
Manual | EN

TF6770
TwinCAT 3 | IoT WebSockets

2024-4-15 | Version: 1.0.0

Table of contents

TF6770 3Version: 1.0.0

Table of contents
1 Foreword.. 5

1.1 Notes on the documentation ... 5
1.2 For your safety .. 5
1.3 Notes on information security.. 7

2 Overview .. 8

3 Installation ... 9
3.1 System requirements .. 9
3.2 Installation ... 9
3.3 Licensing ... 9

4 Technical introduction.. 12
4.1 WebSocket .. 12
4.2 Compression ... 12
4.3 Security ... 12

4.3.1 Transport layer ... 12
4.3.2 Application layer... 19

5 PLC API .. 20
5.1 Function blocks ... 20

5.1.1 FB_IotWebSocketClient ... 20
5.2 Data types ... 26

5.2.1 ETcIotWebSocketStatus .. 26
5.2.2 ETcIotWebSocketContentType.. 27

6 Samples ... 28

7 Appendix.. 29
7.1 ADS Return Codes.. 29

Table of contents

TF67704 Version: 1.0.0

Foreword

TF6770 5Version: 1.0.0

1 Foreword

1.1 Notes on the documentation
This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.
For installation and commissioning of the components, it is absolutely necessary to observe the
documentation and the following notes and explanations.
The qualified personnel is obliged to always use the currently valid documentation.

The responsible staff must ensure that the application or use of the products described satisfies all
requirements for safety, including all the relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without notice.
No claims to modify products that have already been supplied may be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered and licensed trademarks of
Beckhoff Automation GmbH.
If third parties make use of designations or trademarks used in this publication for their own purposes, this
could infringe upon the rights of the owners of the said designations.

Patents

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
and similar applications and registrations in several other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The distribution and reproduction of this document as well as the use and communication of its contents
without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

1.2 For your safety
Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

Foreword

TF67706 Version: 1.0.0

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

 DANGER
Hazard with high risk of death or serious injury.

 WARNING
Hazard with medium risk of death or serious injury.

 CAUTION
There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

NOTICE
The environment, equipment, or data may be damaged.

Information on handling the product

This information includes, for example:
recommendations for action, assistance or further information on the product.

Foreword

TF6770 7Version: 1.0.0

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Overview

TF67708 Version: 1.0.0

2 Overview
The function blocks of the PLC library Tc3_IotBase can be used to establish a WebSocket connection with a
server as a client and exchange data.

Product components

The TF6770 IoT WebSockets function consists of the following components, which can be used from
TwinCAT version 3.1.4026.x:

• Driver: TcIotDrivers.sys (included in the TwinCAT.Standard.XAR installation in the
TwinCAT.XAR.DriversBase package)

• PLC library: Tc3_IotBase (included in the installation of TF6770.IotWebSockets.XAE)

Installation

TF6770 9Version: 1.0.0

3 Installation

3.1 System requirements
Technical data Description
Operating system Windows 7/10, Windows Embedded Standard 7, TwinCAT/BSD
Target platform PC architecture (x86, x64 or ARM)
TwinCAT version TwinCAT 3.1 Build 4026.3 or higher
Required TwinCAT setup level TwinCAT 3 XAE, XAR
Required TwinCAT license TF6770 TC3 IoT WebSockets

3.2 Installation
TwinCAT Package Manager

If you are using TwinCAT 3.1 Build 4026 (and higher) on the Microsoft Windows operating system, you can
install this function via the TwinCAT Package Manager, see installation documentation.

Normally you install the function via the corresponding workload; however, you can also install the packages
contained in the workload individually. This documentation briefly describes the installation process via the
workload.

Command line program TcPkg

You can use the TcPkg Command Line Interface (CLI) to display the available workloads on the system:
tcpkg list -t workload

You can use the following command to install the workload of the TF6770 IoT Websockets function.
tcpkg install TF6770.IotWebSockets.XAE

TwinCAT Package Manager UI

You can use the User Interface (UI) to display all available workloads and install them if required.
To do this, follow the corresponding instructions in the interface.

3.3 Licensing
The TwinCAT 3 function can be activated as a full version or as a 7-day test version. Both license types can
be activated via the TwinCAT 3 development environment (XAE).

Licensing the full version of a TwinCAT 3 Function

A description of the procedure to license a full version can be found in the Beckhoff Information System in
the documentation "TwinCAT 3 Licensing".

Licensing the 7-day test version of a TwinCAT 3 Function

A 7-day test version cannot be enabled for a TwinCAT 3 license dongle.

1. Start the TwinCAT 3 development environment (XAE).
2. Open an existing TwinCAT 3 project or create a new project.
3. If you want to activate the license for a remote device, set the desired target system. To do this, select

the target system from the Choose Target System drop-down list in the toolbar.
ð The licensing settings always refer to the selected target system. When the project is activated on

the target system, the corresponding TwinCAT 3 licenses are automatically copied to this system.

https://infosys.beckhoff.com/content/1033/tc3_installation/index.html?id=3481283926605773347
https://infosys.beckhoff.com/content/1033/tc3_licensing/117093592658046731.html?id=5546616718344501207
https://infosys.beckhoff.com/content/1033/tc3_licensing/3511048971.html

Installation

TF677010 Version: 1.0.0

4. In the Solution Explorer, double-click License in the SYSTEM subtree.

ð The TwinCAT 3 license manager opens.
5. Open the Manage Licenses tab. In the Add License column, check the check box for the license you

want to add to your project (e.g. "TF4100 TC3 Controller Toolbox").

6. Open the Order Information (Runtime) tab.
ð In the tabular overview of licenses, the previously selected license is displayed with the status

“missing”.

Installation

TF6770 11Version: 1.0.0

7. Click 7-Day Trial License... to activate the 7-day trial license.

ð A dialog box opens, prompting you to enter the security code displayed in the dialog.

8. Enter the code exactly as it is displayed and confirm the entry.
9. Confirm the subsequent dialog, which indicates the successful activation.

ð In the tabular overview of licenses, the license status now indicates the expiry date of the license.
10. Restart the TwinCAT system.
ð The 7-day trial version is enabled.

Technical introduction

TF677012 Version: 1.0.0

4 Technical introduction

4.1 WebSocket
WebSocket is a TCP-based network protocol. In contrast to the stateless HTTP protocol, WebSocket
enables a permanent bidirectional connection between server and client.

A WebSocket connection is created from a WebSocket handshake. In this WebSocket handshake, an HTTP
GET request is first sent to the server, which contains information about an update of this connection. If the
server supports WebSocket connections and accepts the request, an HTTP response with the status code
101 Switching Protocols is sent back to the client. Once the handshake is complete, the system switches
from HTTP to WebSocket.

In contrast to the HTTP protocol, both the client and the server can send data to each other without prior
request once a connection has been established. Both communication participants can also terminate the
connection again.

The WebSocket protocol is used, for example, in chat applications, online games or live sports tickers. In the
example of the live sports ticker, the server can communicate updates to the connected client without the
client always having to send a request as with HTTP.

4.2 Compression
In general, the term "data compression" refers to the ability to reduce the number of bits needed to represent
data. One way of dealing with this is to provide recurring strings with a reference to the first of these strings
through a compression algorithm. Appropriate compression must occur without loss of information.

The RFC 7692 specification defines the "permessage-deflate" extension for the compression of WebSocket
messages. The compression option can be enabled in FB_IotWebSocketClient [} 20] using the variable
bPerMessageDeflate. Compression can then be enabled or disabled for each message using the
SendMessage [} 25]() method.

4.3 Security
When considering protection of data communication, a distinction can be made between two levels:
protection of the transport channel [} 12] and protection at application layer.

4.3.1 Transport layer
The worldwide common standard Transport Layer Security (TLS) is used in the TwinCAT IoT driver for the
secure transmission of data. The following chapter describes the TLS communication flow, taking TLS
version 1.2 as an example.

The TLS standard combines symmetric and asymmetric cryptography to protect transmitted data from
unauthorized access and manipulation by third parties. In addition, TLS supports authentication of
communication devices for mutual identity verification.

Contents of this chapter
The information in this chapter refers to the general TLS communication flow, without specific
reference to the implementation in TwinCAT. They are only intended to provide a basic
understanding in order to better comprehend the reference to the TwinCAT implementation
explained in the following sub-chapters.

Technical introduction

TF6770 13Version: 1.0.0

Supported functions

The TwinCAT IoT driver enables the use of the following TLS functions.

Function Description
Self-signed client certificates Use a self-signed client certificate to authenticate to

the message broker.
CA-signed client certificates Use of a CA-signed client certificate to authenticate

to the message broker. The CA certificate can also
be specified to establish a trust relationship.

Certificate revocation lists Use of certificate revocation lists (CRL).
Pre-Shared Key (PSK) Use of a pre-shared key (PSK) to authenticate to the

message broker.

Cipher suite definition

A cipher suite is by definition a composition of algorithms (key exchange, authentication, encryption, MAC)
for encryption. The client and server agree on these during the TLS connection establishment. For more
information on cipher suites please refer to the relevant technical literature.

TLS communication flow

Communication with TLS encryption starts with a TLS handshake between server and client. During the
handshake asymmetric cryptography is used; after successful completion of the handshake the server and
client communicate based on symmetric cryptography, because this is many times faster than asymmetric
cryptography.

There are three different types of authentication for the TLS protocol:

• The server identifies itself through a certificate (see Server certificate [} 15])

• The client and server identify themselves through a certificate (see Client/Server certificate [} 16])

• Pre-shared keys (see Pre-shared keys [} 16])

Please refer to the relevant technical literature for information about the advantages and disadvantages of
the different authentication types.

Exemplary explanation based on RSA
All messages marked with * are optional, i.e. not mandatory. The following steps refer to the RSA
procedure and are not generally valid for other procedures.

The following table explains the individual steps from the communication flow shown above.

Technical introduction

TF677014 Version: 1.0.0

Step Description
ClientHello The client initiates a connection to the server. The

TLS version used, a random sequence of bytes
(client random) and the cipher suites supported by
the client are transmitted, among other parameters.

ServerHello The server selects one of the cipher suites offered by
the client and specifies it for the communication. If
there is no intersection between the cipher suites
supported by the client and server, the TLS
connection establishment is aborted. In addition, the
server also communicates a random sequence of
bytes (server random).

Certificate The server presents its certificate to the client to
enable the client to verify that the server is the
expected server. If the client does not trust the server
certificate, the TLS connection establishment is
aborted. The server certificate also contains the
server's public key.

ServerKeyExchange For certain key exchange algorithms, the information
from the certificate is not sufficient for the client to
generate the so-called pre-master secret. In this case
the missing information is transferred using Server
Key Exchange.

CertificateRequest The server requests a certificate from the client to
verify the identity of the client.

ServerHelloDone The server notifies the client that sending of the initial
information is complete.

Certificate The client communicates its certificate, including the
public key, to the server. The procedure is the same
as in the opposite direction: If the server does not
trust the certificate sent by the client, the connection
establishment is aborted.

ClientKeyExchange The client generates an encrypted pre-master secret
and uses the server's public key to send the secret to
the server using asymmetric encryption. This pre-
master secret, the "server random" and the "client
random" are then used to calculate the symmetric
key that is used for communication after the
connection has been established.

CertificateVerify The client signs the previous handshake messages
with its private key. Since the server has obtained the
client's public key by sending the certificate, it can
verify that the certificate presented really "belongs" to
the client.

ChangeCipherSpec The client notifies the server that it is switching to
symmetric cryptography. From here on every
message from the client to the server is signed and
encrypted.

Finished The client notifies the server in encrypted form that
the TLS connection establishment on its side is
complete. The message contains a hash and a MAC
relating the previous handshake messages.

Technical introduction

TF6770 15Version: 1.0.0

Step Description
ChangeCipherSpec The server decrypts the pre-master secret that the

client encrypted with its public key. Since only the
server has its private key, only the server can decrypt
this pre-master secret. This ensures that the
symmetric key is only known to the client and the
server. The server then calculates the symmetric key
from the pre-master secret and the two random
sequences and notifies the client that it too is now
communicating using symmetric cryptography. From
here on every message from the server to the client
is signed and encrypted. By generating the
symmetric key, the server can decrypt the client's
Finished message and verify both hash and MAC. If
this verification fails, the connection is aborted.

Finished The server notifies the client that the TLS connection
establishment on its side is also finished. As with the
client, the message contains a hash and a MAC
relating to the previous handshake messages. On the
client side, the same verification is then performed as
on the server. Here too, if the hash and MAC are not
successfully decrypted, the connection is aborted.

ApplicationData Once the TLS connection establishment is complete,
client and server communicate using symmetric
cryptography.

4.3.1.1 Server certificate
This section covers a situation where the client wants to verify the server certificate but the server does not
want to verify the client certificate. In this case the communication flow described in chapter Transport layer
[} 12] is shortened as follows.

Verification of the server certificate

The server certificate is verified on the client side. A check is performed to ascertain whether it is signed by a
particular certificate authority. If this is not the case, the client aborts the connection, since it does not trust
the server.

Application in TwinCAT

In TwinCAT, the file path to the CA certificate (.PEM or .DER file) or the content of the .PEM file is specified
as a string. The certificate presented by the server is then checked in the IoT driver. If the certificate chain is
not signed by the specified CA, the connection to the server is aborted. The following code illustrates the
described connection parameters as an example. The sample code refers to the HTTP client, the MQTT
client and the WebSocket client. The HTTP client is used as an example.

Technical introduction

TF677016 Version: 1.0.0

PROGRAM MAIN
VAR
 fbClient : FB_IotHttpClient;
END_VAR

fbClient.stTLS.sCA:= 'C:\TwinCAT\3.1\Config\Certificates\someCA.pem';

If the user does not have the CA certificate, a connection can still be established. A boolean variable is
available for this purpose, which prevents TwinCAT from verifying the server certificate. Although the
connection is encrypted with the public key of the unverified server certificate, it is more vulnerable to man-
in-the-middle attacks.
fbClient.stTLS.sCA.bNoServerCertCheck:= TRUE;

4.3.1.2 Client/Server certificate
This section considers the case where both the client certificate and the server certificate are verified. The
slightly modified communication flow (compared to the Server certificate [} 15] chapter) is visualized in the
following diagram. The individual steps of the TLS connection establishment are described in chapter
Transport layer [} 12].

Application in TwinCAT

If a client certificate is used, in TwinCAT the file path (.PEM or .DER file) or the content of the .PEM file is
passed as a string, just as for the CA certificate. TwinCAT as the client then presents this certificate to the
server. For Certificate Verify the client's private key must also be referenced. Optionally, in the case of
password protection for the private key, this password can also be transferred. The sample code refers to
the HTTP client, the MQTT client and the WebSocket client. The HTTP client is used as an example.
PROGRAM MAIN
VAR
 fbClient : FB_IotHttpClient;
END_VAR

fbClient.stTLS.sCA:= 'C:\TwinCAT\3.1\Config\Certificates\someCA.pem';
fbClient.stTLS.sCert:= 'C:\TwinCAT\3.1\Config\Certificates\someCRT.pem';
fbClient.stTLS.sKeyFile:= 'C:\TwinCAT\3.1\Config\Certificates\someprivatekey.pem.key';
fbClient.stTLS.sKeyPwd:= 'yourkeyfilepasswordhere';

If a client certificate is set, a CA certificate must also be set to validate the server certificate. This is due to
the behavior of the security framework used in the IoT driver.

If the validation of the server certificate is to be shutdown in this case, an additional flag can be set to skip
the validation. However, it is not possible to omit the CA certificate.

4.3.1.3 Pre-shared keys
By default, asymmetric key pairs are used for the TLS connection establishment. Asymmetric cryptography
requires more computing power, so using Pre-Shared Keys (PSK) may be an option in situations where CPU
power is limited. Pre-shared keys are previously shared symmetric keys.

Technical introduction

TF6770 17Version: 1.0.0

Compared to the communication flow with asymmetric encryption, the certificate is omitted when using PSK.
Client and server must agree on a PSK via the so-called identity. By definition the PSK is known in advance
to both parties.

Server Key Exchange: In this optional message, the server can give the client a hint about the identity of
the PSK used.

Client Key Exchange: The client specifies the identity of the PSK to be used for encryption.

Application in TwinCAT

In TwinCAT the identity of the PSK is specified as a string; the PSK itself is stored as a byte array in the
controller. The length of the PSK is also specified. The sample code refers to the HTTP client, the MQTT
client and the WebSocket client. The HTTP client is used as an example.
PROGRAM MAIN
VAR
 fbClient : FB_IotHttpClient;
 cMyPskKey : ARRAY[1..64] OF BYTE := [16#1B, 16#D0, 16#6F, 16#D2, 16#56, 16#16, 16#7D, 16#C1, 16#
E8, 16#C7, 16#48, 16#2A, 16#8E, 16#F5, 16#FF];
END_VAR

fbClient.stTLS.sPskIdentity:= identityofPSK';
fbClient.stTLS.aPskKey:= cMyPskKey;
fbClient.stTLS.nPskKeyLen:= 15;

4.3.1.4 Supported cipher suites
The TwinCAT IoT driver supports secure data transmission using the TLS standard. Below you will find an
overview of all cipher suites supported by the IoT driver, depending on the TwinCAT version.

Technical introduction

TF677018 Version: 1.0.0

TwinCAT 3.1 Build 4024.x

Cipher suite
AES128-GCM-SHA256
AES128-SHA
AES128-SHA256
AES256-SHA
AES256-SHA256
DES-CBC3-SHA
DHE-RSA-AES128-GCM-SHA256
DHE-RSA-AES128-SHA
DHE-RSA-AES128-SHA256
DHE-RSA-AES256-SHA
DHE-RSA-AES256-SHA256
ECDHE-ECDSA-AES128-GCM-SHA256
ECDHE-ECDSA-AES128-SHA
ECDHE-ECDSA-AES128-SHA256
ECDHE-ECDSA-AES256-SHA
ECDHE-ECDSA-DES-CBC3-SHA
ECDHE-RSA-AES128-GCM-SHA256
ECDHE-RSA-AES128-SHA
ECDHE-RSA-AES128-SHA256
ECDHE-RSA-AES256-SHA
ECDHE-RSA-DES-CBC3-SHA
EDH-RSA-DES-CBC3-SHA
PSK-3DES-EDE-CBC-SHA
PSK-AES128-CBC-SHA
PSK-AES128-CBC-SHA256
PSK-AES128-GCM-SHA256
PSK-AES256-CBC-SHA

Technical introduction

TF6770 19Version: 1.0.0

TwinCAT 3.1 Build 4026.x

Cipher suite
AES128-GCM-SHA256
AES128-SHA
AES128-SHA256
AES256-GCM-SHA384
AES256-SHA
AES256-SHA256
DHE-RSA-AES128-GCM-SHA256
DHE-RSA-AES128-SHA
DHE-RSA-AES128-SHA256
DHE-RSA-AES256-GCM-SHA384
DHE-RSA-AES256-SHA
DHE-RSA-AES256-SHA256
ECDHE-ECDSA-AES128-GCM-SHA256
ECDHE-ECDSA-AES128-SHA
ECDHE-ECDSA-AES128-SHA256
ECDHE-ECDSA-AES256-GCM-SHA384
ECDHE-ECDSA-AES256-SHA
ECDHE-ECDSA-AES256-SHA384
ECDHE-RSA-AES128-GCM-SHA256
ECDHE-RSA-AES128-SHA
ECDHE-RSA-AES128-SHA256
ECDHE-RSA-AES256-GCM-SHA384
ECDHE-RSA-AES256-SHA
ECDHE-RSA-AES256-SHA384
PSK-AES128-CBC-SHA
PSK-AES128-CBC-SHA256
PSK-AES128-GCM-SHA256
PSK-AES256-CBC-SHA
PSK-AES256-CBC-SHA384
PSK-AES256-GCM-SHA384

4.3.2 Application layer
Various safety mechanisms are also available at the application layer. These safety mechanisms are
described below.

4.3.2.1 JSON Web Token (JWT)
JSON Web Token (JWT) is an open standard (based on RFC 7519) that defines a compact and self-
describing format for securely transmitting information between communication devices in the form of a
JSON object. The authenticity of the transmitted information can be verified and ensured, since a JWT is
provided with a digital signature. The signature can involve a shared secret (via an HMAC algorithm) or a
public/private key (via RSA).

The most common application example for JWT is the authorization of a device or user for a service. Once a
user has logged into the service, all further requests to the service include the JWT. Based on the JWT, the
service can then decide which additional services or resources the user may access. This means, for
example, that single sign-on solutions can be implemented in cloud services.

The PLC library Tc3_JsonXml provides an option to create and sign a JWT via the method FB_JwtEncode.

PLC API

TF677020 Version: 1.0.0

5 PLC API

5.1 Function blocks

5.1.1 FB_IotWebSocketClient

This function block enables communication with a WebSocket server. A client can manage a connection to
exactly one WebSocket server. The Execute [} 23]() method must be called cyclically as background
communication to the server.

All input parameters are only processed when a connection is established. All parameters of type STRING
expect the UTF-8 format. This corresponds to the STRING format for the 7-bit ASCII characters.

Syntax
FUNCTION BLOCK FB_IotWebSocketClient
VAR_INPUT
 sHostName : STRING;
 nHostPort : UINT;
 sUri : STRING;
 sProtocol : STRING;
 sOrigin : STRING;
 stTLS : ST_IotSocketTls;
 bPerMessageDeflate : BOOL;
 bKeepAlive : BOOL;
 nKeepAliveInterval : UINT;
 nKeepAliveCloseTimeout : UINT;
 nConnectResponseTimeout: UINT;
 nMaxRecvFrameSize : UDINT;
 nMaxRecvMsgSize : UDINT;
 nMaxSendFrameSize : UDINT;
END_VAR
VAR_OUTPUT
 bError : BOOL;
 hrErrorCode : HRESULT;
 eConnectionState : ETcIotWebSocketStatus;
 bConnected : BOOL;
 nCloseReason : UINT;
END_VAR

PLC API

TF6770 21Version: 1.0.0

 Inputs

Name Type Description
sHostName STRING sHostName can be specified as name or as IP

address. If no information is provided, the local
host is used.

nHostPort UINT The host port is specified here. The default is 80.
sUri STRING Optional parameter to specify a URI for the

WebSocket opening handshake.
sProtocol STRING Optional parameter to specify a sub-protocol for

the WebSocket opening handshake.
sOrigin STRING Optional parameter to specify an origin for the

WebSocket opening handshake.
stTLS ST_IotSocketTls If the server offers a TLS-secured connection, the

required configuration can be implemented here.
bPerMessageDeflate BOOL Enables the permessage deflate compression

extension.
bKeepAlive BOOL Enables keep-alive ping messages sent by the

client. The default setting is TRUE.
nKeepAliveInterval UINT Specifies how many seconds after no messages

have been received from the server the client
should send a ping message.

nKeepAliveCloseTimeout UINT Specifies how many seconds the client should
wait for the ping response.

nConnectResponseTimeout UINT Specifies how many seconds the client should
wait for the server's handshake response.

nMaxRecvFrameSize UDINT Maximum receivable frame size. Standard size is
16#10000.

nMaxRecvMsgSize UDINT Maximum receivable message size. Standard
size is 16#100000.

nMaxSendFrameSize UDINT Maximum frame size that can be sent. Standard
size is 16#4000.

 Outputs

Name Type Description
bError BOOL Becomes TRUE when an error situation occurs.
hrErrorCode HRESULT Returns an ADS return code. An explanation of the

possible ADS return codes can be found in the
Appendix.

eConnectionState ETcIotWebSocketStatus Specifies the state of the connection from the client
to the server as the enumeration
ETcIotWebSocketState.

bConnected BOOL TRUE if the connection to the host is established
and the WebSocket handshake was successful.

nCloseReason UINT WebSocket status code as defined in RFC 6455.

PLC API

TF677022 Version: 1.0.0

 Methods

Name Description
CheckProtocol [} 22] This method can optionally be overridden to check the protocol returned by

the server when the connection is established.
Connect [} 22] Method for establishing the connection to the WebSocket server.

Disconnect [} 23] Method for disconnecting the connection to the WebSocket server.

Execute [} 23] Must be called cyclically as background communication to the WebSocket
server. If messages have been received, the Callback method is triggered
once for each message.

OnWebSocketClose [} 23] Callback method that is triggered when the WebSocket connection is closed.

OnWebSocketMessage
[} 24]

Callback method that is triggered when a message is received.

SendMessage [} 25] Method for sending a message.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT v3.1.4026.x IPC or CX (x86, x64, ARM) Tc3_IotBase (3.5.1 or higher)

5.1.1.1 CheckProtocol
CheckProtocol

sProtocol Reference To STRING(80) BOOL CheckProtocol

The method must be overridden if the protocol returned by the WebSocket server is to be checked. If the
check fails, the value FALSE must be returned.

Syntax
METHOD CheckProtocol: BOOL
VAR_IN_OUT CONSTANT
 sProtocol : STRING;
END_VAR

 Return value

Name Type Description
CheckProtocol BOOL TRUE if the check of the protocol returned by the WebSocket server was

successful. FALSE if the check was not successful.

/ Inputs/Outputs

Name Type Description
sProtocol STRING The protocol to be checked.

5.1.1.2 Connect
Connect

bReconfig BOOL BOOL Connect

This method is called when a connection is to be established from the client to the server.

PLC API

TF6770 23Version: 1.0.0

Syntax
METHOD Connect: BOOL
VAR_IN
 bReconfig : BOOL;
END_VAR

 Return value

Name Type Description
Connect BOOL If the connection is successfully established, the method returns TRUE.

 Inputs

Name Type Description
bReconfig BOOL This parameter must be set to TRUE if the connection parameters were

changed after the initial connection was established and should be used
the next time the connection is established.

5.1.1.3 Disconnect
Disconnect

BOOL Disconnect

This method is called when a connection from the client to the server is to be closed.

Syntax
METHOD Disconnect: BOOL

 Return value

Name Type Description
Disconnect BOOL If the connection is successfully closed, the method returns TRUE.

5.1.1.4 Execute
Execute

This method must be called cyclically as background communication to the WebSocket server. If messages
have been received, the Callback method OnWebSocketMessage [} 24]() is triggered once for each
message.

5.1.1.5 OnWebSocketClose
OnWebSocketClose

statusCode UINT
content PVOID
contentLength UDINT

HRESULT OnWebSocketClose

This method must not be called by the user. Instead, you can derive from the function block
FB_IotWebSocketsClient and override this method. When the Execute [} 23]() method is called, the
responsible TwinCAT driver has the option of calling the OnWebSocketClose() method in case of an
incoming Close Frame.

PLC API

TF677024 Version: 1.0.0

Syntax
METHOD OnWebSocketClose: HRESULT
VAR_IN
 statusCode : UINT;
 content : PVOID;
 contentLength : UDINT;
END_VAR

 Return value

Name Type Description
OnWebSocketClose HRESULT This return value can be freely selected.

 Inputs

Name Type Description
statusCode UINT WebSocket status code as defined

in RFC 6455.
content PVOID Pointer to the content.
contentLength UDINT Size of the content in bytes.

5.1.1.6 OnWebSocketMessage
OnWebSocketMessage

content PVOID
contentLength UDINT
contentType ETcIotWebSocketContentType

HRESULT OnWebSocketMessage

This method must not be called by the user. Instead, you can derive from the function block
FB_IotWebSocketsClient and override this method. While the Execute() method is called, the responsible
TwinCAT driver can call the OnWebSocketMessage() method in the event of new incoming messages. In the
event of several incoming messages the callback method is called several times, once per message. This
must be taken into account when the method is implemented.
METHOD OnWebSocketMessage: HRESULT
VAR_IN
 content : PVOID;
 contentLength : UDINT;
 contentType : ETcIotWebSocketContentType;
END_VAR

 Return value

Name Type Description
OnWebSocketMessage HRESULT The return value of the method should be S_OK, if the

message was accepted. If the message is to be issued
again in the context of the next Execute() call, the return
value can be assigned S_FALSE.

 Inputs

Name Type Description
content PVOID Pointer to the content.
contentLength UDINT Size of the content in bytes.
contentType ETcIotWebSocketContentType Specifies whether the content is

binary or text.

PLC API

TF6770 25Version: 1.0.0

5.1.1.7 SendMessage
SendMessage

pContent PVOID
nContentSize UDINT
bTextContent BOOL
bCompress BOOL

BOOL SendMessage

This method is called when a message is to be sent to the WebSocket server.

Syntax
METHOD SendMessage: BOOL
VAR_IN
 pContent : PVOID;
 nContentSize : UDINT;
 bTextContent : BOOL;
 bCompress : BOOL;
END_VAR

 Return value

Name Type Description
SendMessage BOOL If the message is sent successfully, the method returns the value

TRUE.

 Inputs

Name Type Description
pContent PVOID Pointer to the content.
nContentSize UDINT Size of the content in bytes.
bTextContent BOOL TRUE: Content is text, FALSE: Content is binary.
bCompress BOOL If set to TRUE, compression is used.

5.1.1.8 ST_IotSocketTls
The following type contains the TLS security settings for the HTTP client and the WebSocket client.
Either CA (Certificate Authority) or PSK (PreSharedKey) can be used.

Syntax

Definition:
TYPE ST_IotSocketTls :
STRUCT
 sCA : STRING(255*);
 sCert : STRING(255*);
 sKeyFile : STRING(255*);
 sKeyPwd : STRING(255*);
 sCrl : STRING(255*);
 sCiphers : STRING(255*);
 sVersion : STRING(80) := 'tlsv1.2';
 bNoServerCertCheck : BOOL := FALSE;

 sPskIdentity : STRING(255*);
 aPskKey : ARRAY[1..64*] OF BYTE;
 nPskKeyLen : USINT;
END_STRUCT
END_TYPE

PLC API

TF677026 Version: 1.0.0

Parameter

Name Type Description
sCA STRING(255) Certificate of the certificate authority (CA)
sCert STRING(255) Client certificate for server authentication
sKeyFile STRING(255) Private key of the client
sKeyPwd STRING(255) Password of the private key, if applicable
sCrl STRING(255) Path to the certificate revocation list, which may

be present in PEM or DER format
sCiphers STRING(255) Cipher suites to be used, specified in OpenSSL

string format
sVersion STRING(80) TLS version to be used
bNoServerCertCheck BOOL Disables verification of the server certificate

validity. If communication is to take place
without TLS encryption (HTTP/WebSockets),
this value must remain FALSE.

sPskIdentity STRING(255) PreSharedKey identity for TLS PSK connection
aPskKey ARRAY[1..64] OF BYTE PreSharedKey for TLS PSK connection
nPskKeyLen USINT Length of the PreSharedKey in bytes

All strings and arrays marked with an * are initialized with the value in brackets. These values can be
accessed and changed via the parameter list. This is not possible at runtime, but only before the code is
compiled.

5.2 Data types

5.2.1 ETcIotWebSocketStatus
TYPE ETcIotWebSocketStatus :
(
 WS_STATUS_BUSY:=-1,
 WS_STATUS_SUCCESS:=0,
 WS_STATUS_SOCK_NOMEM:=1,
 WS_STATUS_SOCK_ERR_CREATE_PROTOCOL:=2,
 WS_STATUS_SOCK_CONN_INVAL:=3,
 WS_STATUS_SOCK_NO_CONN:=4,
 WS_STATUS_SOCK_CONN_REFUSED:=5,
 WS_STATUS_SOCK_NOT_FOUND:=6,
 WS_STATUS_SOCK_CONN_LOST:=7,
 WS_STATUS_SOCK_ERR_TLS:=8,
 WS_STATUS_SOCK_NOT_SUPPORTED:=10,
 WS_STATUS_SOCK_ERR_AUTH:=11,
 WS_STATUS_SOCK_ERRACL_DENIED:=12,
 WS_STATUS_SOCK_ERR_UNKNOWN:=13,
 WS_STATUS_SOCK_ERRNO:=14,
 WS_STATUS_SOCK_ERR_EAI:=15,
 WS_STATUS_SOCK_ERR_PROXY:=16,
 WS_STATUS_TLS_CA_NOTFOUND:=17,
 WS_STATUS_TLS_CERT_NOTFOUND:=18,
 WS_STATUS_TLS_KEY_NOTFOUND:=19,
 WS_STATUS_TLS_CA_INVALID:=20,
 WS_STATUS_TLS_CERT_INVALID:=21,
 WS_STATUS_TLS_KEY_INVALID:=22,
 WS_STATUS_TLS_VERIFY_FAIL:=23,
 WS_STATUS_TLS_SETUP:=24,
 WS_STATUS_TLS_HANDSHAKE_FAIL:=25,
 WS_STATUS_TLS_CIPHER_INVALID:=26,
 WS_STATUS_TLS_VERSION_INVALID:=27,
 WS_STATUS_TLS_PSK_INVALID:=28,
 WS_STATUS_TLS_CRL_NOTFOUND:=29,
 WS_STATUS_TLS_CRL_INVALID:=30,
 WS_STATUS_FINALIZE_DISCONNECT:=31,
 WS_STATUS_SOCK_ERR_BIND:=32,
 WS_STATUS_SOCK_BIND_ADDR_INUSE:=33,
 WS_STATUS_SOCK_BIND_ADDR_INVAL:=34,
 WS_STATUS_SOCK_ERR_CREATE:=35,
 WS_STATUS_SOCK_ERR_CREATE_TYPE:=36,

PLC API

TF6770 27Version: 1.0.0

 WS_STATUS_SOCK_CONN_FAILED:=37,
 WS_STATUS_SOCK_CONN_TIMEDOUT:=38,
 WS_STATUS_SOCK_CONN_HOSTUNREACH:=39,
 WS_STATUS_TLS_CERT_EXPIRED:=40,
 WS_STATUS_TLS_CN_MISMATCH:=41,
 WS_STATUS_INTERNAL_ERROR:=1000,
 WS_STATUS_CONNECT_REQ_INTERNAL_ERROR:=1001,
 WS_STATUS_CONNECT_REQ_SEND_ERROR:=1002,
 WS_STATUS_CONNECT_RES_PARSE_ERROR:=1003,
 WS_STATUS_CONNECT_RES_INVALID:=1004,
 WS_STATUS_CONNECT_RES_INVALID_STATUS:=1005,
 WS_STATUS_CONNECT_RES_ACCEPT_INVALID:=1006,
 WS_STATUS_CONNECT_RES_ACCEPT_INVALID_HASH:=1007,
 WS_STATUS_CONNECT_RES_INVALID_EXTENSION:=1008,
 WS_STATUS_CONNECT_RES_REJECT:=1009,
 WS_STATUS_CONNECT_RES_TIMEDOUT:=1010,
 WS_STATUS_KEEP_ALIVE_TIMEDOUT:=1011,
 WS_STATUS_NOMEMORY:=1012,
 WS_STATUS_INVALID_MSG_SIZE:=1013,
 WS_STATUS_PROTOCOL_ERROR:=1014,
 WS_STATUS_RCV_QUEUE_FULL:=1015,
 WS_STATUS_DECOMPRESS_ERROR:=1016
) DINT;
END_TYPE

5.2.2 ETcIotWebSocketContentType
TYPE ETcIotWebSocketContentType :
(
 WS_CONTENT_CONTINUATION:=0,
 WS_CONTENT_TEXT:=1,
 WS_CONTENT_BINARY:=2
) DINT;
END_TYPE

Samples

TF677028 Version: 1.0.0

6 Samples
Sample code and configurations for this product can be obtained from the corresponding repository on
GitHub: https://github.com/Beckhoff/TF6770_Samples. There you have the option to clone the repository or
download a ZIP file containing the sample.

https://github.com/Beckhoff/TF6770_Samples

Appendix

TF6770 29Version: 1.0.0

7 Appendix

7.1 ADS Return Codes
Grouping of error codes:
Global error codes: ADS Return Codes [} 29]... (0x9811_0000 ...)
Router error codes: ADS Return Codes [} 29]... (0x9811_0500 ...)
General ADS errors: ADS Return Codes [} 30]... (0x9811_0700 ...)
RTime error codes: ADS Return Codes [} 32]... (0x9811_1000 ...)

Global error codes

Hex Dec HRESULT Name Description
0x0 0 0x98110000 ERR_NOERROR No error.
0x1 1 0x98110001 ERR_INTERNAL Internal error.
0x2 2 0x98110002 ERR_NORTIME No real time.
0x3 3 0x98110003 ERR_ALLOCLOCKEDMEM Allocation locked – memory error.
0x4 4 0x98110004 ERR_INSERTMAILBOX Mailbox full – the ADS message could not be sent.

Reducing the number of ADS messages per cycle will
help.

0x5 5 0x98110005 ERR_WRONGRECEIVEHMSG Wrong HMSG.
0x6 6 0x98110006 ERR_TARGETPORTNOTFOUND Target port not found – ADS server is not started or is

not reachable.
0x7 7 0x98110007 ERR_TARGETMACHINENOTFOUND Target computer not found – AMS route was not found.
0x8 8 0x98110008 ERR_UNKNOWNCMDID Unknown command ID.
0x9 9 0x98110009 ERR_BADTASKID Invalid task ID.
0xA 10 0x9811000A ERR_NOIO No IO.
0xB 11 0x9811000B ERR_UNKNOWNAMSCMD Unknown AMS command.
0xC 12 0x9811000C ERR_WIN32ERROR Win32 error.
0xD 13 0x9811000D ERR_PORTNOTCONNECTED Port not connected.
0xE 14 0x9811000E ERR_INVALIDAMSLENGTH Invalid AMS length.
0xF 15 0x9811000F ERR_INVALIDAMSNETID Invalid AMS Net ID.
0x10 16 0x98110010 ERR_LOWINSTLEVEL Installation level is too low –TwinCAT 2 license error.
0x11 17 0x98110011 ERR_NODEBUGINTAVAILABLE No debugging available.
0x12 18 0x98110012 ERR_PORTDISABLED Port disabled – TwinCAT system service not started.
0x13 19 0x98110013 ERR_PORTALREADYCONNECTED Port already connected.
0x14 20 0x98110014 ERR_AMSSYNC_W32ERROR AMS Sync Win32 error.
0x15 21 0x98110015 ERR_AMSSYNC_TIMEOUT AMS Sync Timeout.
0x16 22 0x98110016 ERR_AMSSYNC_AMSERROR AMS Sync error.
0x17 23 0x98110017 ERR_AMSSYNC_NOINDEXINMAP No index map for AMS Sync available.
0x18 24 0x98110018 ERR_INVALIDAMSPORT Invalid AMS port.
0x19 25 0x98110019 ERR_NOMEMORY No memory.
0x1A 26 0x9811001A ERR_TCPSEND TCP send error.
0x1B 27 0x9811001B ERR_HOSTUNREACHABLE Host unreachable.
0x1C 28 0x9811001C ERR_INVALIDAMSFRAGMENT Invalid AMS fragment.
0x1D 29 0x9811001D ERR_TLSSEND TLS send error – secure ADS connection failed.
0x1E 30 0x9811001E ERR_ACCESSDENIED Access denied – secure ADS access denied.

Router error codes

Appendix

TF677030 Version: 1.0.0

Hex Dec HRESULT Name Description
0x500 1280 0x98110500 ROUTERERR_NOLOCKEDMEMORY Locked memory cannot be allocated.

0x501 1281 0x98110501 ROUTERERR_RESIZEMEMORY The router memory size could not be changed.

0x502 1282 0x98110502 ROUTERERR_MAILBOXFULL The mailbox has reached the maximum number of
possible messages.

0x503 1283 0x98110503 ROUTERERR_DEBUGBOXFULL The Debug mailbox has reached the maximum
number of possible messages.

0x504 1284 0x98110504 ROUTERERR_UNKNOWNPORTTYPE The port type is unknown.
0x505 1285 0x98110505 ROUTERERR_NOTINITIALIZED The router is not initialized.
0x506 1286 0x98110506 ROUTERERR_PORTALREADYINUSE The port number is already assigned.
0x507 1287 0x98110507 ROUTERERR_NOTREGISTERED The port is not registered.
0x508 1288 0x98110508 ROUTERERR_NOMOREQUEUES The maximum number of ports has been reached.
0x509 1289 0x98110509 ROUTERERR_INVALIDPORT The port is invalid.
0x50A 1290 0x9811050A ROUTERERR_NOTACTIVATED The router is not active.
0x50B 1291 0x9811050B ROUTERERR_FRAGMENTBOXFULL The mailbox has reached the maximum number for

fragmented messages.
0x50C 1292 0x9811050C ROUTERERR_FRAGMENTTIMEOUT A fragment timeout has occurred.
0x50D 1293 0x9811050D ROUTERERR_TOBEREMOVED The port is removed.

General ADS error codes

Appendix

TF6770 31Version: 1.0.0

Hex Dec HRESULT Name Description
0x700 1792 0x98110700 ADSERR_DEVICE_ERROR General device error.
0x701 1793 0x98110701 ADSERR_DEVICE_SRVNOTSUPP Service is not supported by the server.
0x702 1794 0x98110702 ADSERR_DEVICE_INVALIDGRP Invalid index group.
0x703 1795 0x98110703 ADSERR_DEVICE_INVALIDOFFSET Invalid index offset.
0x704 1796 0x98110704 ADSERR_DEVICE_INVALIDACCESS Reading or writing not permitted.
0x705 1797 0x98110705 ADSERR_DEVICE_INVALIDSIZE Parameter size not correct.
0x706 1798 0x98110706 ADSERR_DEVICE_INVALIDDATA Invalid data values.
0x707 1799 0x98110707 ADSERR_DEVICE_NOTREADY Device is not ready to operate.
0x708 1800 0x98110708 ADSERR_DEVICE_BUSY Device is busy.
0x709 1801 0x98110709 ADSERR_DEVICE_INVALIDCONTEXT Invalid operating system context. This can result

from use of ADS blocks in different tasks. It may be
possible to resolve this through multitasking
synchronization in the PLC.

0x70A 1802 0x9811070A ADSERR_DEVICE_NOMEMORY Insufficient memory.
0x70B 1803 0x9811070B ADSERR_DEVICE_INVALIDPARM Invalid parameter values.
0x70C 1804 0x9811070C ADSERR_DEVICE_NOTFOUND Not found (files, ...).
0x70D 1805 0x9811070D ADSERR_DEVICE_SYNTAX Syntax error in file or command.
0x70E 1806 0x9811070E ADSERR_DEVICE_INCOMPATIBLE Objects do not match.
0x70F 1807 0x9811070F ADSERR_DEVICE_EXISTS Object already exists.
0x710 1808 0x98110710 ADSERR_DEVICE_SYMBOLNOTFOUND Symbol not found.
0x711 1809 0x98110711 ADSERR_DEVICE_SYMBOLVERSIONINVALID Invalid symbol version. This can occur due to an

online change. Create a new handle.
0x712 1810 0x98110712 ADSERR_DEVICE_INVALIDSTATE Device (server) is in invalid state.
0x713 1811 0x98110713 ADSERR_DEVICE_TRANSMODENOTSUPP AdsTransMode not supported.
0x714 1812 0x98110714 ADSERR_DEVICE_NOTIFYHNDINVALID Notification handle is invalid.
0x715 1813 0x98110715 ADSERR_DEVICE_CLIENTUNKNOWN Notification client not registered.
0x716 1814 0x98110716 ADSERR_DEVICE_NOMOREHDLS No further handle available.
0x717 1815 0x98110717 ADSERR_DEVICE_INVALIDWATCHSIZE Notification size too large.
0x718 1816 0x98110718 ADSERR_DEVICE_NOTINIT Device not initialized.
0x719 1817 0x98110719 ADSERR_DEVICE_TIMEOUT Device has a timeout.
0x71A 1818 0x9811071A ADSERR_DEVICE_NOINTERFACE Interface query failed.
0x71B 1819 0x9811071B ADSERR_DEVICE_INVALIDINTERFACE Wrong interface requested.
0x71C 1820 0x9811071C ADSERR_DEVICE_INVALIDCLSID Class ID is invalid.
0x71D 1821 0x9811071D ADSERR_DEVICE_INVALIDOBJID Object ID is invalid.
0x71E 1822 0x9811071E ADSERR_DEVICE_PENDING Request pending.
0x71F 1823 0x9811071F ADSERR_DEVICE_ABORTED Request is aborted.
0x720 1824 0x98110720 ADSERR_DEVICE_WARNING Signal warning.
0x721 1825 0x98110721 ADSERR_DEVICE_INVALIDARRAYIDX Invalid array index.
0x722 1826 0x98110722 ADSERR_DEVICE_SYMBOLNOTACTIVE Symbol not active.
0x723 1827 0x98110723 ADSERR_DEVICE_ACCESSDENIED Access denied.
0x724 1828 0x98110724 ADSERR_DEVICE_LICENSENOTFOUND Missing license.
0x725 1829 0x98110725 ADSERR_DEVICE_LICENSEEXPIRED License expired.
0x726 1830 0x98110726 ADSERR_DEVICE_LICENSEEXCEEDED License exceeded.
0x727 1831 0x98110727 ADSERR_DEVICE_LICENSEINVALID Invalid license.
0x728 1832 0x98110728 ADSERR_DEVICE_LICENSESYSTEMID License problem: System ID is invalid.
0x729 1833 0x98110729 ADSERR_DEVICE_LICENSENOTIMELIMIT License not limited in time.
0x72A 1834 0x9811072A ADSERR_DEVICE_LICENSEFUTUREISSUE Licensing problem: time in the future.
0x72B 1835 0x9811072B ADSERR_DEVICE_LICENSETIMETOLONG License period too long.
0x72C 1836 0x9811072C ADSERR_DEVICE_EXCEPTION Exception at system startup.
0x72D 1837 0x9811072D ADSERR_DEVICE_LICENSEDUPLICATED License file read twice.
0x72E 1838 0x9811072E ADSERR_DEVICE_SIGNATUREINVALID Invalid signature.
0x72F 1839 0x9811072F ADSERR_DEVICE_CERTIFICATEINVALID Invalid certificate.
0x730 1840 0x98110730 ADSERR_DEVICE_LICENSEOEMNOTFOUND Public key not known from OEM.
0x731 1841 0x98110731 ADSERR_DEVICE_LICENSERESTRICTED License not valid for this system ID.
0x732 1842 0x98110732 ADSERR_DEVICE_LICENSEDEMODENIED Demo license prohibited.
0x733 1843 0x98110733 ADSERR_DEVICE_INVALIDFNCID Invalid function ID.
0x734 1844 0x98110734 ADSERR_DEVICE_OUTOFRANGE Outside the valid range.
0x735 1845 0x98110735 ADSERR_DEVICE_INVALIDALIGNMENT Invalid alignment.
0x736 1846 0x98110736 ADSERR_DEVICE_LICENSEPLATFORM Invalid platform level.

Appendix

TF677032 Version: 1.0.0

Hex Dec HRESULT Name Description
0x737 1847 0x98110737 ADSERR_DEVICE_FORWARD_PL Context – forward to passive level.
0x738 1848 0x98110738 ADSERR_DEVICE_FORWARD_DL Context – forward to dispatch level.
0x739 1849 0x98110739 ADSERR_DEVICE_FORWARD_RT Context – forward to real time.
0x740 1856 0x98110740 ADSERR_CLIENT_ERROR Client error.
0x741 1857 0x98110741 ADSERR_CLIENT_INVALIDPARM Service contains an invalid parameter.
0x742 1858 0x98110742 ADSERR_CLIENT_LISTEMPTY Polling list is empty.
0x743 1859 0x98110743 ADSERR_CLIENT_VARUSED Var connection already in use.
0x744 1860 0x98110744 ADSERR_CLIENT_DUPLINVOKEID The called ID is already in use.
0x745 1861 0x98110745 ADSERR_CLIENT_SYNCTIMEOUT Timeout has occurred – the remote terminal is not

responding in the specified ADS timeout. The route
setting of the remote terminal may be configured
incorrectly.

0x746 1862 0x98110746 ADSERR_CLIENT_W32ERROR Error in Win32 subsystem.
0x747 1863 0x98110747 ADSERR_CLIENT_TIMEOUTINVALID Invalid client timeout value.
0x748 1864 0x98110748 ADSERR_CLIENT_PORTNOTOPEN Port not open.
0x749 1865 0x98110749 ADSERR_CLIENT_NOAMSADDR No AMS address.
0x750 1872 0x98110750 ADSERR_CLIENT_SYNCINTERNAL Internal error in Ads sync.
0x751 1873 0x98110751 ADSERR_CLIENT_ADDHASH Hash table overflow.
0x752 1874 0x98110752 ADSERR_CLIENT_REMOVEHASH Key not found in the table.
0x753 1875 0x98110753 ADSERR_CLIENT_NOMORESYM No symbols in the cache.
0x754 1876 0x98110754 ADSERR_CLIENT_SYNCRESINVALID Invalid response received.
0x755 1877 0x98110755 ADSERR_CLIENT_SYNCPORTLOCKED Sync Port is locked.
0x756 1878 0x98110756 ADSERR_CLIENT_REQUESTCANCELLED The request was cancelled.

RTime error codes

Hex Dec HRESULT Name Description
0x1000 4096 0x98111000 RTERR_INTERNAL Internal error in the real-time system.
0x1001 4097 0x98111001 RTERR_BADTIMERPERIODS Timer value is not valid.
0x1002 4098 0x98111002 RTERR_INVALIDTASKPTR Task pointer has the invalid value 0 (zero).
0x1003 4099 0x98111003 RTERR_INVALIDSTACKPTR Stack pointer has the invalid value 0 (zero).
0x1004 4100 0x98111004 RTERR_PRIOEXISTS The request task priority is already assigned.
0x1005 4101 0x98111005 RTERR_NOMORETCB No free TCB (Task Control Block) available. The

maximum number of TCBs is 64.
0x1006 4102 0x98111006 RTERR_NOMORESEMAS No free semaphores available. The maximum number of

semaphores is 64.
0x1007 4103 0x98111007 RTERR_NOMOREQUEUES No free space available in the queue. The maximum

number of positions in the queue is 64.

0x100D 4109 0x9811100D RTERR_EXTIRQALREADYDEF An external synchronization interrupt is already applied.
0x100E 4110 0x9811100E RTERR_EXTIRQNOTDEF No external sync interrupt applied.
0x100F 4111 0x9811100F RTERR_EXTIRQINSTALLFAILED Application of the external synchronization interrupt has

failed.
0x1010 4112 0x98111010 RTERR_IRQLNOTLESSOREQUAL Call of a service function in the wrong context
0x1017 4119 0x98111017 RTERR_VMXNOTSUPPORTED Intel VT-x extension is not supported.
0x1018 4120 0x98111018 RTERR_VMXDISABLED Intel VT-x extension is not enabled in the BIOS.
0x1019 4121 0x98111019 RTERR_VMXCONTROLSMISSING Missing function in Intel VT-x extension.
0x101A 4122 0x9811101A RTERR_VMXENABLEFAILS Activation of Intel VT-x fails.

Specific positive HRESULT Return Codes:

HRESULT Name Description
0x0000_0000 S_OK No error.
0x0000_0001 S_FALSE No error.

Example: successful processing, but with a negative or
incomplete result.

0x0000_0203 S_PENDING No error.
Example: successful processing, but no result is available
yet.

0x0000_0256 S_WATCHDOG_TIMEOUT No error.
Example: successful processing, but a timeout occurred.

TCP Winsock error codes

Appendix

TF6770 33Version: 1.0.0

Hex Dec Name Description
0x274C 10060 WSAETIMEDOUT A connection timeout has occurred - error while establishing the

connection, because the remote terminal did not respond properly after a
certain period of time, or the established connection could not be
maintained because the connected host did not respond.

0x274D 10061 WSAECONNREFUSED Connection refused - no connection could be established because the
target computer has explicitly rejected it. This error usually results from an
attempt to connect to a service that is inactive on the external host, that is,
a service for which no server application is running.

0x2751 10065 WSAEHOSTUNREACH No route to host - a socket operation referred to an unavailable host.
More Winsock error codes: Win32 error codes

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/tf6770/

mailto:info@beckhoff.de?subject=TF6770
https://www.beckhoff.com
https://www.beckhoff.com/tf6770/

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security

	2 Overview
	3 Installation
	3.1 System requirements
	3.2 Installation
	3.3 Licensing

	4 Technical introduction
	4.1 WebSocket
	4.2 Compression
	4.3 Security
	4.3.1 Transport layer
	4.3.1.1 Server certificate
	4.3.1.2 Client/Server certificate
	4.3.1.3 Pre-shared keys
	4.3.1.4 Supported cipher suites

	4.3.2 Application layer
	4.3.2.1 JSON Web Token (JWT)

	5 PLC API
	5.1 Function blocks
	5.1.1 FB_IotWebSocketClient
	5.1.1.1 CheckProtocol
	5.1.1.2 Connect
	5.1.1.3 Disconnect
	5.1.1.4 Execute
	5.1.1.5 OnWebSocketClose
	5.1.1.6 OnWebSocketMessage
	5.1.1.7 SendMessage
	5.1.1.8 ST_IotSocketTls

	5.2 Data types
	5.2.1 ETcIotWebSocketStatus
	5.2.2 ETcIotWebSocketContentType

	6 Samples
	7 Appendix
	7.1 ADS Return Codes

		documentation@beckhoff.com
	2024-04-16T11:29:19+0200
	Beckhoff Automation, Verl
	Documentation Publishing

