client variables
	7.8 Remote schedule objects
	7.9 Acyclic read
	7.9.1 Example FB_BACnetRM_ReadProperty
	7.9.2 Example FB_BACnetRM_ReadPropertyEx

	7.10 Acyclic write
	7.10.1 Example FB_BACnetRM_WriteProperty
	7.10.2 Example FB_BACnetRM_WritePropertyEx

	7.11 Monitoring a client connection
	7.11.1 Example: Connection is successfully established
	7.11.2 Example: Connection is interrupted

	7.12 Use of ReadPropertyMultiple

	8 Dynamic Object Manager
	8.1 FB_BACnet_DynObjectManager
	8.2 Cyclic calls
	8.3 Predefined object pool
	8.4 Example
	8.5 Complete initialization of the dynamic objects
	8.6 Creating and deleting own BACnet function blocks (FB)

	9 Samples
	9.1 Variable Declaration
	9.2 BACnet properties
	9.3 Link with the 'TcLinkTo' attribute
	9.4 Property selection and write protection
	9.5 Priority controller
	9.6 Reset priorities
	9.7 Control loops and loop objects
	9.8 Set up alarm receiver
	9.9 Receiving alarms and events from other devices
	9.10 Prewarning limits
	9.11 Calendar and schedule functions
	9.12 Logging objects
	9.13 Processing of the log memory in the PLC
	9.14 Primitive Value Objects
	9.15 Structured View objects
	9.16 Array initialization

	10 Support and Service

		documentation@beckhoff.com
	2023-11-07T09:31:32+0100
	Beckhoff Automation, Verl
	Documentation Publishing

