
Manual | EN

TS6100
TwinCAT 2 | OPC UA Server

2024-04-03 | Version: 1.0.0

Table of contents

TS6100 3Version: 1.0.0

Table of contents
1 Foreword.. 5

1.1 Notes on the documentation ... 5
1.2 For your safety .. 5
1.3 Notes on information security.. 7

2 Overview .. 8

3 Installation ... 10
3.1 System requirements .. 10
3.2 Installation ... 11
3.3 Update installation... 13
3.4 Installation variants ... 13
3.5 Licensing ... 15

4 Technical introduction.. 18
4.1 Quick start ... 18
4.2 Initialization ... 21
4.3 Recommended steps .. 27
4.4 Software architecture .. 30
4.5 Configurator .. 30
4.6 Optimizations .. 32
4.7 Application directories ... 37
4.8 Data Access .. 39

4.8.1 Overview .. 39
4.8.2 Connection with the runtime... 40
4.8.3 Enabling symbols ... 43
4.8.4 Nodesets .. 60
4.8.5 Data types .. 61
4.8.6 Arrays... 62
4.8.7 Enums.. 64
4.8.8 Structures... 65
4.8.9 Properties... 68
4.8.10 StatusCode .. 69
4.8.11 AnalogItemType ... 71
4.8.12 Description ... 72
4.8.13 ReadOnly ... 74
4.8.14 Alias ... 75
4.8.15 Pointers and references ... 76
4.8.16 Type system... 77
4.8.17 DI Components .. 80
4.8.18 DeviceState.. 81
4.8.19 ServerState .. 81

4.9 Historical Access... 82
4.9.1 Overview .. 82
4.9.2 Supported functions ... 83
4.9.3 Configuration.. 84

Table of contents

TS61004 Version: 1.0.0

4.9.4 HistoryUpdate .. 86
4.9.5 TwinCAT Analytics ... 86
4.9.6 Access to historical data .. 87

4.10 Alarms and Conditions .. 89
4.10.1 Overview .. 89
4.10.2 Supported functions ... 89
4.10.3 Configuration.. 90
4.10.4 Additional application data ... 93
4.10.5 Access to alarms and events ... 95

4.11 Method calls .. 96
4.11.1 Overview .. 96
4.11.2 Job methods... 96
4.11.3 RPC methods... 99

4.12 TwinCAT EventLogger .. 102
4.12.1 Overview .. 102
4.12.2 Configuration.. 102
4.12.3 Access to alarms and events ... 103

4.13 Global Discovery Server ... 107
4.13.1 Overview .. 107
4.13.2 Push ... 107
4.13.3 Pull ... 108

4.14 Security ... 112
4.14.1 Overview .. 112
4.14.2 Endpoints ... 112
4.14.3 Certificate exchange .. 113
4.14.4 Authentication .. 115
4.14.5 Access rights.. 117

4.15 File Transfer .. 120
4.15.1 Overview .. 120
4.15.2 Configuration.. 121

4.16 Reverse Connect .. 122
4.17 Logging ... 125
4.18 System Tray .. 126

5 PLC API .. 127
5.1 Tc2_OpcUa ... 127

5.1.1 Data types .. 127
5.1.2 Function blocks .. 128

6 Samples ... 131

7 Appendix.. 132
7.1 Attributes and comments .. 132
7.2 32-bit and 64-bit process... 133
7.3 Error diagnosis .. 135
7.4 ADS Return Codes.. 138
7.5 Support and Service.. 142

Foreword

TS6100 5Version: 1.0.0

1 Foreword

1.1 Notes on the documentation
This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.
For installation and commissioning of the components, it is absolutely necessary to observe the
documentation and the following notes and explanations.
The qualified personnel is obliged to always use the currently valid documentation.

The responsible staff must ensure that the application or use of the products described satisfies all
requirements for safety, including all the relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without notice.
No claims to modify products that have already been supplied may be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered and licensed trademarks of
Beckhoff Automation GmbH.
If third parties make use of designations or trademarks used in this publication for their own purposes, this
could infringe upon the rights of the owners of the said designations.

Patents

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
and similar applications and registrations in several other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The distribution and reproduction of this document as well as the use and communication of its contents
without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

1.2 For your safety
Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

Foreword

TS61006 Version: 1.0.0

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

 DANGER
Hazard with high risk of death or serious injury.

 WARNING
Hazard with medium risk of death or serious injury.

 CAUTION
There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

NOTICE
The environment, equipment, or data may be damaged.

Information on handling the product

This information includes, for example:
recommendations for action, assistance or further information on the product.

Foreword

TS6100 7Version: 1.0.0

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Overview

TS61008 Version: 1.0.0

2 Overview
OPC Unified Architecture (OPC UA) is the next generation of the familiar OPC standard. This is a globally
standardized communication protocol via which machine data can be exchanged irrespective of the
manufacturer and platform. OPC UA already integrates common security standards directly in the protocol.
Another major advantage of OPC UA over the conventional OPC standard is its independence from the
COM/DCOM system.

Detailed information on OPC UA can be found on the web pages of the OPC Foundation.

The TwinCAT 3 Function TF6100 OPC UA consists of several software components that enable data
exchange with TwinCAT based on OPC UA.
The following table provides an overview of the individual product components.

Software component Description
TwinCAT OPC UA Server Provides an OPC UA Server interface so that UA

clients can access the TwinCAT runtime.
TwinCAT OPC UA Client Provides OPC UA Client functionality to enable

communication with other OPC UA Servers based on
PLCopen-standardized function blocks and an easy-
to-configure I/O device.

TwinCAT OPC UA Configurator Graphical user interface for configuring the TwinCAT
OPC UA Server.

TwinCAT OPC UA Sample Client Graphical sample implementation of an
OPC UA Client in order to carry out a first connection
test with the TwinCAT OPC UA Server.

TwinCAT OPC UA Gateway Wrapper technology that provides both an
OPC COM DA Server interface and OPC UA Server
aggregation capabilities.

This documentation describes the TwinCAT OPC UA Server, which is an OPC UA server application that
enables access to symbols from the TwinCAT real-time environment. The server can be operated either
directly on the controller or on a gateway PC.
Both relationships are shown in simplified form in the following diagram and are explained in more detail in
the article Installation variants [} 13].

https://opcfoundation.org/

Overview

TS6100 9Version: 1.0.0

Installation

TS610010 Version: 1.0.0

3 Installation

3.1 System requirements
The following system requirements apply for the installation and operation of this product.

Server

Technical data Description
Operating system Windows 10

Windows CE 6/7
Windows Server 2022
TwinCAT/BSD

Target platforms PC architecture (x86, x64, ARM)
.NET Framework ---
TwinCAT Version TwinCAT 2, TwinCAT 3
TwinCAT installation level TwinCAT 2 CP, PLC, NC-PTP

TwinCAT 3 XAE, XAR, ADS
Required TwinCAT license TS6100 TwinCAT OPC UA (for TwinCAT 2)

TF6100 TC3 OPC UA (for TwinCAT 3)

Sample Client

Technical data Description
Operating system Windows 10 (>= 21H2)

Windows Server 2022
Target platforms PC-Architektur (x86, x64, ARM)
.NET Framework 4.8.1
TwinCAT Version TwinCAT 2, TwinCAT 3
TwinCAT installation level TwinCAT 2 CP, PLC, NC-PTP

TwinCAT 3 XAE, XAR, ADS
Required TwinCAT license ---

TwinCAT 2/TwinCAT 3 compatibility
This documentation is valid for both the TwinCAT 2 Supplement (TS6100) and the
TwinCAT 3 Function (TF6100).
If there are differences in individual sub-functions, a corresponding information box indicates this
directly and provides additional explanations if necessary.

Firewall port

To enable communication with the TwinCAT OPC UA Server, the following network port must be opened in
the firewall of the device:
4840/tcp (incoming)

If, for example, the TwinCAT OPC UA Server is installed on a Beckhoff Industrial PC, this port must be
opened as incoming communication in the operating system firewall.

Hardware requirements

The requirements of the TwinCAT OPC UA Server on the underlying industrial PC hardware depend strongly
on the respective application scenario. In general, there are two metrics that are critical to server utilization:
Main memory and CPU load.

Installation

TS6100 11Version: 1.0.0

The main memory load of the server varies depending on the number of symbols that are imported into the
address space of the server via the Data Access [} 39] devices and on the number of simultaneous
connections, subscriptions, historical access calls, ... that an OPC UA client creates. However, the basic load
of the server is based on the number of symbols and can be set to about 1024 bytes per symbol. With a
symbol count of 1,000,000 symbols, for example, this means a main memory use of approx.
1024 Bytes * 1.000.000 Symbole = 1.024 Mbyte

Note the main memory load of the industrial PC
Please ensure that the industrial PC you are using has enough main memory.

For an initial test, you can start up your project on your engineering PC and read the main memory load of
the TwinCAT OPC UA Server in the Windows Task Manager. Be aware of operating system limitations, such
as the 2 GB main memory limit for 32-bit processes. This affects, for example, the 32-bit variant of the
TwinCAT OPC UA Server. If you need more than 2 GB of main memory for the process, you must use the
64-bit version of the server.

The CPU load of the server, on the other hand, depends solely on the conditions prevailing at runtime, in
particular the number of subscriptions and MonitoredItems and their configuration parameters that an OPC
UA client requests from the server. See chapter Optimizations [} 32] for more information.

3.2 Installation
Depending on the TwinCAT version and operating system used, this TwinCAT 3 Function can be installed in
different ways, which are described in more detail below.

NOTICE
Update installation
An update installation always uninstalls the previous installation. Please make sure that you have backed
up your configuration files beforehand.

TwinCAT Package Manager

If you are using TwinCAT 3.1 Build 4026 (and higher) on the Microsoft Windows operating system, you can
install this function via the TwinCAT Package Manager, see Installation documentation.

Normally you install the function via the corresponding workload; however, you can also install the packages
contained in the workload individually. This documentation briefly describes the installation process via the
workload.

Command line program TcPkg

You can use the TcPkg Command Line Interface (CLI) to display the available workloads on the system:
tcpkg list -t workload

You can use the following command to install the workload of a function.
Shown here using the example of the TF6100 TwinCAT OPC UA Client:
tcpkg install tf6100-opc-ua-client

TwinCAT Package Manager UI

You can use the User Interface (UI) to display all available workloads and install them if required.
To do this, follow the corresponding instructions in the interface.

NOTICE
Unprepared TwinCAT restart can cause data loss
The installation of this function may result in a TwinCAT restart.
Make sure that no critical TwinCAT applications are running on the system or shut them down in an orderly
manner first.

https://infosys.beckhoff.com/content/1033/tc3_installation/index.html?id=3481283926605773347

Installation

TS610012 Version: 1.0.0

Setup

If you are using TwinCAT 3.1 Build 4024 on the Microsoft Windows operating system, you can install this
function via a setup package, which you can download from the Beckhoff website at https://
www.beckhoff.com/download.

Depending on the system on which you need the function, the installation can be done on either the
engineering or runtime side. The following screenshot shows an example of the setup interface using the
TF6100 TwinCAT OPC UA Client setup.

To complete the installation process, follow the instructions in the Setup dialog.

NOTICE
Unprepared TwinCAT restart can cause data loss
Installing this function may cause TwinCAT to restart.
Make sure that no critical TwinCAT applications are running on the system or shut them down in an orderly
manner first.

TwinCAT/BSD

If you use TwinCAT/BSD as your operating system, you can install this function via the TwinCAT/BSD
Package Server. For further information on the TwinCAT/BSD Package Server and its configuration, please
refer to the TwinCAT/BSD documentation.

To search for a package, you can use the following call in the TwinCAT/BSD console:
pkg search TF6100

To install a function, you can use the following call in the TwinCAT/BSD console:
doas pkg install TF6100-OPC-UA-Server-<version>

https://www.beckhoff.com/download
https://www.beckhoff.com/download

Installation

TS6100 13Version: 1.0.0

Windows CE

If you are using Microsoft Windows CE as your operating system, you can install this function via the
respective CAB files, which are delivered with the setup or TcPkg workload. The CAB files are usually stored
in the subdirectory CE-ARMC4I and CE-X86 relative to the installation directory of the function.

From there they can be transferred to the Windows CE device via file transfer and executed there. The CAB
files then install and register the function on the respective system.

Always use the appropriate CAB file for your system. Specifically, this means

• CE-ARMV4I: ARM-based devices, e.g. CX8190, CX9020
• CE-X86: x86-based devices, e.g. CX51xx, CX52xx, CX20xx

The CAB file can be transferred to the device either via the CF/SD card or the FTP server integrated in
Windows CE.

Device restart
After installing this function, a device restart is required so that the function can be used.

3.3 Update installation
During an update installation, old application files are replaced by new ones. Backups of existing
configuration files are created and saved in the form *.xml.bak in the application directory [} 37]. This also
applies to the certificate directories.

3.4 Installation variants
In the following, two installation variants are described, according to which the TwinCAT OPC UA Server can
be installed depending on the application and infrastructure.

1. Server integrated directly into the control system
2. Operation of the server on a gateway PC

Server integrated directly into the control system

This scenario describes how the TwinCAT OPC UA Server should normally be operated. One of the biggest
advantages of this software is that it can be integrated into even the smallest embedded platform, e.g. the
CX8000 series. Thanks to this integration, general handling is very simple and convenient. OPC UA clients,

Installation

TS610014 Version: 1.0.0

e.g. HMI or MES/ERP systems, can establish a connection with the corresponding
TwinCAT OPC UA Servers in the network and read and write symbol information originating from the
TwinCAT runtime.

This scenario has the following advantages:

• Optimized network load, as OPC UA mechanisms such as subscriptions ("OnDataChange
communication") can be used.

• Decentralized memory usage. Each TwinCAT OPC UA Server device is exclusively responsible for its
own memory requirements, as only its "own" PLC symbols need to be provided in the server's address
space.

• Secure communication right up to the control system. OPC UA features security mechanisms that are
directly integrated in the protocol. Only the OPC UA server port is enabled in the controller firewall,
which is then used for secure communication. In the case of the Reverse Connect [} 122] functionality,
there is even no need to open the (incoming) firewall port.

Operation of the server on a gateway PC

This scenario describes the use of the TwinCAT OPC UA Server on a gateway PC. This use case is often
used in Brownfield scenarios where existing control systems are to be given an OPC UA interface. In this
case, the TwinCAT OPC UA Server is installed on a gateway PC (often referred to as an "edge PC") and
connects one or more subordinate TwinCAT PLC controllers. Communication between the server and PLC
then takes place via TwinCAT ADS.

Installation

TS6100 15Version: 1.0.0

From a financial perspective, this scenario is very attractive, as only one TwinCAT OPC UA Server software
license needs to be purchased. However, this scenario also has some technical disadvantages compared to
integrating the server into the controller:

• Network load can be very high depending on the number of devices and symbols present. The
TwinCAT OPC UA Server uses cyclic ADS sampling to query symbol values quickly and efficiently
from the TwinCAT runtime and must also be able to serve thousands of symbols simultaneously. The
more symbols (and the more connected PLC controllers) there are, the more cyclic communication
there is in the network.

• The memory requirement on the central server is very high because the TwinCAT OPC UA Server has
to import the symbol information from each TwinCAT PLC and store it in its address space.

• Communication between the server and PLC is based on TwinCAT ADS, which only enables
integrated encryption of the transport channel in newer TwinCAT versions. This may not yet be
available for older systems as part of a Brownfield application.

• The symbol files must be exchanged between the TwinCAT PLC and the central server each time the
PLC program is changed. This step is not necessary if the server is operated directly in the PLC
controller.

3.5 Licensing
The TwinCAT 3 function can be activated as a full version or as a 7-day test version. Both license types can
be activated via the TwinCAT 3 development environment (XAE).

The licensing of a TwinCAT 3 function is described below. The description is divided into the following
sections:

• Licensing a 7-day trial version [} 15]

• Licensing a full version [} 17]

Further information on TwinCAT 3 licensing can be found in the "Licensing" documentation in the Beckhoff
Information System (TwinCAT 3 > Licensing).

Licensing the 7-day test version of a TwinCAT 3 Function

A 7-day test version cannot be enabled for a TwinCAT 3 license dongle.

1. Start the TwinCAT 3 development environment (XAE).
2. Open an existing TwinCAT 3 project or create a new project.
3. If you want to activate the license for a remote device, set the desired target system. To do this, select

the target system from the Choose Target System drop-down list in the toolbar.
ð The licensing settings always refer to the selected target system. When the project is activated on

the target system, the corresponding TwinCAT 3 licenses are automatically copied to this system.

https://infosys.beckhoff.com/content/1033/tc3_licensing/index.html?id=4971678236866464095
https://infosys.beckhoff.com/content/1033/tc3_licensing/3511048971.html

Installation

TS610016 Version: 1.0.0

4. In the Solution Explorer, double-click License in the SYSTEM subtree.

ð The TwinCAT 3 license manager opens.
5. Open the Manage Licenses tab. In the Add License column, check the check box for the license you

want to add to your project (e.g. "TF4100 TC3 Controller Toolbox").

6. Open the Order Information (Runtime) tab.
ð In the tabular overview of licenses, the previously selected license is displayed with the status

“missing”.

Installation

TS6100 17Version: 1.0.0

7. Click 7-Day Trial License... to activate the 7-day trial license.

ð A dialog box opens, prompting you to enter the security code displayed in the dialog.

8. Enter the code exactly as it is displayed and confirm the entry.
9. Confirm the subsequent dialog, which indicates the successful activation.

ð In the tabular overview of licenses, the license status now indicates the expiry date of the license.
10. Restart the TwinCAT system.
ð The 7-day trial version is enabled.

Licensing the full version of a TwinCAT 3 Function

A description of the procedure to license a full version can be found in the Beckhoff Information System in
the documentation "TwinCAT 3 Licensing".

https://infosys.beckhoff.com/content/1033/tc3_licensing/117093592658046731.html?id=5546616718344501207

Technical introduction

TS610018 Version: 1.0.0

4 Technical introduction

4.1 Quick start
The following chapter provides a quick start to the TwinCAT OPC UA Server. In these instructions, you
initialize the TwinCAT OPC UA Server in the delivery state, then create a TwinCAT PLC project and finally
enable a PLC variable by setting a pragma via OPC UA. The variable is then available in the address space
of the server.
The action steps are described in more detail below in the order in which they are performed:

• Initialization of the server
• Creating a TwinCAT PLC project
• Activating the download of the symbol files
• Adding a product license
• Enabling a variable
• Connecting an OPC UA client

Initialization of the server

After installation, the server needs to be initialized [} 21] once according to the so-called TOFU principle
(Trust-On-First-Use). Here you configure a user account, which is then required to establish a connection
with the server.

As this is a central and security-relevant topic, initialization [} 21] is explained in detail in a separate
documentation chapter. The further steps in this section assume that this process has been carried out once
and that you have initialized the server with a user account.

Tools for initializing the server
You can use the TwinCAT OPC UA Configurator to initialize the server. This may require the
installation of an additional software package.

Creating a TwinCAT PLC project (download of symbol files)
1. Open the TwinCAT XAE Shell (or Visual Studio).
2. In the File menu, select the command New > Project.
3. Add an empty PLC project to the project.
4. Activate the automatic download of the TMC file in the properties of the PLC project, as shown in the

following screenshot.
ð A new TwinCAT project has been created.

Technical introduction

TS6100 19Version: 1.0.0

Adding a product license
ü Check whether a TF6100 license is available in the TwinCAT XAE license dialog.
1. If not, you can use a 7-day trial license as part of this Quick Start Tutorial.

Enabling a variable
2. Add a new variable of data type INT to the MAIN program.
3. Set the pragma on this variable to enable the variables via OPC UA.

{attribute 'OPC.UA.DA' := '1'}
nMyCounter : INT;

4. In the implementation part of the MAIN program, increment this variable by 1 each cycle.
nMyCounter := nMyCounter + 1;

5. Activate the TwinCAT project on your system.

Connecting an OPC UA client

An OPC UA client uses the so-called ServerURL to connect to a server. The ServerURL contains the IP
address or the host name of the device on which the server was installed. In this tutorial, we assume that the
client and server are running on the same system. The client thus connects to the following ServerURL:
opc.tcp://localhost:4840

As a client, we use the TwinCAT OPC UA Sample Client, which is part of the TF6100 product package.

TwinCAT OPC UA Sample Client
It may be necessary to install an additional setup or package to install the
TwinCAT OPC UA Sample Client on your system.

Technical introduction

TS610020 Version: 1.0.0

After installation, it can be called up via the Windows start menu.

The ServerURL to the local host is already entered by default in the TwinCAT OPC UA Sample Client.

6. Click on the Get Endpoints button.
ð If you are using the Sample Client for the first time, a dialog box appears to accept settings for

generating application certificates.

7. Confirm the dialog box with the Create button.
ð All connection endpoints are now read from the server and displayed.

8. Select the endpoint "SignAndEncrypt:Basic256Sha256:Binary" and click on the Connect button.

Technical introduction

TS6100 21Version: 1.0.0

9. Enter the data for the user account that you configured in the first step of this documentation article for
initializing the server.

10. Click OK.
ð You are now connected to the server.

The address space of the server is displayed in a tree structure on the left-hand side of the application
and you can navigate through the symbolism of the PLC program. In this example, we have enabled a
PLC variable for OPC UA. These can be found at the following path:
Root \ Objects \ PLC1 \ MAIN \ nMyCounter

You can add the variable to the "Watchlist" by double-clicking on it. This means that a subscription is created
for the variable and the variable value is transferred from the server to the client in the event of a value
change.

4.2 Initialization
Starting with setup version 4.4.0, the TwinCAT OPC UA Server requires an initialization phase, which is
based on the TOFU principle (Trust On First Use). This means that the server must be actively initialized by
the user so that it can be used for its various functions (Data Access, Historical Access, etc.).

By default, the server allows clients to establish an unauthenticated connection ("Anonymous"). The one-
time TOFU initialization now requires the configuration of an operating system user that an OPC UA client
must subsequently use to successfully log on to the server.

For this purpose, the server provides only a special initialization namespace in the uninitialized state. This
namespace contains an object "Initialization" with a method "TrustOnFirstUse".

Technical introduction

TS610022 Version: 1.0.0

The method defines the following input/output parameters:

Parameter Description
[in] Username Username for the operating system user to be created. If the user

already exists, the server attempts to perform a test login with the
specified password and, if successful, transfers the existing user to its
security configuration.

[in] Password Password for the operating system user.
The password is not stored in the server configuration, but is only
available in the user database of the operating system. Please note
that the type of password may depend on any security settings of
the operating system (keyword "complex passwords").

[out] AddStatus Indicates whether the creation of the operating system user was
successful or whether the user already exists.

[out] LogonResult Indicates whether the server was able to login to the operating system
with the specified username/password combination. This is a good way
to check if you have entered the wrong password if the user already
exists.

[out] OPC UA Statuscode The regular OPC UA Status Code when calling a method. If the method
has been called successfully on OPC UA level, this status code returns
GOOD, otherwise BAD.

The server is initialized by calling this method. The method tries to create a user specified by the user in the
lower-level operating system of the server. If this is successful, the user is automatically added to the
security configuration (TcUaSecurityConfig.xml) of the server and defined as server administrator. After an
automatic restart of the server at the end of the method call, an OPC UA client can then log on to the server
with this user.

Technical introduction

TS6100 23Version: 1.0.0

If a specified user already exists in the operating system, this is indicated by an output parameter
(AddStatus). In this case, the server attempts to log on to the operating system with the specified password.
If this logon process is successful, the user is entered in the server's security configuration and the
initialization is successfully completed by an automatic restart of the server. If the logon to the operating
system fails (e.g. because the wrong password was entered), this is indicated by an output parameter
(LogonResult) and the initialization is not continued. This prevents you from accidentally trying to initialize
the server with a wrong username/password combination and thus "locking yourself out".

Expiration of a user password
When the OPC UA server creates an operating system user, it is not explicitly enabled for this user
that the password does not expire. Here the settings of the operating system are adopted, where
the maximum password age is defined in the password policies. If the maximum password age is
set to 0, passwords do not expire; otherwise they do so after the number of days specified in the
operating system.

The following diagram illustrates this process once again in a highly simplified form:

Technical introduction

TS610024 Version: 1.0.0

After restarting the server, an OPC UA client must use the operating system user used for initialization for
authentication when establishing a connection.

The following screenshots show the entire process using the OPC UA client "UA Expert" as an example. In
this example, we assume that the user does not yet exist in the operating system and is therefore created by
the server.

Technical introduction

TS6100 25Version: 1.0.0

Step 1: OPC UA Client connects to the server for the first time

The server has been installed and UA Expert connects to the server for the first time. Anonymous access
can still be used for this connection.

After the connection has been established, the initialization object together with the TrustOnFirstUse method
can be found in the server's address space.

Step 2: OPC UA Client starts TrustOnFirstUse

The TrustOnFirstUse method can be called via any OPC UA client, e.g. the UA Expert. However, Beckhoff's
own configuration tools also allow the use of this initialization interface. The TwinCAT OPC UA Configurator
(standalone or Visual Studio integrated) automatically detects an uninitialized server when a connection is
established and enables initialization via a corresponding configuration interface:

Technical introduction

TS610026 Version: 1.0.0

The following steps show the same process as it can be done manually e.g. in the UA Expert software:

In the UA Expert, the TrustOnFirstUse method is called to create a user and configure the server for this
user. "MyOpcUaServerUser" was used as the username in this example. The password must meet the
complexity requirements of the operating system, otherwise the initialization will fail. The following
screenshot shows the successful call of the method.

The parameter AddStatus indicates that the user was successfully created in the operating system's user
database. The parameter LogonResult indicates that an initial test authentication of the server with the
specified user information was successful.

The server restarts automatically after this successful method call.

Step 3: OPC UA client logs on to the initialized server

Username/password disables anonymous access
Please note that the UA Expert cannot automatically reconnect to the server after the method call,
because the anonymous access has been disabled and from now on the logon must be done using
the specified username.

Technical introduction

TS6100 27Version: 1.0.0

Once the connection has been established, the regular namespaces and objects can be found again in the
server's address space and the configuration of the application can begin.

Permissions of the TOFU user
The user configured by the TOFU mechanism has full access to the server, which may not be
desirable. Beckhoff therefore recommends creating an explicit user for pure data access in the next
step, see Recommended steps.

4.3 Recommended steps
After the initial commissioning, Beckhoff recommends that you pay attention to the following points to further
configure the server and ensure a stable and secure operating environment.

Data Access

Data Access describes a function of OPC UA for displaying symbols and the corresponding access to them
in the address space of the server. In the TwinCAT OPC UA Server, the configuration of data access
devices is an elementary component and the basis for further functionalities. We therefore recommend that
you read our chapter on Data Access [} 39] in the next step, which also describes how you can establish a
connection with the runtime [} 40].

Only use secure IdentityTokens

The one-time initialization of the server disables the IdentityToken "Anonymous". For security reasons, you
should leave this disabled. The server should only be accessed by authenticated client applications, such
as the username/password authentication configured by default during initialization.

Technical introduction

TS610028 Version: 1.0.0

Creation of a user for pure data access

The aforementioned initialization of the server configures a user for access to the server and then disables
anonymous access to the server. The configured user has full access to all objects in the server namespace.
In most application scenarios, this is not desired and the administrator user should be separated from the
application user.

Beckhoff therefore recommends configuring an additional, dedicated user who is given the necessary
permissions to access variables on a Data Access device, but who is not allowed to access the configuration
namespace. This setting can be made via the configurator by adding a new user who is assigned to the
"Users" group.

The newly configured user then has all the necessary permissions to access TwinCAT variables, to read the
type system, but not to influence the configuration of the server. Please note that if you use the
authentication provider "OS", you must also create the user in the operating system, i.e. it must exist there.

NOTICE
Leave insecure endpoints disabled
ü Endpoints classified as unsafe are not offered by the TwinCAT OPC UA Server by default. These can

be made available in the server via a configuration switch - Beckhoff does not recommend this!
a) Only use endpoints that are currently considered secure.
b) Observe and follow the other safety-relevant recommendations in the following section.

The following screenshot shows you how to enable older server endpoints in the
TwinCAT OPC UA Configurator.

Technical introduction

TS6100 29Version: 1.0.0

You can then add the insecure endpoints back to the server configuration, for example via the context menu
in the configurator in the "Security Settings" area:

The None/None endpoint is already disabled when the server is delivered. For security reasons, Beckhoff
recommends that you also leave this endpoint disabled and only allow access to the server via a secure
endpoint. If required, the None/None endpoint can be added back to the server configuration using the
method described above.

Disable 'AutomaticallyTrustAllClientCertificates'

By default, the server is configured for easy commissioning so that it automatically trusts all client certificates
without having to manually exchange certificates on the server side. For security reasons, Beckhoff
recommends disabling this setting. This setting can be made via the TwinCAT OPC UA Configurator, as
shown in the following screenshot:

After disabling this setting, a trust relationship must be established between the client and server by both
applications trusting each other's certificates.

Technical introduction

TS610030 Version: 1.0.0

4.4 Software architecture
You do not need to know the internal software architecture of this product to use it, but it may be of interest
in some cases. This is why we will briefly introduce you to them below.

The TwinCAT OPC UA Server essentially consists of the following components:

• The process in the operating system

• The application in the Windows System Tray [} 126]

• The PLC library Tc2_OpcUa [} 127]

The interaction of the individual components is described in more detail in the following diagram:

Process in the operating system

The process in the operating system (TcOpcUaServer.exe) takes care of the OPC UA protocol functions (i.e.
communication with the OPC UA clients), the provision of the OPC UA address space and communication
with the lower-level devices [} 39]. Furthermore, the process provides an ADS server interface so that the
PLC library Tc2_OpcUa and the Windows System Tray application can interact with the server application.

Windows System Tray application

This application enables the triggering of a restart of the TwinCAT OPC UA Server. The corresponding
function can be called up via the icon in the Windows System Tray.

PLC library

The PLC library Tc2_OpcUa enables interaction with the TwinCAT OPC UA Server both for retrieving status
information and for triggering a restart.

4.5 Configurator
Two graphical user interfaces are available for simple configuration of the TwinCAT OPC UA Server as part
of the TwinCAT OPC UA Configurator: an interface integrated into Visual Studio (or the XAE Shell) and a
standalone tool.

Technical introduction

TS6100 31Version: 1.0.0

Documentation for the TwinCAT OPC UA Configurator
Although the TwinCAT OPC UA Configurator is discussed in various sections of this documentation,
it also has its own product documentation, which can be found in the Beckhoff information system.

Configuration via OPC UA

The TwinCAT OPC UA Server contains a so-called configuration namespace, which enables local and
remote configuration of the server via OPC UA. The TwinCAT OPC UA Configurator makes use of this
interface to access the individual configuration files of the server.

The following functionalities are mapped in the configuration namespace:

• Management of the server configuration files
• Management of the certificates
• Restarting the server

After initializing [} 21] the server, the user configured there has access to the configuration namespace and
can be used to further configure the server. The following screenshot shows the configuration namespace
from the perspective of an OPC UA client (in this example, the UA Expert from Unified Automation):

All server configuration files are available as objects of type FileType. This object type and access to it is
standardized by OPC UA. Certificate files are created in the configuration namespace as CertificateType.

Management of certificates

Client certificates are divided into "Rejected" and "Trusted" certificates, which is represented by a separate
folder in the namespace. A certificate can be moved between the trusted lists by calling the method Move()
on a certificate object. In addition, various properties provide additional information about the certificates
themselves for easier identification.

Technical introduction

TS610032 Version: 1.0.0

The TwinCAT OPC UA Configurator provides you with a user interface to make it easier to trust/reject
certificates. Further information can be found in chapter Certificate exchange [} 113].

Restarting the server

The configuration namespace contains a method with which the TwinCAT OPC UA Server can be restarted
without the need for a TwinCAT restart.

4.6 Optimizations
There are various ways to optimize the communication connection between OPC UA client and server or
PLC. The runtime behavior, in particular the CPU and memory load of the TwinCAT OPC UA Server, can
also be optimized using various parameters. This chapter presents various optimization options, in particular
on the following topics:

• SamplingInterval vs. PublishingInterval
• StructuredTypes
• StructuredTypes and their member variables

Technical introduction

TS6100 33Version: 1.0.0

The screenshots and performance values shown here represent examples under laboratory
conditions, which were run on different hardware devices. Therefore, they cannot be transferred 1:1
to customer projects and only serve to illustrate certain facts.

SamplingInterval vs. PublishingInterval

When creating a subscription, an OPC UA client uses various parameters for the subscription and the so-
called MonitoredItems contained in it to receive notifications about variable changes. The following table
explains two of these parameters, which will then be described in more detail.

Parameter Description
PublishingInterval The PublishingInterval specifies the rate at which an

OPC UA client is informed about value changes by
the server. The PublishingInterval is described in
detail in Part 4 of the OPC UA specification.

SamplingInterval The SamplingInterval specifies the rate at which the
OPC UA server should sample its underlying data
source for value changes, in the case of the
TwinCAT OPC UA Server via the ADS connection.
The SamplingInterval is described in detail in Part 4
of the OPC UA specification.

The following figure illustrates the relationship between these two parameters once again. It is assumed here
that the TwinCAT OPC UA Server has been installed on the PLC controller and that the OPC UA client
accesses the server from an external system.

As can be seen in the figure, the situation can arise that the OPC UA client does not notice certain value
changes in the PLC, e.g. if they happen "too fast" in the PLC or the sampling rate is not high enough or a
variable value returns to the original value (as can be seen above). Via another parameter, the so-called
QueueSize, several value changes between the PublishingIntervals can be recorded and transferred to the
OPC UA client. In the above example, a QueueSize of 1 was selected, i.e. the "Last Known Value" is always
transferred to the client. In the following figure, on the other hand, a QueueSize of 2 was selected, i.e. the
last two known value changes are transmitted to the client.

Technical introduction

TS610034 Version: 1.0.0

With the first PublishResponse it can be seen that only one value change is transmitted to the client,
because also only one value change has taken place in the PLC. With the second PublishResponse it can
be seen that two value changes have occurred in the PLC and both are also transmitted to the client.

The parameters described above are settings that the client usually controls and requests from the server.
And it is exactly here that many optimizations can be made, because both parameters have a strong
influence on how much CPU time the OPC UA client and server need, since a corresponding amount of
information has to be processed or requested.

Depending on the application scenario used, the two parameters should be set appropriately. For example, if
the OPC UA client is a visualization, then fast PublishingIntervals and SamplingRates make only limited
sense, since the human eye cannot process information faster than ~200 ms anyway. The use of the
QueueSize should also be chosen sensibly depending on the situation. If the OPC UA client does not
process any values from the queue anyway, a QueueSize of 1 is sufficient and makes sense, since
correspondingly less information has to be transferred and this further optimizes the system.

In the following example an OPC UA client has created a subscription with 10,000 variables on the
TwinCAT OPC UA Server. 500 ms was selected as the PublishingInterval and 250 ms as the
SamplingInterval. The CPU load of the TwinCAT OPC UA Server was at an average value of about 6.9%,
see the following screenshot of the Windows Performance Monitor.

Technical introduction

TS6100 35Version: 1.0.0

Then the PublishingInterval was set to 200 ms and the SamplingInterval to 100 ms. This increased the CPU
load of the TwinCAT OPC UA Server to an average value of approx. 19%.

StructuredTypes

By default, the TwinCAT OPC UA Server provides structures [} 65] as FolderType in its address space. The
member variables are then displayed as separate nodes below the folder and can be accessed. The server
also allows the use of StructuredTypes for the structure, whereby the type information of the structure is
processed by the client and the structure can be read/written in a data-consistent manner. When
communicating with the PLC (via the TwinCAT ADS protocol), the two variants behave fundamentally
differently.

Technical introduction

TS610036 Version: 1.0.0

When an OPC UA client accesses individual member variables, the ADS communication may well be split
into multiple ADS read/write commands, depending on the number of variables. This in turn can result in the
ADS commands being processed by the PLC in different PLC cycles. Data consistency cannot therefore be
guaranteed.

When an OPC UA client accesses a StructuredType, on the other hand, it is ensured that the
StructuredType is processed by the PLC in a single ADS Read/Write command, thus ensuring data
consistency.

When using StructuredTypes for large PLC data structures, the following should be considered:

• Depending on the structure size, the ADS read/write command or the corresponding response can
become very large and require a correspondingly large amount of memory in the TwinCAT ADS router.
Therefore, please pay attention to the router memory.

• StructuredTypes must be encoded or decoded by the TwinCAT OPC UA Server when communicating
with the TwinCAT real-time environment, which requires additional CPU time.

• Depending on the size of the structure, read/write commands can take a long time, which is also
heavily dependent on the time the server needs to encode/decode.

For these reasons, the maximum size of a StructuredType is limited in the delivery state of the server, but
can be adjusted as required using the parameter <MaxStructureSize> in the configuration file
TcUaDaConfig.xml. This parameter specifies the maximum size of a structure in bytes. If a structure exceeds
<MaxStructureSize>, it is imported as FolderType, where each structure element is available as a single
node. For more information, see the chapter Structures [} 65].

Especially in connection with the parameters for the SamplingInterval and PublishingInterval that can be set
for a subscription, some optimizations can be made with StructuredTypes, which can have a major influence
on the runtime behavior of the server.

In the following sample, an OPC UA client has created a subscription to a StructuredType. The lower-level
PLC data structure is structured as follows:
TYPE ST_TEST :
STRUCT
 stComplex : ST_Complex_1;
 strString5 : STRING[5];
 eEnum : E_Enum_1;
 strString3 : STRING[3];
 arrComplex : ARRAY[0..9999] OF ST_Complex_1;
 arrDint : ARRAY[0..9999] OF DINT;
END_STRUCT
END_TYPE

The structure ST_Complex_1 used as member variable is about 91 bytes. In total, this is a data structure
with a size of about 1 MB. 500 ms was selected as the PublishingInterval and 250 ms as the
SamplingInterval. The CPU load of the TwinCAT OPC UA Server after creating the subscription was at an
average value of about 54.6%, see the following screenshot of the Windows Performance Monitor.

Technical introduction

TS6100 37Version: 1.0.0

According to the selected SamplingInterval, an ADS Read is sent every 250 ms for the lower-level ADS
communication. In the corresponding response you can clearly see the size of the data structure of approx.
1 MB, i.e. every 250 ms a 1 MB data packet is transported through the TwinCAT ADS router (and must be
processed accordingly by the server). The encoding/decoding process from the server requires a lot of CPU
power, which explains the high CPU load.

StructuredTypes and their member variables

By default, the member variables of a StructuredType are represented and made available as separate
nodes in the server's address space. This requires additional main memory, because the
TwinCAT OPC UA Server allocates main memory for each node. An OPC UA client that works exclusively
with the StructuredType, i.e. the "root element" of a structure, does not require these additional nodes. These
can be explicitly hidden using a special pragma, which reduces the server's memory load. The pragma is
described in more detail in the chapter Structures [} 65].

4.7 Application directories
This application uses various directories to store relevant information, e.g. configuration or certificate files.

Installation directory

The base installation directory of the application is always relative to the TwinCAT installation directory on all
operating systems.
%TcInstallDir%\Functions\TF6100-OPC-UA

The application is then installed in the following directory below this directory. A distinction is made here
according to platform (x86/x64).

Technical introduction

TS610038 Version: 1.0.0

%TcInstallDir%\Functions\TF6100-OPC-UA\Win32\Server
%TcInstallDir%\Functions\TF6100-OPC-UA\Win64\Server

Base directory for PKI infrastructure

Certificate files, which are used to establish a secure communication connection, are stored in the following
directory on all operating systems:
%TcInstallDir%\Functions\TF6100-OPC-UA\Win32\Server\PKI
%TcInstallDir%\Functions\TF6100-OPC-UA\Win64\Server\PKI

Directory for trusted certificates

Client certificates in this directory are declared as "trusted". This path is identical on all operating systems.
%TcInstallDir%\Functions\TF6100-OPC-UA\Win32\Server\PKI\CA\trusted
%TcInstallDir%\Functions\TF6100-OPC-UA\Win64\Server\PKI\CA\trusted

Directory for rejected certificates

Client certificates in this directory are declared as "rejected". This path is identical on all operating systems.
%TcInstallDir%\Functions\TF6100-OPC-UA\Win32\Server\PKI\CA\rejected
%TcInstallDir%\Functions\TF6100-OPC-UA\Win64\Server\PKI\CA\rejected

Directory for the server certificate

The directories for the server certificate are defined as follows, whereby a distinction is made between the
directory for the public key ("certs") and private key ("private").
%TcInstallDir%\Functions\TF6100-OPC-UA\Win32\Server\PKI\CA\own\certs
%TcInstallDir%\Functions\TF6100-OPC-UA\Win64\Server\PKI\CA\own\private

Log files

Log files are stored in the following directory. There is a distinction according to the operating system.
%TcInstallDir%\Functions\TF6100-OPC-UA\Win32\Server (Windows)
%TcInstallDir%\Functions\TF6100-OPC-UA\Win64\Server (Windows)
/var/log/TF6100-OPC-UA-Server (TwinCAT/BSD)

Configuration files

The TwinCAT OPC UA Server uses various configuration files to configure the individual functions, which are
defined as listed in the table below. All configuration files are located in the installation directory of the server
(see above) and are usually configured via the TwinCAT OPC UA Configurator.

Technical introduction

TS6100 39Version: 1.0.0

File Description
TcUaAcConfig.xml Configuration file for the Alarms & Conditions [} 89]

(A&C) functionality of the server. The nodes
configured for A&C are saved in this file.

TcUaDaConfig.xml Configuration file for the Data Access [} 39] (DA)
functionality of the server. The communication
connections with the lower-level ADS devices are
configured in this file.

TcUaGdsClientConfig.xml Configuration file for the Global Discovery Server
[} 107] configuration. The connection to a GDS is
configured in this file.

TcUaHaConfig.xml Configuration file for the Historical Access [} 82]
(HA) configuration of the server. This file stores both
the data memories used for HA and the nodes
configured for this purpose.

TcUaNodesetConfig.xml Configuration file for the Nodeset [} 60] import of the
server. The Nodesets to be imported and their link to
an ADS device are defined in this file.

TcUaSecurityConfig.xml Configuration file for users, groups and Access
Control Lists (ACL) as part of the definition of access
rights [} 117] and authentication [} 115]
mechanisms.

TcUaServerConfig.xml Configuration file for various parameters of the
server, e.g. configuration of the endpoints [} 112],
Logging [} 125], Reverse Connect [} 122].

4.8 Data Access

4.8.1 Overview
This chapter describes the steps required to configure the variables in the TwinCAT OPC UA Server
namespace for Data Access (DA).

Data Access is an OPC UA function that describes the representation and use of variable values. For
example, this is about the service functionalities, how an OPC UA client can access variable values.

The TwinCAT OPC UA Server can provide variables from all TwinCAT real-time environments. These
include, for example, the TwinCAT PLC, TwinCAT 3 C++, TwinCAT 3 Matlab/Simulink® or a TwinCAT I/O
task. The server can access several real-time environments and provide their symbolism in its address
space.

Basis for further functions
The Connection with the runtime [} 40] and enabling symbols [} 43] for Data Access is the basis
for other functions, such as Historical Access and Alarms & Conditions.
Please make sure you are familiar with the settings required here.

The different real-time environments do not necessarily have to be on the same system, but can be
distributed across different controllers. In this case, an ADS route must be set up for each system. The
following figure illustrates this relationship.

Technical introduction

TS610040 Version: 1.0.0

In the TwinCAT OPC UA Configurator, the Data Access configuration can be carried out in the Data Access
tab. All connected real-time environments are displayed there as a separate "device". The chapter
Connection with the runtime [} 40] describes how to add data access devices and which parameters are
required for this. You can then start with Enabling symbols [} 43].

Also see about this
2 Overview [} 82]

4.8.2 Connection with the runtime
The TwinCAT OPC UA Server can provide symbols from one or more real-time environments. These can
also be located on different physical control systems. In this case, an ADS route must be established to the
respective target system. The so-called "AMS Net ID" uniquely identifies a control system in the network and
is required to establish an ADS route to the system. The ADS port, on the other hand, then identifies a
specific application on this system, e.g. the TwinCAT PLC.
The following figure illustrates this relationship.

Technical introduction

TS6100 41Version: 1.0.0

In this example, there are three control devices. The TwinCAT OPC UA Server is installed on the first device
and this device is identified by the AMS Net ID 192.168.1.1.1.1. On the second device, which is identified by
the AMS Net ID 192.168.1.2.1.1, two PLC runtimes are started and are each addressed by their own ADS
port. Only one PLC runtime is running on the third device (192.168.1.3.1.1).

Configuration

The configuration for a Data Access device can be carried out using the TwinCAT OPC UA Configurator.
The Data Access tab gives you an overview of all configured devices and allows you to add or remove
devices.

Technical introduction

TS610042 Version: 1.0.0

In this screenshot, for example, you can see a configuration with three Data Access devices. These have
been configured as follows:

• PLC1: Local PLC runtime (127.0.0.1.1.1) on port 851
• PLC2: Remote PLC runtime (3.76.187.234.1.1) on port 851
• PLC3: Remote PLC runtime (3.76.187.234.1.1) on port 852

All parameters required for the connection with a device and its symbolism can now be configured in the
properties of the device.

Technical introduction

TS6100 43Version: 1.0.0

Depending on the real-time environment used, you can, for example, choose a symbol file here, select the
ADS route to be used and enter the ADS port of the respective application. You can find more information on
the various symbol files in the chapter Enabling symbols [} 43].

4.8.3 Enabling symbols
As you have already learned in the Quick Start [} 18] tutorial, symbols are enabled in the TwinCAT 3 PLC via
a so-called pragma (also known as an "attribute"). In other real-time environments, the enabling mechanism
may be different. The following chapter provides an overview.

The term "Symbol"
The term "Symbol" is used in this documentation as a substitute for variable, structure, function
block instance, method, etc.

Symbolism

The TwinCAT OPC UA Server receives its information via real-time variables (e.g. addresses and data
types), the so-called "symbolism". Depending on the real-time environment used (e.g. TwinCAT PLC or
TwinCAT 3 C++), various so-called "symbol files" are available for reading the symbolism (also known as
"offline symbolism"). In addition, the symbolism can be read via TwinCAT ADS when the runtime
environment is started (also referred to as "online symbolism").

Technical introduction

TS610044 Version: 1.0.0

The advantage of using online symbolism is that no symbol files need to be exchanged. Especially in the
installation variant [} 13], in which the TwinCAT OPC UA Server is operated on a gateway PC, the manual
copying process of the symbol files of all connected controllers is no longer necessary. The disadvantage of
online symbolism is that the symbols are only available when the PLC environment is running.

The symbol file must be imported by the server to access the address information of the symbols.
Alternatively, the server can also work directly with the online symbolism. The symbols are then only
available in the server's address space when the real-time environment is available.

The TwinCAT OPC UA Configurator can be used to configure the server and which symbol file it should
read. The corresponding path to the symbol file can be configured there as part of the data access device.

Depending on the real-time environment used, the symbol file that must be imported from the server in order
to obtain address information for the existing symbols and the symbol enabling mechanism will vary. While
the TwinCAT 3 PLC works with so-called pragmas to enable a symbol for OPC UA, TwinCAT 2 still uses
specially formatted comments on the symbol for this purpose. TwinCAT 3 C++, on the other hand, uses the
so-called TMC code generator to enable symbols for OPC UA.

Symbol files can be configured in the TwinCAT engineering interface so that they are automatically copied to
the boot directory of the target device when the project is activated. The TwinCAT OPC UA Server is usually
configured to read the symbol file from the boot directory.

The following table provides an overview of the various symbol files in relation to their real-time environment
and the enabling mechanism.

Real-time environment Symbol file Enable via... Path in the boot directory
TwinCAT 2 PLC TPY Comment CurrentPlc_1.tpy
TwinCAT 3 PLC [} 45] TMC Pragma Plc\Port_%AdsPort%.tmc

TwinCAT 3 C++ [} 47] TMI TMC code generator Tmi\%ObjectId%.tmi

TwinCAT 3 Matlab/
Simulink [} 51]

TMI TMC code generator Tmi\%ObjectId%.tmi

TwinCAT 3 I/O Task
[} 57]

XML Comment CurrentConfig.xml

Online symbolism [} 59] --- Pragma
TMC code generator

For more information, see the sub-chapters for each real-time environment.

Also see about this
2 Data types [} 61]
2 Structures [} 65]
2 Properties [} 68]
2 AnalogItemType [} 71]

Technical introduction

TS6100 45Version: 1.0.0

2 StatusCode [} 69]

4.8.3.1 PLC
This section describes how to configure the namespace of the TwinCAT OPC UA Server in order to gain
access to the symbols of a PLC project. This requires the following steps to be carried out:

• Activating the symbol file
• Enabling symbols
• Configuration of the server

Activating the symbol file

To make the symbols of a PLC project available via OPC UA, you must first activate the download of the
symbol file (TMC) in the properties of the PLC project.

This means that the symbol file is automatically transferred to the corresponding target device when the
project is activated and is then available there in the TwinCAT boot directory. The name of the symbol file is
based, for example, on the ADS port (see below) of the PLC runtime:
%TwinCATInstallDir%\3.1\Boot\Plc\Port_851.tmc

Quick start
If the TwinCAT OPC UA Server is also installed on the same device, it always automatically reads
the symbol file of the first PLC runtime in the delivery state, i.e. no further settings are required on
the server. Activating the project thus transfers the symbol file to the target device and a
subsequent TwinCAT restart also restarts the TwinCAT OPC UA Server. This will now find the
symbol file in the boot directory during the boot process and read it. The server recognizes which
symbols it should provide in its address space through the set pragmas.

Enabling symbols

In TwinCAT 3 PLC, symbols are enabled for OPC UA via so-called pragmas. Such a pragma was also used
in the Quick Start [} 18] Tutorial, for example, to enable a variable for OPC UA. The pragma is inserted
before the symbol to which it applies. The following pragma can be used to enable a variable, array, or
structure for OPC UA. The TwinCAT OPC UA Server recognizes this pragma when reading the symbolism
and imports the corresponding symbol into its namespace. The corresponding type information [} 61] is
transferred and mapped to OPC UA.
{attribute 'OPC.UA.DA' := '1'}
nMyCounter : INT;

Additional pragmas may be required for individual sub-functions of data access, for example structures
[} 65], properties [} 68], AnalogItemType [} 71], StatusCode [} 69], setting a description [} 72], Alias
[} 75] or the read-only [} 74] flag of a node. The additional pragmas are then inserted in a separate line,
for example:

Technical introduction

TS610046 Version: 1.0.0

{attribute 'OPC.UA.DA' := '1'}
{attribute 'OPC.UA.DA.Access' := '1'}
nMyCounter : INT;

(Sets the read-only flag for this variable)

The pragma for enabling a symbol is automatically inherited to all child symbols. If you want to block
inheritance from a certain point, for example from a certain member of a structure, you can work with the
following pragma:
{attribute 'OPC.UA.DA' := '0'}
stChild : ST_ChildStruct;

In the case of function blocks and structures, the definition location of the pragma is decisive. If the pragma
is defined on an instance, only this instance (and all child elements) is enabled for OPC UA. If, on the other
hand, the pragma is defined at the function block or structure definition, all instances of the function block or
structure are enabled. In the following sample, the two instances fbTest1 and fbTest2 of the function block
FB_BLOCK1 are to be made available via OPC UA. When an entire instance is enabled, all its symbols are
also available via OPC UA. The PLC program looks like the following:
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '1'}
 fbTest1 : FB_BLOCK1;
 fbTest2 : FB_BLOCK1;
END_VAR

FUNCTION_BLOCK FB_BLOCK1
VAR_INPUT
 {attribute 'OPC.UA.DA' := '1'}
 ni1 : INT;
 ni2 : INT;
END_VAR
VAR_OUTPUT
 {attribute 'OPC.UA.DA' := '1'}
 no1 : INT;
 no2 : INT;
END_VAR
VAR
 {attribute 'OPC.UA.DA' := '1'}
 nx1 : INT;
 nx2 : INT;
END_VAR

The instance fbTest1 now receives the pragma, which means that all the symbols it contains are also
automatically enabled for OPC UA, i.e. fbTest.ni1, fbTest.ni2, etc. The instance fbTest2, on the other hand,
does not receive the pragma, but the three variables ni1, no1 and nx1 it contains are marked with the
pragma. They are therefore available in all instances via OPC UA.

Configuration of the server

You can now use the TwinCAT OPC UA Configurator to configure the TwinCAT OPC UA Server so that it
reads the generated symbol file and makes the PLC runtime available as a data access device in its address
space.

To do this, add a new device in the Data Access tab of the TwinCAT OPC UA Configurator. Select the AMS
Net ID of your device and enter the ADS port of the PLC runtime. You can find the ADS port in the properties
of the PLC project:

Technical introduction

TS6100 47Version: 1.0.0

Now select the entry "TwinCAT 3 PLC (TMC) - Filtered" from the selection list in the "Type" field. In the
"SymbolFile" field, select the symbol file (TMC) that was created after activating the TwinCAT PLC project
and should now be located in the boot directory. Alternatively, you can also use the online symbolism
[} 59].

You can leave all other settings at their default values.

4.8.3.2 C++
This section describes how to configure the namespace of the TwinCAT OPC UA Server in order to obtain
access to the symbols of a TwinCAT 3 C++ module. This requires the following steps to be carried out:

• Activating the symbol file
• Enabling symbols
• Configuration of the server

These steps are described in more detail below.

Activating the symbol file

To configure certain symbols contained in an instance of a C++ module so that they become accessible via
OPC UA, you must first activate the download of the symbol file for the module instance. This copies the
symbol file to the boot directory of the target device when the configuration is activated.

Technical introduction

TS610048 Version: 1.0.0

Activate the download of the symbol file by setting the following option in the properties of the module
instance:

The generated symbol file (TMI) is always named after the ObjectId of the module instance and is now
copied to the boot directory of the target device when activated, for example:
%TwinCATInstallDir%\3.1\Boot\Tmi\Obj_01010010.tmi

Enabling symbols

You can use the TMC Code Generator to define which symbols are to be enabled via OPC UA. Two settings
are required for this. First activate the "Create Symbol" checkbox for each symbol to be enabled in the TMC
Code Generator. Then add an optional property with the key "OPC.UA.DA" and the value "1".

Technical introduction

TS6100 49Version: 1.0.0

Configuration of the server

You can now use the TwinCAT OPC UA Configurator to configure the TwinCAT OPC UA Server so that it
reads the generated symbol file and makes the C++ module instance available as a data access device in its
address space.

To do this, add a new device in the Data Access tab of the TwinCAT OPC UA Configurator. Select the AMS
Net ID of your device and enter the ADS port of the TwinCAT 3 C++ module instance. You can find the ADS
port in the properties of the task connected to the C++ module instance:

Now select the entry "TwinCAT 3 C++ (TMI) - Filtered" from the selection list in the "Type" field. In the
"SymbolFile" field, select the symbol file (TMI) that was created after activating the TwinCAT 3 C++ project
and should now be located in the boot directory. Alternatively, you can also use the online symbolism
[} 59].

Technical introduction

TS610050 Version: 1.0.0

You can leave all other settings at their default values.

4.8.3.2.1 Arrays
By default arrays are regarded as individual nodes in the UA namespace. This means that if you define, for
example, an array dyn_BOOL[10] in the PLC (and have also enabled it for OPC UA), it will subsequently
appear in the UA namespace as follows:

The advantage of this approach is a considerable reduction in the complexity of the UA namespace and in
memory consumption, since not every position of an array needs to be made available as an individual node
in the namespace. However, modern UA Clients can continue to access the individual array positions via the
so-called "RangeOffset".

In order to support older UA Clients that don’t offer this feature, however, you can also make the positions of
an array available as individual nodes in the UA namespace. It is illustrated as follows:

This setting is available by activating the Legacy Array Handling option in the UA Configurator within the
respective namespace configuration.

Depending on the scope of the PLC project, the UA namespace can become significantly more complex,
which in turn is reflected in an increased memory utilization of the UA Server.

Technical introduction

TS6100 51Version: 1.0.0

Changes to the settings listed above only become active after restarting the UA Server.

4.8.3.3 Matlab/Simulink
This section describes how to configure the namespace of the TwinCAT OPC UA Server in order to obtain
access to the symbols of a TwinCAT 3 Matlab/Simulink module. This requires the following steps to be
carried out:

• Activating the symbol file
• Enabling symbols
• Configuration of the server

These steps are described in more detail below.

Activating the symbol file

To configure certain symbols contained in an instance of a C++ module so that they become accessible via
OPC UA, you must first activate the download of the symbol file for the module instance. This copies the
symbol file to the boot directory of the target device when the configuration is activated.

Activate the download of the symbol file by setting the following option in the properties of the module
instance:

The generated symbol file (TMI) is always named after the ObjectId of the module instance and is now
copied to the boot directory of the target device when activated, for example:
%TwinCATInstallDir%\3.1\Boot\Tmi\Obj_01010010.tmi

Enabling symbols

The TE1400 Target for Simulink product offers various setting options for selecting variables that are to be
enabled via OPC UA. These settings are described in the corresponding TE1400 product documentation.

Configuration of the server

You can now use the TwinCAT OPC UA Configurator to configure the TwinCAT OPC UA Server so that it
reads the generated symbol file and makes the Matlab/Simulink module instance available as a data access
device in its address space.

To do this, add a new device in the Data Access tab of the TwinCAT OPC UA Configurator. Select the AMS
Net ID of your device and enter the ADS port of the TwinCAT 3 Matlab/Simulink module instance. You can
find the ADS port in the properties of the task connected to the module instance:

https://infosys.beckhoff.com/content/1033/te1400_tc3_target_matlab/13795261963.html?id=4779952113069292021

Technical introduction

TS610052 Version: 1.0.0

Now select the entry "TwinCAT 3 C++ (TMI) - Filtered" from the selection list in the "Type" field. In the
"SymbolFile" field, select the symbol file (TMI) that was created after activating the TwinCAT 3 C++ project
and should now be located in the boot directory. Alternatively, you can also use the online symbolism
[} 59].

You can leave all other settings at their default values.

Technical introduction

TS6100 53Version: 1.0.0

4.8.3.4 EtherCAT Master
This section describes how to configure the namespace of the TwinCAT OPC UA Server in order to obtain
access to the symbols of an EtherCAT master. This requires the following steps to be carried out:

• Activating the symbol file
• Configuration of the server
• [optional] Change the namespace structure

These steps are described in more detail below.

Activating the symbol file

To make the symbols of an EtherCAT master available via OPC UA, you must first activate the ADS server
in the image of the EtherCAT master and the generation of the symbols. This enables access to the symbols
via ADS. In the same dialog, you will also find the ADS port, which will be required later in the configuration
process.

By activating the "Generate .tmc file" and "Copy .tmc file to target" parameters, a symbol file is generated
and automatically downloaded to the target device when the configuration is activated. This is then located in
the TwinCAT boot directory and has the ADS port in the file name for easy identification, for example:
%TwinCATInstallDir%\3.1\Boot\Io\Port_27905.tmc

Configuration of the server

You can now use the TwinCAT OPC UA Configurator to configure the TwinCAT OPC UA Server so that it
reads the generated symbol file and makes the EtherCAT master available as a data access device in its
address space.

Add a new device in the Data Access tab of the TwinCAT OPC UA Configurator. Select the AMS Net ID of
your device and enter the ADS port of the EtherCAT master image (see above).

Technical introduction

TS610054 Version: 1.0.0

Now select the "EtherCAT Master (TMC)" entry from the selection list in the "Type" field. In the "SymbolFile"
field, select the symbol file (TMC) that was created after activating the TwinCAT project and should now be
located in the boot directory. Alternatively, you can also use the online symbolism [} 59].

You can leave all other settings at their default values.

Changing the namespace structure

The parameter "Generate hierarchical symbol names" enables a different structure of the symbol space,
which also has a direct effect on the namespace of the TwinCAT OPC UA Server.

Technical introduction

TS6100 55Version: 1.0.0

Let's take the following EtherCAT master configuration in TwinCAT XAE as an example:

If this option is activated, the namespace reflects the structure in TwinCAT XAE:

Technical introduction

TS610056 Version: 1.0.0

If this option is disabled, the namespace is structured "flatter":

Technical introduction

TS6100 57Version: 1.0.0

4.8.3.5 I/O task
This section describes how to configure the namespace of the TwinCAT OPC UA Server in order to gain
access to the symbols of a task with process image. This requires the following steps to be carried out:

• Activating the symbolism
• Configuration of the server

Activating the symbolism

You can provide the variables of a task with a process image via OPC UA. To do this, you must enable the
"Create symbols" option in the task settings. This generates symbols and makes them available via the
online symbolism [} 59]. In the same dialog, you will also find the ADS port, which will be required later in
the configuration process.

Technical introduction

TS610058 Version: 1.0.0

Configuration of the server

You can now use the TwinCAT OPC UA Configurator to configure the TwinCAT OPC UA Server so that it
accesses the online symbolism of the task and makes them available in its address space.

Add a new device in the Data Access tab of the TwinCAT OPC UA Configurator. Select the AMS Net ID of
your device and enter the ADS port of the task (see above).

In the selection list of the "Type" field, select the "TwinCAT Symbol Server" entry.

After activating the TwinCAT project, the symbols are ready and the TwinCAT OPC UA Server can read
them and build up its address space accordingly.

Technical introduction

TS6100 59Version: 1.0.0

4.8.3.6 Online symbolism
The TwinCAT OPC UA Server enables symbol information to be read via the so-called "online symbolism".
This is a standardized ADS interface, which is offered by some ADS servers in TwinCAT. This interface is
often referred to as "Symbol Upload". The interface enables an ADS client to read all available symbols from
the ADS server and process them further if necessary. In addition to the address information of the symbols,
further information is also provided, such as data type descriptions and optional attributes.

The optional attributes can be used to explicitly enable symbols or to make further settings for this purpose -
the handling is identical to the use of symbol files and runs, for example, via pragmas in the PLC or the TMC
Code Generator for TwinCAT 3 C++. This means that you can use all the enables that you have set there
both via the symbol file import and the online symbols. Please note that not all real-time environments allow
the explicit enabling of symbols. In this case, all symbols are always provided. The following table provides
an overview of some ADS servers that provide the online symbolism interface and whether explicit symbol
enabling is available.

Type ADS Port Symbol enable
TwinCAT 2 PLC 801, 811, 821, ... Yes
TwinCAT 3 PLC 851, 852, 853, ... Yes
TwinCAT 3 C++ / Matlab/Simulink 350, 351, 352, ... Yes
TwinCAT 3 EtherCAT Master 27905, 27906, ... No (all symbols are

enabled)
TwinCAT 3 I/O Task with Image 301, 302, 303, ... No (all symbols are

enabled)

In the TwinCAT OPC UA Configurator, the online symbol mechanism is available in two forms when
configuring a Data Access device:

• TwinCAT Symbol Server: All symbols are imported
• TwinCAT Symbol Server - Filtered: Only enabled symbols are imported

Technical introduction

TS610060 Version: 1.0.0

In the structure of its namespace, the TwinCAT OPC UA Server is based on the namespace of the ADS
symbolism. As the data is available here, it is also provided via OPC UA.

4.8.4 Nodesets
The TwinCAT OPC UA Server allows the import of OPC UA Nodeset files. A nodeset can define data types
and instances, for example as part of a companion specification, which are available within the nodeset in an
XML structure (standardized by the OPC Foundation).

Using the TE6100 OPC UA Nodeset Editor software, such nodeset files can be created, modified and linked
with symbols from a TwinCAT real-time environment. The nodeset can then be imported into the
TwinCAT OPC UA Server and used there.

Further information on this topic can be found in the TE6100 OPC UA Nodeset Editor product
documentation.

The following screenshot shows an example of the workflow for using both TwinCAT functions.

Technical introduction

TS6100 61Version: 1.0.0

4.8.5 Data types
The IEC 61131-3 data types are mapped to OPC UA data types in accordance with the PLCopen mapping
specification. The following table shows the specified mapping.

PLC OPC UA
BOOL Boolean
SINT SByte
INT Int16
DINT Int32
LINT Int64
USINT Byte
UINT UInt16
UDINT UInt32
ULINT UInt64
REAL Float
LREAL Double
TIME Int64
LTIME Int64

TIME/LTIME
For the TIME and LTIME data types, there are special features to observe with regard to mapping
between PLC and OPC UA data types, see the following section.

TIME and LTIME

In the PLCopen mapping of IEC 61131-3, both TIME and LTIME are mapped to the Int64 data type. The
data areas of the IEC61131-3 data types UDINT and ULINT, on the other hand, correspond to UInt32 and
UInt64.

Data type Lower limit Upper limit Mapping in time
TIME (UDINT) 0 4294967295 49d17h2m47s295ms
LTIME (ULINT) 0 18446744073709551615 213503d23h34m33s709m

s551us615ns
Int64 -9223372036854775808 9223372036854775807 -

The behavior of the server when handling these two data types is explained in the following list:

TIME
• The possible value range can be seen in the table.

Technical introduction

TS610062 Version: 1.0.0

• For all other values (<0 and >4294967295), the server returns the status code BadOutOfRange when
written by an OPC UA client.

LTIME
• The possible value range can also be seen in the table.
• For all values <0, the server returns the status code BadOutOfRange when written by an

OPC UA client.
• Values >9223372036854775807 cannot be mapped with the value range of Int64 and therefore cannot

be written via OPC UA. However, they can be written in the PLC. In this case, the value of the affected
OPC UA variables in the server becomes zero. In addition, the StatusCode of the variable is set to
BadOutOfRange.

4.8.6 Arrays
By default, arrays are mapped as individual nodes in the server's address space. An OPC UA client still has
the option of accessing individual elements of the array.

The following array in the PLC would thus be displayed as a single node, with the array limits being defined
via the node attributes.
{attribute 'OPC.UA.DA' := '1'}
arrMyArray : ARRAY[0..3] OF INT;

The advantage is a considerable reduction in the complexity of the server address space and memory
consumption, since not every position of an array needs to be made available as an individual node in the
namespace.

Older OPC UA clients may not yet support this function. Therefore, a special configuration switch enables all
individual elements of an array to be provided as individual nodes in the namespace. This is as follows:

Technical introduction

TS6100 63Version: 1.0.0

In addition to the root element of the array, all individual elements are also available as separate nodes. This
configuration switch is available by activating the "LegacyArrayHandling" option on a data access device in
the TwinCAT OPC UA Configurator.

Technical introduction

TS610064 Version: 1.0.0

Increased storage requirements
Activating this configuration switch significantly increases the address space of the server.
Depending on the scope of the project and especially when using nested, complex arrays, this
results in increased memory load of the TwinCAT OPC UA Server.
Make sure that your hardware device has sufficient main memory.

4.8.7 Enums
Enumerations in OPC UA always have the data type Int32. However, the IEC 61131-3 standard allows the
definition of larger data types than Int32. To ensure that these enumerations are handled properly, the
TwinCAT OPC UA Server offers the configuration option <ImportBigEnumsNumeric>, which can be enabled
in its Data Access configuration file.

This option is set to FALSE by default. This means that a status code exception BadOutOfRange is triggered
if the enumeration value is outside the Int32 range.

If the option is set to TRUE, enumerations with data types greater than Int32 are treated as regular variables
with this particular data type.

Let's assume we have the following enumeration definitions in our PLC code:
TYPE E_Enum_Normal :
(
 enum_member_0 := 0,
 enum_member_1 := 1,
 enum_member_2 := 2
);
END_TYPE

TYPE E_Enum_NotSoBig :
(
 enum_member_0 := 0,
 enum_member_1 := 1,
 enum_member_2 := 2
) UINT;
END_TYPE

TYPE E_Enum_VeryBig :

Technical introduction

TS6100 65Version: 1.0.0

(
 enum_member_0 := 0,
 enum_member_1 := 1,
 enum_member_2 := 2
) LINT;
END_TYPE

If the above configuration option is activated, instances of E_Enum_VeryBig are treated as regular variables
of data type Int64 in the server namespace, while instances of E_Enum_Normal and E_Enum_NotSoBig are
treated as OPC UA enumeration (with data type Int32):

4.8.8 Structures
Requirements
This functionality is only available for Data Access [} 39] devices based on TwinCAT 3 and the
import of TMC symbol files [} 43].

The TwinCAT OPC UA Server enables the use of so-called StructuredTypes for structures from the
TwinCAT 3 PLC. StructuredTypes allow structures to be read or written in a data-consistent manner and the
type description of the structure to be made available to the client.

You can use a special pragma to define a structure as a StructuredType and make it available. If this pragma
is not set, the structure is not loaded into the server's address space as a StructuredType, but is displayed
as a FolderType. The member variables of the structure are displayed as separate nodes that can be
accessed.

The following sample of a structure in the TwinCAT 3 PLC is given:
TYPE ST_Communication :
STRUCT
 a : INT;
 b : INT;
 c : INT;
END_STRUCT
END_TYPE

This structure is now instantiated in the MAIN program and enabled for OPC UA via a pragma, as described
in the chapter Enabling (PLC) symbols [} 45].
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '1'}
 stCommunication : ST_Communication;
END_VAR

The structure instance is now provided in the server as follows by default:

Technical introduction

TS610066 Version: 1.0.0

The individual member variables of the structure can now be accessed, but not the root element of the
structure. As a result, data-consistent access to the entire structure may not be possible.

Using another pragma, this structure instance is now defined as a StructuredType.
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '1'}
 {attribute 'OPC.UA.DA.StructuredType' := '1'}
 stCommunication : ST_Communication;
END_VAR

The instance is then provided in the TwinCAT OPC UA Server as follows:

When the root element is read, the structure information is provided in a data-consistent manner via OPC UA
and can be processed by a client. In addition, the member variables are also displayed as separate nodes
and can be accessed. You can deactivate this via a special attribute. The member variables can then only be
accessed via the StructuredType, as shown in the following sample:
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '2'}
 {attribute 'OPC.UA.DA.StructuredType' := '1'}
 stCommunication : ST_Communication;
END_VAR

Technical introduction

TS6100 67Version: 1.0.0

This is primarily a memory optimization of the server, as also described in the chapter Optimizations [} 32],
because main memory must be allocated for each node in the address space.

You do not necessarily have to place the pragmas at every instance of a structure, but can also do this once
at the structure definition. In this case, all instances of this structure are automatically enabled for OPC UA
as StructuredType.
{attribute 'OPC.UA.DA' := '1'}
{attribute 'OPC.UA.DA.StructuredType' := '1'}
TYPE ST_Communication :
STRUCT
 a : INT;
 b : INT;
 c : INT;
END_STRUCT
END_TYPE

In this case, you can also explicitly deactivate the StructuredType definition for certain instances by using the
following attribute:
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA.StructuredType' := '0'}
 stCommunication : ST_Communication;
END_VAR

StructuredType for function blocks

You can also use StructuredTypes with PLC function blocks. In this case, a function block instance receives
a child node called "FunctionBlock", which represents the entire function block as a StructuredType.
Consider the following sample:
FUNCTION_BLOCK FB_FunctionBlock
VAR_INPUT
 Input1 : INT;
 Input2 : LREAL;
END_VAR
VAR_OUTPUT
 Output1 : LREAL;
END_VAR

An instance of the function block is created in the MAIN program and both enabled for OPC UA and defined
as a StructuredType via pragmas.

Technical introduction

TS610068 Version: 1.0.0

PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '1'}
 {attribute 'OPC.UA.DA.StructuredType' := '1'}
 fbFunctionBlock : FB_FunctionBlock;
END_VAR

The TwinCAT OPC UA then provides the function block instance as follows:

The definition locations of pragmas mentioned above for structures also apply to function blocks. You can
also explicitly hide the member variables of a function block here.

Restrictions

The following restrictions apply when using StructuredTypes.

Pointers and references
If pointer and reference types are used in the structure, they cannot be converted into a
StructuredType. The OPC UA Server then illustrates these structures as regular FolderTypes with
the corresponding member variables.

Maximum size of the structure
The maximum size of a structure is limited to 16 kB by default. If the size of the structure exceeds
this limit, structure instances are displayed as FolderType. You can increase this limit if necessary.
The background is described in more detail in the chapter Optimizations [} 32]. Each STRUCT
constantly exchanges data with the basic ADS device, i.e. a large ADS message is sent with each
read/write command of a StructuredType. To prevent the ADS router from being flooded with large
messages, the maximum size is limited.

4.8.9 Properties
Requirements
This functionality is only available for Data Access [} 39] devices based on TwinCAT 3 and the
import of TMC [} 43] symbol files, as well as the online symbolism.

The display of PLC properties in the server namespace has been supported since TwinCAT 3.1 Build 4024.
All you need to do is set two special PLC attributes on the Property so that the Property is imported into the
namespace and represented there as a UA Property. Sample:

Technical introduction

TS6100 69Version: 1.0.0

{attribute 'OPC.UA.DA.Property' := '1'}
{attribute 'monitoring' := 'call'}
PROPERTY Property_1 : BOOL

The function block on which the Property is defined must contain the normal PLC attribute for enabling
symbols.

In the configuration file TcUaDaConfig.xml the handling of PLC properties can be defined globally. The
"ImportPlcProperties" flag is used for this purpose.

Value Description
false Displays all properties in the OPC UA namespace for

which both the OPC.UA.DA.Property and the
monitoring attribute have been set.

true Displays all properties in the OPC UA namespace
where the monitoring attribute has been set.

4.8.10 StatusCode
Requirements
This functionality is only available for Data Access [} 39] devices based on TwinCAT 3 and the
import of TMC symbol files [} 43].

The TwinCAT OPC UA Server enables the adaptation of the OPC UA Status Code for a specific PLC
symbol. Carry out the following steps to be able to change the StatusCode of a symbol at runtime.

Creating a structure

To ensure data consistency, the concept is based on a structure (see Structured Types). Each symbol for
which the StatusCode is to be changed must be packaged in a structure.

Create a new structure and add the following pragma before the structure definition. The structure contains
the symbol itself and a variable of data type DINT, which represents the StatusCode in decimal form.
{attribute 'OPC.UA.DA.StructuredType' := '1'}
{attribute 'OPC.UA.DA.StatusAndValue' := '1'}
TYPE ST_StatusCodeSimple :
STRUCT
 value : REAL;
 status : DINT := -2147155968; // equals 'BadCommunicationError'
END_STRUCT
END_TYPE

You can also use complex symbols, for example:
{attribute 'OPC.UA.DA.StructuredType' := '1'}
{attribute 'OPC.UA.DA.StatusAndValue' := '1'}
TYPE ST_StatusCodeComplex :
STRUCT
 {attribute 'OPC.UA.DA.StructuredType' := '1'}
 value : ST_Complex_1;
 status : DINT := -2146762752; // equals 'BadServiceUnsupported'
END_STRUCT
END_TYPE

Now create an instance of this structure, e.g. in the MAIN program, and add the pragma to enable the
instance via OPC UA.
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '1'}
 stStatusCodeSimple : ST_StatusCodeSimple;
 {attribute 'OPC.UA.DA' := '1'}
 stStatusCodeComplex : ST_StatusCodeComplex;
END_VAR

Technical introduction

TS610070 Version: 1.0.0

The defined structure instances are now provided with the data type of the member variables defined as
"value" in the TwinCAT OPC UA Server.

Changing the StatusCode at runtime

To change the StatusCode at runtime, simply edit the value of the member variable "status". If you set this to
"-2147155968", as in the sample above, the StatusCode changes to "BadCommunicationError".

However, if you set the value to "0", the StatusCode changes to "Good".

Technical introduction

TS6100 71Version: 1.0.0

The decimal value used here is defined by the OPC UA specification. The latest version of the StatusCode
mapping can be viewed here. The table below lists some common StatusCodes and their numerical
representation.

StatusCode Hex Decimal
Good 0x00000000 0
Uncertain 0x40000000 1073741824
Bad 0x80000000 -2147483648
BadUnexpectedError 0x80010000 -2147418112
BadInternalError 0x80020000 -2147352576
BadCommunicationError 0x80050000 -2147155968
BadTimeout 0x800A0000 -2146828288
BadServiceNotSupported 0x800B0000 -2146762752

When calculating the decimal representation of a StatusCode on the basis of its hexadecimal representation,
please note that your computer is set to DWORD, for example the Windows computer ("Programmer" view).

4.8.11 AnalogItemType
Requirements
This functionality is only available for Data Access [} 39] devices based on TwinCAT 3 and the
import of TMC symbol files [} 43].

AnalogItemTypes are part of the OPC UA specification and allow meta information such as units to be
attached to a variable. You can define these items of meta information in the form of PLC attributes in the
TwinCAT 3 PLC.

The following parameters can be set:

https://reference.opcfoundation.org/files/StatusCode.csv?u=http://opcfoundation.org/UA/

Technical introduction

TS610072 Version: 1.0.0

• EngineeringUnits: Units defined by the OPC UA specification
• EURange: Maximum value range of the variables
• InstrumentRange: Maximum value range of the variables
• WriteBehavior: Behavior if the value range is exceeded during a write operation.

The following sample shows how the fillLevel variable is configured as an AnalogItemType. The following
parameters are set:

• Unit: 20529 ("Percent", defined in the OPC UA specification)
• Max. value range: 0 to 100
• Normal value range: 10 to 90
• Write behavior: 1 (Clamping)

{attribute 'OPC.UA.DA' := '1'}
{attribute 'OPC.UA.DA.AnalogItemType' := '1'}
{attribute 'OPC.UA.DA.AnalogItemType.EngineeringUnits' := '20529'}
{attribute 'OPC.UA.DA.AnalogItemType.EURange' := '0:100'}
{attribute 'OPC.UA.DA.AnalogItemType.InstrumentRange' := '10:90'}
{attribute 'OPC.UA.DA.AnalogItemType.WriteBehavior' := '1'}
fillLevel : UINT;

EngineeringUnits can be configured using the IDs specified in OPC UA (Part 8 of the OPC UA specification).
The IDs are based on the widely used and accepted "Codes for Units of Measurement (Recommendation
N.20)" published by the "United Nations Center for Trade Facilitation and Electronic Business".
CommonCode, which specifies the three-digit alphanumeric ID, is converted by OPC UA according to
specification into an Int32 value and referenced (extract from OPC UA specification v1.02, pseudo-code):
Int32 unitId = 0;
Int32 c;
for (i=0; i<=3;i++)
{
 c = CommonCode[i];
 if (c == 0)
 break; // end of Common Code
 unitId = unitId << 8; // shift left
 unitId = unitId | c; // OR operation
}

Write behavior

When writing an AnalogItemType variable, you can define how the OPC UA Server should handle the new
value in relation to the value range. The following options are available:

• 0: All values are allowed and are accepted during a write operation.
• 1: The value to be written is truncated according to the value range.
• 2: The value to be written is rejected if it exceeds the value range.

4.8.12 Description
Requirements
This functionality is only available for Data Access [} 39] devices based on TwinCAT 3 and the
import of TMC and TMI [} 43] symbol files, as well as the online symbolism.

The following TwinCAT 3 PLC [} 45] pragma can be used to set the OPC UA attribute "Description" for a
symbol.
{attribute 'OPC.UA.DA' := '1'}
{attribute 'OPC.UA.DA.Description' := 'Some description for the symbol'}
nMyCounter : INT;

Technical introduction

TS6100 73Version: 1.0.0

In the case of TwinCAT 3 C++ [} 47], you can also use this pragma in the TMC Code Generator to set a
description for the node. Please note that this feature is only available under TwinCAT 3 C++ when using
online symbolism [} 59].

Technical introduction

TS610074 Version: 1.0.0

4.8.13 ReadOnly
Requirements
This functionality is only available for Data Access [} 39] devices based on TwinCAT 3 and the
import of TMC symbol files [} 43].

The following pragma can be used to set a symbol read-only. The server then acknowledges write
operations by an OPC UA client with the StatusCode BadNotWriteable.
{attribute 'OPC.UA.DA' := '1'}
{attribute 'OPC.UA.DA.Access' := '1'}
nMyCounter : INT;

In the case of TwinCAT 3 C++ [} 47], you can also use this pragma in the TMC Code Generator to mark a
node as read-only. Please note that this feature is only available under TwinCAT 3 C++ when using online
symbolism [} 59].

Technical introduction

TS6100 75Version: 1.0.0

4.8.14 Alias
Requirements
This functionality is only available for Data Access [} 39] devices based on TwinCAT 3 and the
import of TMC [} 43] symbol files, as well as the online symbolism.

With the following pragma, a symbol can have a different name in the OPC UA address space.
{attribute 'OPC.UA.DA' := '1'}
{attribute 'OPC.UA.DA.Alias' := 'MyFancyOpcUaAlias'}
nMyCounter : INT;

The NodeID as well as the BrowseName and DisplayName are set to the alias value accordingly.

Technical introduction

TS610076 Version: 1.0.0

In the case of TwinCAT 3 C++ [} 47], you can also use this pragma in the TMC Code Generator to set an
alias for the node. Please note that this feature is only available under TwinCAT 3 C++ when using online
symbolism [} 59].

4.8.15 Pointers and references

Pointer

Pointer variables (e.g. POINTER TO) are generally not represented by the server in the namespace. If a
pointer variable is located in a structure and this structure has been configured as Structured Data Type, the
structure will not be displayed as Structured Data Type but as FolderType.

Technical introduction

TS6100 77Version: 1.0.0

References

Reference variables (REFERENCE TO) are represented as single variables by the server in the namespace
and can be read without restrictions. If a reference is inside a structure, this structure can no longer be made
available as StructuredTypes in the server, but only as FolderType. However, access to the individual
reference variables within the structure works.

4.8.16 Type system
Requirements
This functionality is only available for Data Access [} 39] devices based on TwinCAT 3 and the
import of TMC [} 43] symbol files, as well as the online symbolism.

One of the biggest advantages of OPC UA is the meta-model, which can be used to provide base types as
well as to extend the type system with custom models. The same mechanism is used to represent real
objects (nodes) so that OPC UA clients can determine an object type.

The OPC UA server publishes type information from the IEC61131 world in its namespace. This includes not
only base types such as BOOL, INT, DINT or REAL, but also extended type information such as the current
class (function block) or structure that represents an object.

Type information

Type information is part of the UA namespace. The OPC UA server extends the base type information as
follows:

• Local type information that is only valid for one runtime is stored in the same namespace as the
runtime symbols.

• Global type information that can be valid for different runtimes is stored in a separate global
namespace.

The type system is also virtually available and can be viewed in the Types area of the OPC UA server:

Every non-standard data type is entered in the BeckhoffCtrlTypes area.

Basics

Assuming the TwinCAT 3 PLC consists of a PLC program with different STRUCTs. Each STRUCT is
represented as a node in a UA namespace, with each element of the structure as a subordinate node.

In this sample the STRUCT stSampleStruct consists of three subordinate elements: one variable nValue1 of
the type INT, one variable bValue2 of the type BOOL and a further STRUCT stSubStruct, which contains
only one subordinate element (variable nValue of the type INT).

Technical introduction

TS610078 Version: 1.0.0

The structure itself is a regular variable in the UA namespace and has the data type ByteString. The clients
can therefore simply be connected to the root element (the structure itself), and its values can be read/
written by interpreting the ByteString. To simplify the interpretation of each subordinate element, the type
system contains more information about the structure itself, primarily in the instance reference:

In addition, the type system contains more information about ST_SampleStruct:

And in the references of ST_SampleStruct:

Overall, the type system can offer very useful information if a Client wants to interpret the structure further.

Technical introduction

TS6100 79Version: 1.0.0

Object-orientated extensions

Assuming the TwinCAT 3 PLC runtime contains a PLC program whose structure can be visualized as
follows:

The two function blocks Scanner and Drive are derived from the base class Device by using object-oriented
extensions of IEC61131-3. The program MAIN now contains the following declarations:
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA':='1'}
 Scanner1 : Scanner;
 {attribute 'OPC.UA.DA':='1'}
 Scanner2 : Scanner;
 {attribute 'OPC.UA.DA':='1'}
 DriveX : Drive;
END_VAR

All three objects are of type Device, but also of their special data type. The OPC UA server imports the
objects as follows:

The base data type can now be determined in the reference of each object, e.g. object Scanner1:

Technical introduction

TS610080 Version: 1.0.0

According to the basic IEC61131 program, the object Scanner1 is of the data type Scanner and also shows
which variables are contained and what type the variable is: input, output or internal (local) variable. The
diagram above shows that not only the variables of the actual function block are displayed here, but also the
derived variables of the base class. The entire IEC61131-3 inheritance chain is represented in the UA
namespace.

4.8.17 DI Components
Each PLC namespace on the server contains a number of nodes that can be used to specify static meta-
information about the PLC. This optional information can be specified in the TcUaDaConfig.xml for each
namespace.

The following table provides more information about these nodes. The concrete value assignments of the
individual nodes can be application-specific to a large extent, therefore only example values are used in the
delivery state of the server. The server itself makes these nodes available in its namespace, but does not
independently change their value assignments.

Technical introduction

TS6100 81Version: 1.0.0

Node Description
DeviceManual Allows you to specify an address where the device

manual can be found, e.g. a path in the file system or
a web address.

DeviceRevision Contains the revision level of a hardware component
or the entire device.

HardwareRevision Contains the revision level of the hardware.
Manufacturer Contains the name of the device manufacturer,

usually as FQDN (Fully Qualified Domain Name), e.g.
beckhoff.com.

Model Includes the name of the "product" (if applicable).
RevisionCounter May include a counter of how many times the

configuration of the device has been updated.
SerialNumber Unique serial number of the device, as assigned by

the device manufacturer.
SoftwareRevision Contains the version or revision level of the software

component, the firmware of a hardware component
or even the firmware of the device.

4.8.18 DeviceState
Each namespace in the TwinCAT OPC UA Server contains a DeviceState object.

This object indicates the state of the lower-level ADS device by means of various properties.
typedef enum
{
 UADEV_NOTINIT = 0x0100,
 UADEV_STARTING = 0x0110,
 UADEV_CONNECTED = 0x0120,
 UADEV_SHUTDOWN = 0x0130,
 UADEV_ERROR = 0xF000
}UaDeviceState;

If the device is in an ERROR state, the ErrorCode Property returns the following values:
#define UA_DEVSTATE_INVALID_STATE 0x80EB0010
#define UA_DEVSTATE_CREATE_NS_FAILED 0x80EB0011
#define UA_DEVSTATE_LOAD_NS_FAILED 0x80EB0012
#define UA_DEVSTATE_INVALID_IO_SETTING 0x80EB0100

A corresponding error message is displayed in the ErrorMessage Property.

4.8.19 ServerState
The ServerState variable in the server namespace indicates the current state of the server. The following
table gives an overview of the possible variable values.

Technical introduction

TS610082 Version: 1.0.0

Variable value Description
Running The server has been successfully booted.
Failed A problem was found in one of the server configuration files, e.g. an

invalid configuration in TcUaSecurityConfig.xml.
NoConfiguration The server has not yet been initialized.
Suspended The server has not yet been completely booted, i.e. not all functions

may be available yet.

4.9 Historical Access

4.9.1 Overview
This chapter describes the steps required for configuring the variables in the namespace of the
TwinCAT OPC UA Server for Historical Access (HA).

Historical Access is an OPC UA function in which (historical) variable values are stored in a memory (e.g. a
file or a database) and made accessible to clients via a standardized interface. Here you can configure how
the TwinCAT OPC UA Server reads and saves the variable values.

Requirements
This configuration can be carried out for variables from any runtime system [} 40] (e.g. TwinCAT
PLC or TwinCAT 3 C++, ...). As a prerequisite, the respective variable must first be enabled for
OPC UA. You can find out how to do this in our Quick Start [} 18] tutorial.

Memory types

The individual memory types are configured as so-called "HistoryAdapters" in the TwinCAT OPC UA Server.
This is done via the TwinCAT OPC UA Server configurator. Each HistoryAdapter (except for the adapter type
"Main memory" (Volatile)) can be used multiple times, e.g. if the historical values for individual variables are
to be stored in different data memories.

Technical introduction

TS6100 83Version: 1.0.0

Sampling of the variable values

The TwinCAT OPC UA Server can receive variable values in two different ways:

1. Using its own sampling engine and
2. From an OPC UA client (via the so-called "HistoryUpdate" function)

The sampling rate at which the variable is to be sampled from the lower-level real-time system and stored in
the memory is configured for each variable in the separate sampling engine. The time at which the server
read the variable value from the real-time is used as the timestamp.

With the HistoryUpdate function, on the other hand, the server receives both the variable value and the
timestamp from a connected OPC UA client and therefore does not perform its own sampling.

4.9.2 Supported functions
The following prerequisites apply to the use of Historical Access:

• The runtime system whose symbols are to be stored for Historical Access must be configured for Data
Access (and the respective variables must be enabled).

• In order to use an SQL Compact database as a storage medium, SQL Compact Runtime 3.5 SP2 must
be installed on the computer on which the OPC UA Server is running.

• SQL Compact databases are also supported under Windows CE.
• SQL Server databases are not supported under Windows CE.
• The following MS SQL Server versions are supported: 2017, 2019
• The following recommendations apply when using the respective memory type:

Main memory: number of entries < 5000
File system: number of entries < 10000
Database: number of entries >= 10000

Memory types

The following memory types are supported:

Technical introduction

TS610084 Version: 1.0.0

Memory type TF6100 Server Setup
version

Operating systems Description

Main memory 4.x and 5.x Windows, Windows CE,
TwinCAT/BSD

Saves the values in the RAM
of the device on which the
OPC UA Server is running. No
further parameters are
required. After restarting the
device, the stored values are
no longer available. The
storage medium is therefore
not persistent. The above
requirements and
recommendations apply.

File system 4.x Windows, Windows CE Saves the values in several
files, the location of which can
be specified. Each symbol
configured for this storage
medium is assigned its own file
in this directory. In addition,
there is a backup copy of the
file for each symbol, which is
created when the buffer size is
reached. The contents of the
data file are then saved as a
backup copy, and a new file is
created. The above
requirements and
recommendations apply.

SQL Compact
database

4.x Windows, Windows CE Saves the values to an SQL
Compact database, the
location of which can be
specified. The above
requirements and
recommendations apply.

MS SQL Server
database

4.x Windows Saves the values in an SQL
Server database that is
referenced with various
parameters. The above
requirements and
recommendations apply.

TwinCAT Analytics
[} 86]

5.x Windows, TwinCAT/BSD Saves the values in a file
format that corresponds to the
TwinCAT Analytics storage
format. The data can therefore
be used further with the
TwinCAT Analytics Toolchain.
This format has replaced the
old file-based storage format
since TF6100 version 5.x (see
above).

4.9.3 Configuration
You can use the TwinCAT OPC UA Configurator to configure the Historical Access functionality.
To configure a symbol for Historical Access, you must perform three steps:

1. The symbol must have been enabled for Data Access (see chapter Enabling symbols [} 43]).
2. A memory type must be created in which the symbol values are to be saved.
3. Configuration parameters must be defined for the symbol.

Technical introduction

TS6100 85Version: 1.0.0

Creating a memory type

In the standalone version of the TwinCAT OPC UA Configurator you can configure the memory types (so-
called "History Adapters") via the Historical Access tab. In the following screenshot, for example, the
memory type "Main memory" ("Volatile") has been configured.

Additional memory types can be created or existing memory types can be edited or removed from the
configuration via the context menu.

Configuring a symbol

In the "History Nodes" section of the same dialog, you can configure the symbols and link them to a memory
type. You can either create a symbol manually (assuming you know its "address" or NodeID), or simply drag
and drop an existing symbol into the configuration area using the integrated Target Browser.

The symbol is then added with default configuration values. You can modify these configuration values by
double-clicking on the symbol entry. Here you can also create the link to a memory type, which is referenced
via its ID.

Technical introduction

TS610086 Version: 1.0.0

4.9.4 HistoryUpdate
With the HistoryUpdate function, the server does not independently sample variable values and save them
for Historical Access. Instead, the server receives both the variable values and the timestamps from an
OPC UA client.

A variable can be enabled for this function by setting the attribute HistoryWriteable="true" in the
TwinCAT OPC UA Configurator. In this case, the server no longer performs its own sampling for this variable
and "waits" for an OPC UA client to provide the values plus timestamp. Such a call can be made, for
example, by the TwinCAT OPC UA Client via the function block UA_HistoryUpdate.

4.9.5 TwinCAT Analytics
When using the "TwinCAT Analytics" memory type, a binary file is written as memory, the format of which
corresponds to the TwinCAT Analytics data format. Although this has no relevance for the OPC UA client (as
it accesses the historical data via OPC UA), it does open up interesting possibilities for further use of the
historical data, as you can read the binary file into the TwinCAT Analytics Toolchain and process it there.
The following diagram illustrates this relationship.

Technical introduction

TS6100 87Version: 1.0.0

TwinCAT Target Browser

If you use the TwinCAT Analytics storage format in your Historical Access configuration, you can also get the
stored values via the TwinCAT Analytics Toolchain, for example the TwinCAT Target Browser. To do this,
add the directory that you have defined in your configuration for saving the historical values in the
TcAnalytics File tab of the TwinCAT Target Browser. The saved values are then displayed as records in the
usual TwinCAT Analytics form and can be processed further.

4.9.6 Access to historical data
You can use any OPC UA client that supports the OPC UA Historical Access function to get historical data.
In the following example, the "UA Expert" software from Unified Automation is used to read historical data
from the TwinCAT OPC UA Server and display it visually.

Displaying Historical Access values in an OPC UA client

The following step-by-step instructions describe how to configure the UA Expert software in order to access
historical data.

1. Start the UA Expert software and connect to the OPC UA Server.

Technical introduction

TS610088 Version: 1.0.0

2. Add a new History Trend View.

3. Browse the PLC1 namespace and use drag & drop to add the PLC variables _HistoryDB,
_HistoryDBcompact, _HistoryFast and _HistorySlowPersist.

Technical introduction

TS6100 89Version: 1.0.0

ð You can now use the Start Time and End Time controls to specify the desired time period for which the
symbol values are to be displayed, or you can start a Cyclic Update for these variables if necessary.

4.10 Alarms and Conditions

4.10.1 Overview
This chapter describes the configuration steps for using OPC UA Alarms and Conditions (A&C) on the
TwinCAT OPC UA Server. OPC UA A&C describes a model for monitoring symbol values and issuing alarms
and events when values change or threshold values of a symbol are exceeded.

Requirements
This configuration can be carried out for variables from any runtime system [} 40] (e.g. TwinCAT
PLC or TwinCAT 3 C++, ...). As a prerequisite, the respective variable must first be enabled for
OPC UA. You can find out how to do this in our Quick Start [} 18] tutorial.

4.10.2 Supported functions
The following table lists the supported standard AlarmTypes of the Alarms & Conditions function of the
TwinCAT OPC UA Server.

Technical introduction

TS610090 Version: 1.0.0

AlarmType Description
LimitAlarmType Allows you to define different threshold values for a

symbol. If a threshold value is exceeded, the alarm is
triggered with a configurable alarm text and severity
level.

OffNormalAlarmType Enables the definition of "normal" and "non-normal"
threshold values for a symbol. If the value of the
symbol deviates from the defined value, the alarm is
triggered.

In addition to the Alarms & Conditions function, the TwinCAT OPC UA Server also offers the option of
connecting to the TwinCAT EventLogger [} 102] and forwarding the alarms or events received there
accordingly as an OPC UA Alarm or Event.

4.10.3 Configuration
You can use the TwinCAT OPC UA Configurator to configure the Alarms & Conditions functionality. To
configure a symbol for Alarms & Conditions, you must perform two steps:

1. The symbol must have been enabled for Data Access (see chapter Enabling symbols [} 43]).
2. A ConditionController must be created that allows alarms and events to be grouped.
3. Alarm and event texts must be created.
4. Configuration parameters must be defined for the symbol.

Creating a ConditionController

In the stand-alone version of the TwinCAT OPC UA Configurator, you can configure the ConditionController
via the Alarms & Conditions tab. In the following screenshot, for example, a ConditionController with the
name "MyConditionController" has been configured.

Additional ConditionControllers can be created or existing ConditionControllers can be edited or removed
from the configuration via the context menu.

Creating alarm and event texts

The texts that are to be used when reading an alarm or event can be stored as so-called "resources" in the
TwinCAT OPC UA Server. These texts can be defined in several languages, whereby the language is
identified by the respective country code. In the TwinCAT OPC UA Configurator, these resources are added
via the Resources tab in the Alarms & Conditions configuration.

Technical introduction

TS6100 91Version: 1.0.0

You can add, delete or edit other languages as a resource via the context menu. In the screenshot above,
two languages have been configured as resources: de-DE (German/Germany) and en-US (English/USA).
The texts are maintained in tabular form within a language and can also be copied and pasted from Microsoft
Excel.

The configured texts are assigned across languages via their ID, for example:

Use of the national language for an Alarm/Event
The language text used when triggering an alarm or event depends on the country code used to
connect an OPC UA client to the server.

Configuring a symbol

Once the alarm and event texts have been configured, you can also use them to configure a symbol. The
symbol configuration is carried out in the Settings tab. You can configure an icon manually or simply drag
and drop it onto the configuration area using the integrated Target Browser.

Technical introduction

TS610092 Version: 1.0.0

The symbol is then added to the selected ConditionController. In the following configuration dialog, you can
define the alarm type to be configured as well as the threshold values and also select the language texts.

Technical introduction

TS6100 93Version: 1.0.0

4.10.4 Additional application data
If you would like to attach additional data from your application to an alarm, you can configure this using the
following special AlarmTypes:

AlarmType Derived from
BkUaLimitAlarmType LimitAlarmType
BkUaOffNormalAlarmType OffNormalAlarmType

Additional fields are defined in these AlarmTypes, which you can fill with values from your application. If an
OPC UA client is to be able to use these additional values, it must subscribe to and interpret the
corresponding AlarmTypes.

The OPC UA client then receives the additional application data in the fields BkUaEventData and
BkUaEventValue of the incoming alarm, for example:

Technical introduction

TS610094 Version: 1.0.0

The user-defined EventFields are appended as "UserEventData". This data can be received by
OPC UA clients that are logged on to the SimpleEventType "UserEventType".

To use this function, you must define a structure in the PLC that contains both the symbol value to be
monitored and the additional values that are to be sent when the alarm is triggered. This structure must be
defined as follows:
TYPE ST_CustomStruct :
STRUCT
 value : INT;
 data : ST_SomeStruct;
END_STRUCT
END_TYPE

TYPE ST_SomeStruct :

Technical introduction

TS6100 95Version: 1.0.0

STRUCT
 Data1 : INT;
 Data2 : REAL;
 Data3 : LREAL;
END_STRUCT
END_TYPE

The instance of the structure ST_CustomStruct is then enabled as a symbol for Data Access [} 43]. The
structure must also be enabled as a StructuredType [} 65].

4.10.5 Access to alarms and events
To receive alarms and events, an OPC UA client on the TwinCAT OPC UA Server must log in to one of the
configured ConditionControllers. The client then receives the alarms and events for symbols that have been
configured in this ConditionController.

The following example shows how you can use the UA Expert software from Unified Automation to subscribe
to a ConditionController in order to receive alarms and events from it.

After you have started the UA Expert and established a connection to the TwinCAT OPC UA Server, add a
new document view of the type "Event View" to your working area.

In the address space of the server, you will find all configured ConditionControllers below the "A&C" node.
You can now drag and drop a ConditionController from the "Event View" working area to subscribe to it. The
alarms and events for this ConditionController are then displayed in the Event Window.

Technical introduction

TS610096 Version: 1.0.0

4.11 Method calls

4.11.1 Overview
Two different concepts are available in the PLC for calling OPC UA methods:

1. RPC methods [} 99] and

2. Job methods [} 96]

The fundamental difference between the two concepts is the context of processing in the PLC and the
implementation in the PLC code.
The following table illustrates this relationship.

Type Processing PLC code
RPC method Within a PLC cycle OPC UA method is represented by

a PLC method.
Job method Over several PLC cycles OPC UA method is represented by

a PLC function block.

Generally speaking, one can define: Job methods are the method of choice if a method call takes a "long"
time, i.e. can take several PLC cycles. The processing of RPC methods, on the other hand, must be "fast",
otherwise there is a risk of cycle overruns. So Job methods are usually selected. Programming in the PLC
is somewhat more complex, but the decoupling from the PLC cycle is a great advantage that justifies this
effort.

4.11.2 Job methods
The concept of Job methods has a fundamental difference compared to regular method calls: the OPC UA
methods are no longer mapped 1:1 to a PLC method, but instead to a function block with a specific
signature. This also allows method calls to be realized that take longer than one cycle from the perspective
of a PLC application.

Requirements
This functionality is only available for Data Access [} 39] devices based on TwinCAT 3 and the
import of TMC [} 43] symbol files, as well as the online symbolism.

The PLC-side structure of such a Job method is defined as follows: there is a function block which is defined
as a Job method via a PLC attribute. The function block then contains various PLC methods that are
accessed by the TwinCAT OPC UA Server in the form of a handshake mechanism in order to be able to
provide them as OPC UA methods.

Technical introduction

TS6100 97Version: 1.0.0

Method Description
Start Is called by the server as soon as an OPC UA client calls the OPC UA

method. Contains the input parameters of the OPC UA method call as
VAR_INPUT.
The HRESULT return value of the method can be used to directly return an
OPC UA Status Code in its decimal representation, e.g. "0" for the Status
Code "Good". The numerical value of a Status Code defined in the OPC UA
specification is used as the value. A definition of all available Status Codes
can be viewed here:

http://www.opcfoundation.org/UA/schemas/StatusCode.csv
Typically, this method returns the value "0" (Good). However, the PLC
developer can also decide to validate the input parameters, for example. In
the event of an error, the OPC UA method call could then fail, e.g. with the
return value "2158690304" (BadInvalidArguments).

CheckState Is called cyclically by the server to check whether the job is still being
processed or not. As long as the job is still being processed, this method
returns the value "Busy", otherwise "Done". Output parameters for the
OPC UA method are declared here as VAR_OUTPUT.
The HRESULT return value of the method can be used to directly return an
OPC UA Status Code in its decimal representation, e.g. "0" for the Status
Code "Good". The numerical value of a Status Code defined in the OPC UA
specification is used as the value. A definition of all available Status Codes
can be viewed here:

http://www.opcfoundation.org/UA/schemas/StatusCode.csv
If the job is processed successfully, this method typically returns the value
"0" (Status Code "Good"). However, the PLC developer can also decide that
the OPC UA method call should fail in the event of an error, e.g. with the
return value "2151415808" (BadOutOfRange) or the more general
"2147483648" (Bad).

Abort This method is called by the server if a job has to be aborted, for example if
the server is shut down or restarted. The PLC developer then has the
opportunity to clean up his PLC code accordingly.

Workflow

The handshake mechanism between server and PLC can be represented in simplified form as follows:

http://www.opcfoundation.org/UA/schemas/StatusCode.csv
http://www.opcfoundation.org/UA/schemas/StatusCode.csv

Technical introduction

TS610098 Version: 1.0.0

Sample

The following sample is also available in executable form at Samples. This part of the documentation is
intended to explain the basic concepts of how the system works. The sample "simulates" a Job method call
that takes about four seconds to be processed in the PLC. This was realized with the help of a timer, which
was declared and used in the function block part of the job. The State Machine of the function block delays
the completion of the job (the CheckState handshake method returns "busy") and the job is not completed
until the timer has expired (the CheckState handshake method returns "done").

In this sample, a function block called FB_Job was created for the OPC UA method with the name "MyJob",
which has the required signature mentioned above.

The function block declaration contains the attribute OPC.UA.DA.JobMethod and the name of the OPC UA
method to be used as its value.
{attribute 'OPC.UA.DA.JobMethod' := 'MyJob'}
FUNCTION_BLOCK FB_Job
VAR
END_VAR

The three methods Abort, CheckState and Start contain the attribute TcRpcEnable in their declaration (so
that the methods can also be called via ADS). Sample:
{attribute 'TcRpcEnable' := '1'}
METHOD Start : HRESULT

Technical introduction

TS6100 99Version: 1.0.0

{attribute 'TcRpcEnable' := '1'}
METHOD Abort : HRESULT

{attribute 'TcRpcEnable' := '1'}
METHOD CheckState : HRESULT

The input parameters of the OPC UA method are declared as VAR_INPUT in the PLC method Start().
Comments after the variables are used as a description of the respective OPC UA input parameter. Sample:
{attribute 'TcRpcEnable' := '1'}
METHOD Start : HRESULT
VAR_INPUT
 a : INT; // some description
 b : LREAL; // some description
 c : BOOL; // some description
 d : ST_Complex_1; // some description
END_VAR

The output parameters of the OPC UA method are declared as VAR_OUTPUT in the PLC method
CheckState(). Comments after the variables are used as a description of the respective OPC UA output
parameter. Sample:
{attribute 'TcRpcEnable' := '1'}
METHOD CheckState : HRESULT
VAR_OUTPUT
 a : INT; // some description
 b : LREAL; // some description
 c : BOOL; // some description
 d : ST_Complex_1; // some description
END_VAR

(In this sample, the values of the input parameters are applied 1:1 to the output parameters for illustrative
purposes. The input and output parameters are therefore identical.)

4.11.3 RPC methods
Method calls are a fundamental part of the OPC UA specification. With the introduction of these
functionalities into the PLC world, TwinCAT 3 offers the possibility of efficiently executing RPC calls in the
IEC61131 world and thus reduces the classic handshake patterns for communication between devices.

With the concept of RPC methods, the TwinCAT OPC UA Server imports a method from the TwinCAT PLC/
C++ directly as an OPC UA method.

Requirements
This functionality is only available for Data Access [} 39] devices based on TwinCAT 3 and the
import of TMC and TMI [} 43] symbol files, as well as the online symbolism.

An RPC method call is handled at OPC UA level as follows:

• If an RPC method has been executed successfully, the server returns the status code "Good" as
feedback for the OPC UA method call.

• If the RPC method could not be called, the server returns an error message in the "Bad_***" format,
depending on the error that occurred.

• If the RPC method was called successfully but the response could not be read in the server, the status
code "OpcUa_GoodPostActionFailed" is returned from the server.

Processing context
The TwinCAT PLC/C++ method is executed within the real-time context and therefore falls within
the processing context of a real-time task. The TwinCAT developer must therefore take precautions
so that the execution time of the method matches the task cycle time.

Methods in TwinCAT 3 PLC

Methods in the IEC61131 world are always configured below a function block. At high-level language level,
the function block can be regarded as the surrounding class of the method. You have to declare the method
itself with a special PLC attribute so that the TwinCAT system knows that the method is to be activated for a
remote method call.

Technical introduction

TS6100100 Version: 1.0.0

{attribute 'TcRpcEnable':='1'}
METHOD M_Sum : INT
VAR_INPUT
 a : INT;
 b : INT;
END_VAR

Depending on the import mode used, you also have to enable the surrounding function block for the OPC UA
access. This can be done by using the normal PLC attributes for OPC UA access.

Note that you only need to use the PLC attributes if the filtered mode is used to enable symbols from the
PLC to be accessed via OPC UA. This is the default setting of the OPC UA Server.

Sample:

The method M_Sum is located in the function block FB_Mathematics. The declaration of the function block
instance uses the PLC attribute that has enabled the function block and thus the method for OPC UA
access.
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA':='1'}
 fbMathematics : FB_Mathematics;
END_VAR

Pointer variables as VAR_IN_OUT
Pointer variables defined as VAR_IN_OUT are not handled by the PLC or the TwinCAT OPC UA
Server. A corresponding Trace event is written to the server trace.
08:47:37.677Z|1|11A0* Error when importing method 'METH_PArray': VAR_IN_OUT pointer
variables are not allowed!

Methods in TwinCAT 3 C++

TwinCAT modules could implement interfaces with predefined methods (see TcCOM modules). The method
itself must be enabled for RPC calls during its definition (see TwinCAT Module Class Wizard documentation)
so that the OPC UA Server knows that it is ready for execution.

Technical introduction

TS6100 101Version: 1.0.0

So that the return value of the method is available, the corresponding option Include Return Value must be
activated. Note that the interface under which the method was created must be implemented.

Depending on the import mode used, you have to declare the method for the access via OPC UA. This can
be done by using the TMC Code editor and the usual OPC UA attributes as optional properties.

Technical introduction

TS6100102 Version: 1.0.0

Fig. 1:

4.12 TwinCAT EventLogger

4.12.1 Overview
The TwinCAT OPC UA Server enables integration of the TwinCAT EventLogger for sending alarms and
events. An alarm/event is converted by the TwinCAT EventLogger into an OPC UA alarm or event.
EventLogger messages from more than one TwinCAT device can be configured in the
TwinCAT OPC UA Server. Each device is identified by its AMS Net ID.

The integration of the TwinCAT EventLogger is not available for the TwinCAT OPC UA Server
under Windows CE. However, you can install the TwinCAT OPC UA Server on a non-CE device
and then remotely receive TwinCAT EventLogger messages from a Windows CE device.

4.12.2 Configuration
To configure the server for a connection to the EventLogger, you have to create a new configuration file
named "TcUaEventLogConfig.xml" in the server directory. This file contains a list of TwinCAT EventLogger
devices, which are identified by their AMS NetID. The configuration has the following structure:
<TcUaEventLogConfig>
 <EventLoggerDevice Name="LocalEventLogger" AmsAddr="127.0.0.1.1.1"/>
 <EventLoggerDevice Name="RemoteEventLogger" AmsAddr="192.168.0.56.1.1"/>
</TcUaEventLogConfig>

Technical introduction

TS6100 103Version: 1.0.0

The individual device entries are then displayed in the "EventLoggerDevices" folder in the server's
namespace.

An OPC UA client can now subscribe to the corresponding object in order to receive events and/or alarms
from the respective TwinCAT EventLogger device.

In contrast to an event, an alarm is additionally displayed as a child element by the respective EventLogger
device.

4.12.3 Access to alarms and events
When subscribing to the object and receiving alarms or events, a client must take into account that special
object types are used. The respective types are defined as follows:

TcEventLoggerEventType

The TcEventLoggerEventType is derived from the BaseEventType and extends it with TwinCAT
EventLogger-specific properties:

NodeID: i=4200
NamespaceName: urn:BeckhoffAutomation:Ua:Types:GlobalTypes

TcEventLoggerAlarmConditionType

The TcEventLoggerAlarmConditionType is derived from the AlarmConditionType and extends it with
TwinCAT EventLogger-specific properties:

Technical introduction

TS6100104 Version: 1.0.0

NodeID: i=4000
NamespaceName: urn:BeckhoffAutomation:Ua:Types:GlobalTypes

Sample

The following sample is based on the standard code sample of the TwinCAT EventLogger, which can be
obtained from the Beckhoff Information System. This sample contains code snippets for the PLC, which can
be used to fire an event as well as an alarm.

Step 1: Configuration of the server

TwinCAT OPC UA Server and the PLC are now running locally on the same system in this sample.
Accordingly, the TcEventLogConfig.xml was also created:
<TcUaEventLogConfig>
 <EventLoggerDevice Name="LocalEventLogger" AmsAddr="127.0.0.1.1.1"/>
</TcUaEventLogConfig>

Step 2: Activating the TwinCAT EventLogger sample

Before enabling the TwinCAT EventLogger sample, we first disabled the automatic firing of an event or
alarm. In the present sample version this is done by initializing bSend and bAlmRaise with the value FALSE.
The project is then activated and executed in the local PLC runtime.

Step 3: Connecting an OPC UA Client to the Server

The UA Expert was selected as the OPC UA client. After establishing a connection with the server, you now
add a new "Event View" document in UA Expert. Then drag and drop the configured TwinCAT EventLogger
device into the Event View.

Technical introduction

TS6100 105Version: 1.0.0

In order to receive the TwinCAT EventLogger-specific properties, the UA Expert must filter the corresponding
Event or AlarmType. You can find the TcEventLoggerEventType or TcEventLoggerAlarmConditionType in
the type list of the Event View. Sample:

By clicking on the Apply button, these filters are applied.

Step 4: Firing an event

In the TwinCAT EventLogger Sample, we set the variable bSend to the value TRUE in order to fire an event.
The UA Expert receives this event automatically and displays it in the Event View together with the
TwinCAT EventLogger-specific properties.

Technical introduction

TS6100106 Version: 1.0.0

Step 5: Firing an alarm

In the TwinCAT EventLogger sample, we set the variable bAlmRaise to the value TRUE in order to fire an
alarm. The UA Expert receives this alarm automatically and displays it in the Event View together with the
TwinCAT EventLogger-specific properties. In addition, the alarm is displayed as a separate object in the
namespace below the EventLogger device.

Step 6: Acknowledging an alarm

In addition to receiving an alarm, it can also be acknowledged. The acknowledgement is also reported by the
server to the TwinCAT EventLogger. In UA Expert, an alarm can be acknowledged via the context menu in
the Event View.

Technical introduction

TS6100 107Version: 1.0.0

Acknowledge and Confirm
Please note that only a Confirm is reported back to the TwinCAT EventLogger. The information
about an acknowledge remains in the server, since the TwinCAT EventLogger currently only
provides for the concept of a Confirm.

After a Confirm the corresponding variable eConfirmationState is set in the TwinCAT EventLogger instance
of type FB_TcAlarm.

4.13 Global Discovery Server

4.13.1 Overview
The TwinCAT OPC UA Server enables registration with a Global Discovery Server (GDS). A GDS provides a
standardized, OPC UA-based interface for registering OPC UA applications and issuing application
certificates as well as the associated revocation list information. A GDS has a connection to a Certificate
Authority (CA) for this purpose. Applications are registered and certificates are issued (and updated) using a
standardized OPC UA information model.

When accessing the GDS, the TwinCAT OPC UA Server supports the two models Push [} 107] and Pull
[} 108].

4.13.2 Push
In this model, the server includes a standardized interface that an OPC UA client (that supports the push
model) can use to connect to a Global Discovery Server on behalf of the server, register the server
application there and request a server certificate including the current Certificate Revocation List (CRL).

Technical introduction

TS6100108 Version: 1.0.0

As a prerequisite for using this functionality, the OPC UA client must authenticate itself on the server with a
user account that has administrator rights.

OPC UA Client
Any client that supports the Push model can be used as an OPC UA client. Various OPC UA toolkit
manufacturers offer corresponding software packages. Alternatively, the OPC Foundation also
provides a GDS Sample Client on Github.

GDS Server
Any GDS can be used as a Global Discovery Service. Various OPC UA toolkit manufacturers offer
corresponding software packages. Alternatively, the OPC Foundation also provides a GDS Sample
Server on Github.

Configuration in the server

No further special configuration steps are required in the TwinCAT OPC UA Server to use this functionality.
The corresponding interface is activated by default and can be used by a user with administrator rights. The
user configured during initialization [} 21] has all the necessary permissions for this.

4.13.3 Pull
In this model, the server independently connects to the Global Discovery Server, registers there as a server
application and obtains a suitable certificate.

The TwinCAT OPC UA Server offers an option to enable and configure the GDS pull functions via its
configuration namespace.

https://github.com/OPCFoundation/UA-.NETStandard-Samples/tree/master/Samples/GDS
https://github.com/OPCFoundation/UA-.NETStandard-Samples/tree/master/Samples/GDS
https://github.com/OPCFoundation/UA-.NETStandard-Samples/tree/master/Samples/GDS

Technical introduction

TS6100 109Version: 1.0.0

Alternatively, the TwinCAT OPC UA Configurator can also be used to configure this function in the server. A
corresponding user interface is available for this purpose.

Configuration via OPC UA Client

The following section describes the configuration via the address space of the server using a generic OPC
UA client. The UA Expert from Unified Automation is used as the client software.

In the first step, the TwinCAT OPC UA Server must be registered as an application at the GDS. This is done
using the Register() method. By registering with the GDS, a server certificate is automatically requested for
the server application. Depending on the implementation of the GDS application, such a certificate is issued
either automatically or after manual approval by an administrator. The variables RegistrationState and

Technical introduction

TS6100110 Version: 1.0.0

CertificateState can be used to check whether the server has already been registered with a Global
Discovery Service and has received a certificate from it. The variable CrlState indicates the status of the
Certificate Revocation List and whether it could be obtained from the GDS.

The method expects the following input parameters:

Input parameter Meaning
GdsUrl The URL of the Global Discovery Service in the format opc.tcp://

hostnameOrIpAddress:port
GdsUser Username of a GDS user with the right to register new applications.
GdsPassword User password
SaveCredentials Saves the user password in a configuration file of the

TwinCAT OPC UA Server. For security reasons, this setting is not
recommended. It was developed exclusively for Global Discovery Services,
which require mandatory username/password authentication. Username/
password authentication is usually only required once when registering the
application. The issued server certificate is then used for all subsequent
connections to the GDS.

Re-initialization of the server endpoints
After registering the server application with the Global Discovery Service and obtaining a server
certificate, the server reinitializes its endpoints once, causing connected clients to momentarily lose
connectivity.

After the server application has been registered with a Global Discovery Service, a new file named
"TcUaGdsClientConfig.xml" is created in the installation directory of the TwinCAT OPC UA Server. It
contains the connection information of the configured GDS and the registration information obtained from
there, plus timestamp information for the server application, e.g., when the certificate and CRL were last
updated.

Unregistration at the Global Discovery Service

The Unregister() method can be used to unregister the TwinCAT OPC UA Server application with the GDS.
Successful execution of the method causes the server application to be unregistered on the GDS and the
contents of the TcUaGdsClientConfig.xml file to be deleted.

The method expects the following input parameters:

Technical introduction

TS6100 111Version: 1.0.0

Input parameter Meaning
ForceRemove If the connection to the Global Discovery Service is no longer available, the

connection to the GDS can be removed by setting this input parameter. The
TwinCAT OPC UA Server removes the GDS from its configuration.

The issued server certificate and the CRL remain valid after the TwinCAT OPC UA Server has been
decoupled from the GDS. If you want to delete them and run the server with a self-signed certificate, you
have to remove the corresponding files in the PKI directory of the server and restart the server. The server
then creates another self-signed certificate.

Updating the server certificate

An update of the server certificate can be requested from the GDS outside the regular update interval by
executing the method UpdateCertificate(). The method does not expect any further input parameters.

Setting the update intervals for server certificate and CRL

The update intervals for the server certificate and the certificate revocation list can be set by executing the
SetUpdateStrategy() method.

The method expects the following input parameters:

Technical introduction

TS6100112 Version: 1.0.0

Input parameter Meaning
CrlUpdateInterval Sets the update interval for the certificate revocation list (seconds).
CertificateCheckInterval Sets the update interval for the server certificate (seconds).

4.14 Security

4.14.1 Overview
One of the reasons OPC UA has been so successful as a communication technology is because of its
integrated security mechanisms. Data communication based on OPC UA can be secured on two layers:
transport and application layer. When connecting to the server, the client first selects an endpoint, which
specifies the security functions to be used.

Endpoints

A server offers the client a list of different endpoints [} 112] to which the client can connect. An endpoint
describes, among other things, which security functions (e.g. Message Security mode, Security Policy and
available Identity Tokens) the communication connection via this endpoint should fulfill. For example, an
endpoint may require signing and encryption of data packets (transport layer), as well as additional
authentication of the client based on username/password (application layer).

Transport layer

A communication connection based on OPC UA can be secured at the transport layer. This is done through
the use of client/server certificates and a mutual trust relationship between client and server application.
Here, the client must trust the server certificate and vice versa in order for a communication connection to be
established. This requires a mutual certificate exchange [} 113].

Application layer

In addition to the transport layer, a communication connection can also be secured at the application layer.
For this purpose, various authentication mechanisms [} 115] are available, which are offered by the server
endpoint.

4.14.2 Endpoints
The TwinCAT OPC UA Server makes various endpoints available for OPC UA Clients via the default port
4840/tcp. The endpoints define the connection type between client and server and whether it should be
secured or unsecured.

Standard port
Note that the standard port 4840 may be used by other OPC UA servers, such as the Local
Discovery Server (LDS) from the OPC Foundation, which is used by some vendors with OPC UA
software packages.

Relationship of trust
Note that in order to use the secure endpoints, a trust relationship must be established between
server and client, which is usually done via their certificates. The configuration of such a trust
relationship on the server side is explained here [} 113].

Deprecated endpoints
Please note that the security profiles currently available in the endpoints may be classified as
potentially insecure over time and will be replaced by newer ones. In this case, an update of the
TwinCAT OPC UA Server is recommended. A configuration switch
(<AllowDeprecatedSecurityPolicies>) can be used to reactivate security policies that are deprecated
and classified as insecure.
For security reasons, Beckhoff recommends to leave this configuration switch disabled.

Technical introduction

TS6100 113Version: 1.0.0

List of endpoints

The following list summarizes the endpoints of the TwinCAT OPC UA Server. This includes endpoints that
have already been discontinued. By default, the TwinCAT OPC UA Server only offers endpoints that are
currently considered secure. Since setup version 4.3.28, the unencrypted endpoint has also been disabled
by default for security and certification reasons.

Security profile Security mode Short description
None None No encryption or signing of

messages is carried out at this
endpoint. Authentication, on the
other hand, is possible.

Basic128Rsa15 (deprecated) Sign
Sign & Encrypt

This endpoint has been classified
as deprecated from a security
perspective and is disabled by
default. If necessary, the endpoint
can be enabled again.

Basic256 (deprecated) Sign
Sign & Encrypt

This endpoint has been classified
as deprecated from a security
perspective and is disabled by
default. If necessary, the endpoint
can be enabled again.

Basic256Sha256 Sign
Sign & Encrypt

Endpoint currently present in the
server for secure signing and
encryption. Additional
authentication is possible.

Aes256_Sha256_RsaPss Sign
Sign & Encrypt

Endpoint currently present in the
server for secure signing and
encryption. Additional
authentication is possible.

Aes256_Sha256_RsaOaep Sign
Sign & Encrypt

Endpoint currently present in the
server for secure signing and
encryption. Additional
authentication is possible.

All endpoints in the list can be enabled or disabled via the server configuration. In the following figure, all
endpoints are enabled.

4.14.3 Certificate exchange
To secure the communication connection at transport layer via a secure endpoint [} 112], it is necessary to
establish a mutual trust between client and server. By default, both the TwinCAT OPC UA Server and the
TwinCAT OPC UA Client generate a machine-specific, self-signed key pair consisting of a public and a
private key when they are started for the first time. However, you can also use any certificate authority or
technology for integration into your IT infrastructure, e.g. Active Directory or OpenSSL. For simple
administration and secure access to certificates, it makes sense to set up a Global Discovery Server [} 107].

Technical introduction

TS6100114 Version: 1.0.0

To establish a trust relationship between an OPC UA Client and the TwinCAT OPC UA Server, you need the
public key of the client certificate. The server must trust this accordingly. The server manages the trust
settings for client certificates in a subdirectory of the application directory [} 37].

The following diagram illustrates the relationship between the client and server certificate when establishing
a secure communication connection:

The client transmits its public key with the CreateSession Request. The server then has the option of
checking the trust relationship. If the server trusts the client, it transmits its own public key in its response.
The client therefore also has the option of checking the trust relationship with the server.

If mutual trust is ensured, the communication connection is initiated. The server's public key is used to
encrypt a request from the client to the server. The response from the server to the client is then encrypted
with the client's public key. Both communication participants have the option of decrypting the received
message with their private key.

Messages are signed in reverse: a message is signed with the sender's private key. Since the recipient
recognizes the sender's public key, the signature can be verified.

Configure trust relationship via file system

By moving client certificates between the trusted/rejected directories, the trust settings can be adjusted
accordingly. The public key of a client certificate is automatically stored in the directory for rejected
certificates the first time the client attempts to connect to a secure endpoint. By subsequently moving the
public key to the directory for trusted certificates, the client is trusted at the next connection attempt and can
connect.

AutomaticallyTrustAllClientCertificates
If this configuration option is enabled in the server, the server automatically trusts all client
certificates. In this case, they will not be listed in any of the above directories.

Configure the trust relationship using the configurator

You can also make the trust settings via Configurator [} 30]. The TwinCAT OPC UA Configurator includes a
graphical user interface for configuring the trust settings.

Technical introduction

TS6100 115Version: 1.0.0

4.14.4 Authentication
An OPC UA client application can authenticate itself to the TwinCAT OPC UA Server via various
IdentityTokens. The following IdentityTokens are supported:

• Anonymous
• Username/Password
• User certificate

Delivery state
The "Anonymous" IdentityToken is enabled when the server is delivered; however, the server
requires a one-time initialization to get started. This IdentityToken is then disabled and client
applications must authenticate themselves with a username on the server.

Anonymous

This type of authentication allows any OPC UA client to connect to the server application. It is not necessary
to specify a user identity, which means that there are no options for defining access rights on the server.
Beckhoff recommends disabling this authentication type after commissioning the server. This can be done
via the TwinCAT OPC UA Configurator. Below you will find an example screenshot from the OPC UA client
application "UA Expert":

Technical introduction

TS6100116 Version: 1.0.0

Username/Password

This type of authentication uses a username/password combination to authenticate the client to the server
application. On the server, access rights can then be defined for the respective user identity. The user
identity can be defined on different levels:

• User identity is defined in the server
• User identity comes from the lower-level operating system (e.g. a local Windows user)
• User identity comes from the Active Directory (e.g. if the industrial PC is part of a Windows domain)

Recommendation when using User IdentityTokens
If User IdentityTokens are to be used to authenticate client applications, Beckhoff recommends the
use of operating system users.

Below you will find an example screenshot from the OPC UA client application "UA Expert":

User certificate

This type of authentication uses a certificate to authenticate to the server application. The handling of user
certificates on the server side is identical to the use of certificates on the transport layer, i.e. the server must
trust the (user) certificate before the client can successfully authenticate itself to the server with the
certificate. A separate directory ("pkiuser") for the administration of user certificates is available in the server
for this purpose. Below you will find an example screenshot from the OPC UA client application "UA Expert":

NOTICE
Authentication and server certificate
When using the unencrypted endpoint in combination with authentication, the TwinCAT OPC UA Client still
requires the public key from the OPC UA Server certificate in order to encrypt the password during
transmission. To this end the certificate must be trusted in the TwinCAT OPC UA Client (see Certificate
exchange [} 113]).

Technical introduction

TS6100 117Version: 1.0.0

Configuration

The IdentityToken is usually configured via the TwinCAT OPC UA Configurator. A graphical user interface is
available here to enable IdentityToken, for example in the standalone configurator:

4.14.5 Access rights
The TwinCAT OPC UA Server enables the configuration of access rights for specific authenticated user
identities [} 115]. These access rights can be configured for entire namespaces as well as for individual
nodes. This allows both access to ADS devices (e.g. to different PLC runtimes) and individual symbols to be
set with fine granularity.

These security settings are available for all Data-Access [} 39] devices that can be represented in the server
namespace.

Technical introduction

TS6100118 Version: 1.0.0

This functionality is configured via the TwinCAT OPC UA Configurator. In the standalone version of the
configurator, the corresponding configuration interface can be found under the Security tab.

Configuring access to namespaces

The configuration of user access to individual namespaces is always based on the configured user groups.
You can manage the corresponding access rights for individual namespaces in the user group settings.
Some groups come preconfigured and you can use their configuration parameters as a guide.

The following table provides an overview of the permissions that are defined for each of the user groups as
they are delivered.

Technical introduction

TS6100 119Version: 1.0.0

User group Description
Administrators Predefined user group for server administrators. This

user group has full access to all namespaces.
Guests Predefined user group for guest users. This user

group has limited access to the server and only to the
default namespace "0" with the permissions
ReadAttribute, ReadValue and Browse.

Users Predefined user group for normal users. This user
group has extended access rights to all namespaces,
in particular full access to the namespace of the
preconfigured Data Access [} 39] device.

By adding users to the user groups, they automatically inherit the corresponding permissions from the group.

Configuring access at the node level

The Node permissions tab can be used to configure extended and very fine-grained permissions at node
level. Sub-elements can inherit the permissions. You can use the Target Browser to transfer nodes to be
configured from the server to the configuration using drag and drop.

The individual permissions on the node can be linked to a configured user group.

Technical introduction

TS6100120 Version: 1.0.0

4.15 File Transfer

4.15.1 Overview
From OPC UA specification version 1.02, OPC UA contains a specialized ObjectType for file transfer, which
is described in Appendix C of the specification. This special ObjectType called "FileType" describes the
information model for the data transmission. Files can be modeled as simple variables in OPC UA with
ByteStrings. FileType is a file with methods for accessing the file. The OPC UA specification provides further
information about FileType and the structure and handling of the underlying methods and properties for
accessing a file in the OPC UA namespace.

Beckhoff has implemented a generic way to load files and folders from a local hard disk into the OPC UA
namespace. Each file is represented by a FileType and allows read and write operations for this file. In
addition, each folder contains a CreateFile() method to create new files on the hard disk and a separate
FolderPath to specify the actual path to the folder on the OPC UA Server.

Technical introduction

TS6100 121Version: 1.0.0

FileTransfer in the OPC UA Server Device Manager
Only the OPC UA Server of the Beckhoff Device Manager (IPC diagnostics) has this function. The
TwinCAT OPC UA Server also provides some parts of this file transfer. However, the general
function that enables disclosure of all files and folders is only available in the OPC UA Server, which
is part of the device manager that is automatically available on every Beckhoff Industrial PC or
Embedded PC. See the Device manager documentation for more information.

4.15.2 Configuration
FileType objects are created in a separate namespace called "FileTransfer". An XML file (files.xml) is used to
configure this namespace and to select the files and folders available via OPC UA. The file must be located
in the same directory as the executable file of the OPC UA server. The system must be restarted in order to
activate the configuration. The XML file contains information about the folder path and a search mask that
defines which files are published in the OPC UA namespace:
<Files>
 <FolderObject DisplayName="TwinCAT">
 <FolderObject DisplayName="3.1">
 <FolderObject DisplayName="Boot" Path="c:/TwinCAT/3.1/Boot" Search="*.*" >
 <FolderObject DisplayName="Plc" Path="c:/TwinCAT/3.1/Boot/Plc" Search="*.*" ></FolderObject>
 <FolderObject DisplayName="Tmi" Path="c:/TwinCAT/3.1/Boot/Tmi" Search="*.*" ></FolderObject>
 </FolderObject>
 </FolderObject>
 </FolderObject>
</Files>

Reading a file with an OPC UA client

General file handling is described in Appendix C of the OPC UA specification.
Reading a file via OPC UA can therefore be divided into the following steps:

• Calling the Open method of a file. This method returns a file handle that must be saved for later
access. The mode defines whether the file is read or written to (see File modes).

http://infosys.beckhoff.com/content/1033/devicemanager/

Technical introduction

TS6100122 Version: 1.0.0

• Determining the file size with the property "Size". In this way, the entire file can be read when the Read
method is called.

• Calling the Read method. Inserting the file handle and file size as inputs. Selecting the destination
folder in which the file contents are to be saved AFTER the method call.

• Calling the Close method to enable the file handle.

File modes

The following table shows all available file modes:

Field Bit Description
Read 1 The file is opened for reading. If this bit is not set, Read cannot be

executed.
Write 4 The file is opened for writing. If this bit is not set, Write cannot be

executed.
EraseExisting 6 The existing file contents are deleted, and an empty file is made

available.
Append 10 The file is opened and positioned at the end, otherwise it is moved to

the beginning. This position can be changed with SetPosition.

General behavior

The number of files opened in parallel is in principle unlimited and is subject only to any restrictions of the
underlying operating system. However, files are subject to a 60 seconds timeout. After this timeout, open
files are not automatically closed immediately. Instead, they are marked as "to close". If the corresponding
FileHandle is used for a read/write operation during this time, the timeout is reset and the FileHandle
remains valid. If an Open operation is performed on the same file during this time, the old FileHandle is
enabled. If an OPC UA Client disconnects from the server and still has files open, all FileHandles belonging
to this session will be closed automatically.

4.16 Reverse Connect
The TwinCAT OPC UA Server supports the ReverseConnect function of OPC UA to establish a backward
communication connection from the server to the client. To activate this function, a list of client addresses
must be stored in the server. Then the server establishes an OPC UA TCP connection for each client in the
list. This type of connection setup is often used when an OPC UA client needs to establish connections with
servers that are located behind a firewall or NAT device. The following figure illustrates this relationship.

Technical introduction

TS6100 123Version: 1.0.0

In this example, there is an OPC UA client that needs to connect to two servers, each of which is behind a
firewall. The firewall blocks all incoming communication traffic and does not open any ports in the internal
network. The client is now configured for ReverseConnect and opens its own network port under the client
endpoint URL opc.tcp://172.17.1.1:48061. Each of the lower-level servers has also been set up for
ReverseConnect and has entered the client endpoint URL as the ReverseConnect URL. The server now
opens and maintains a TCP connection to the client using this URL. The actual OPC UA client
communication with the server is tunneled through this TCP connection. From the firewall's point of view, this
is an "outgoing" communication due to the initially established TCP connection. Only the outgoing
communication port (48061 in this example) needs to be enabled in the firewall.

Client compatibility
Please note that the OPC UA client must also support this function and be accessible via its Client
Endpoint URL.

Configuration in the server

A list of OPC UA Clients can be configured in the TcUaServerConfig.xml within the <UaEndpoint>. The
Client Endpoint URL under which the respective clients can be reached is entered here.
<ReverseConnect>
 <Url>opc.tcp://172.17.1.1:48061</Url>
</ReverseConnect>

Configuration in the OPC UA Client

The following screenshot shows an example of the configuration of a ReverseConnect connection in the
OPC UA client software "UA Expert" from Unified Automation. ReverseConnect is enabled in the connection
settings and the client endpoint URL is entered under which the client can be reached by the server. In the
EndpointURL field, the Server Endpoint URL is entered which the client should use as soon as a
ReverseConnect TCP connection has been established by the server. Referring to our figure above,
opc.tcp://CX-12345:4840 or opc.tcp://CX-98765:4840 is entered here, for example. The settings for Security
Settings, Message Security Mode and the authentication parameters then also apply to this connection.

Please note that you may still need to import the server certificate. This is the server's public key, which is
stored in the corresponding application directory [} 37].

Technical introduction

TS6100124 Version: 1.0.0

Communication history

The following Wireshark trace shows an example of a connection setup based on ReverseConnect. The only
difference to the above figure is that the client used in this recording was configured for the Client Endpoint
URL opc.tcp://172.30.3.86:48061. The server is located behind a NAT device, which in turn has the IP
address 178.200.200.59.

When the TCP connection is established from the server to the client, a so-called "Reverse Hello" message
is sent. In this, the server informs the client under which Server Endpoint URL it can be reached. This is the
same Server Endpoint URL that you configured in the client (see above). The client uses this Server
Endpoint URL for the further connection to the server.

Technical introduction

TS6100 125Version: 1.0.0

4.17 Logging
You can activate a log file in the server for extended diagnostics, in which various information is then
recorded on the basis of different log levels.

Influence of logging on the operating behavior
Please note that enabling the log file can have a negative impact on the speed and operating
behavior of the TwinCAT OPC UA Server.

The default path for the log files created depends on the operating system used and is described in more
detail in the chapter Application directories [} 37].

Logging is usually enabled/disabled via the TwinCAT OPC UA Configurator. You can enable/disable logging
both online on the server and offline using the corresponding configuration file, which means that logging is
only enabled after a server restart. The following screenshot shows the configuration interface for online
logging:

The following screenshot shows the configuration interface for offline logging:

Technical introduction

TS6100126 Version: 1.0.0

4.18 System Tray
The TwinCAT OPC UA Server contains an application that can be called up as an icon in the Windows
system tray. This application enables the triggering of a server restart. The corresponding function can be
called via the context menu.

PLC API

TS6100 127Version: 1.0.0

5 PLC API

5.1 Tc2_OpcUa

5.1.1 Data types

5.1.1.1 ST_OpcUAServerInfo
ST_OpcUAServerInfo contains session information of a TwinCAT OPC UA Server.

Syntax
TYPE ST_OpcUAServerInfo :
STRUCT
 nReserved : UDINT;
 nCummulatedSessionCount : UDINT;
 nCurrentSessionCount : UDINT;
 nRejectedSessionCount : UDINT;
 nSecurityRejectedSessionCount : UDINT;
 nSessionTimeoutCount : UDINT;
 nCurrentSubscriptionCount : UDINT;
 nRejectedRequestCount : UDINT;
 nSecurityRejectedRequestCount : UDINT;
END_STRUCT
END_TYPE

Parameter

Name Type Description
nReserved UDINT Placeholder.
nCummulatedSessionCount UDINT Total number of client sessions since the server was

started.
nCurrentSessionCount UDINT Total number of current client sessions.
nRejectedSessionCount UDINT Total number of sessions rejected by the server.
nSecurityRejectedSessionCount UDINT Total number of sessions rejected by the server for

security reasons (example: incorrect combination of
user name and password).

nSessionTimeoutCount UDINT Total number of sessions that had a timeout.
nCurrentSubscriptionCount UDINT Total number of current subscriptions in the server.
nRejectedRequestCount UDINT Total number of failed requests.
nSecurityRejectedRequestCount UDINT Total number of failed requests for security reasons.

5.1.1.2 E_OpcUAServerOption
E_OpcUAServerOption determines which command is to be sent to the TwinCAT OPC UA Server.

Syntax
TYPE E_OpcUAServerOption
(
 eOPCUAServerOption_None,
 eOPCUAServerOption_Restart,
 eOPCUAServerOption_Shutdown,
 eOPCUAServerOption_RefreshCfg,
 eOPCUAServerOption_ServerInfo
);
END_TYPE

PLC API

TS6100128 Version: 1.0.0

Parameter

Name Description
eOPCUAServerOption_Non
e

Initial state of the enumeration.

eOPCUAServerOption_Res
tart

This option triggers a restart of the OPC UA interface of the server.

eOPCUAServerOption_Shu
tdown

This option triggers the shutdown of the OPC UA interface of the server. As the
restart option above works via OPC UA, it is no longer available after using this
option until a complete server restart.

eOPCUAServerOption_Refr
eshCfg

This option currently has no function.

eOPCUAServerOption_Ser
verInfo

This option queries the server information contained in ST_OpcUAServerInfo
[} 127].

5.1.1.3 E_OpcUAServerStatus
E_OpcUAServerStatus represents the runtime status of a TwinCAT OPC UA Server.

Syntax
TYPE E_OpcUAServerStatus
(
 eOPCUAServerStatus_None,
 eOPCUAServerStatus_Alive,
 eOPCUAServerStatus_NotResponding
);
END_TYPE

Parameter

Name Description
eOPCUAServerStatus_None Initial state of the enumeration.
eOPCUAServerStatus_Alive The ADS interface of the TwinCAT OPC UA Server is

accessible.
eOPCUAServerStatus_NotResponding The ADS interface of the TwinCAT OPC UA Server is not

accessible.

5.1.2 Function blocks

5.1.2.1 FB_OpcUAServer

The function block enables status information to be read out and a TwinCAT OPC UA Server to be restarted.

Syntax

Definition:
FUNCTION_BLOCK FB_OpcUAServer
VAR_INPUT
 sNetId : T_AmsNetId;
 bExecute : BOOL;
 eOpcUAServerOption : E_OpcUAServerOption;
 tTimeout : TIME;
END_VAR

PLC API

TS6100 129Version: 1.0.0

VAR_OUTPUT
 stOpcUAServerInfo : ST_OpcUAServerInfo;
 bBusy : BOOL;
 bError : BOOL;
 nErrorId : UDINT;
END_VAR

 Inputs

Name Type Description
sNetId T_AmsNetId AmsNetId of the system on which the TwinCAT OPC

UA Server runs.
bExecute BOOL A rising edge activates processing of the function block.
eOpcUAServerOption E_OpcUAServerOption

[} 127]
Specifies the operation to be performed.

tTimeout TIME ADS Timeout

 Outputs

Name Type Description
stOpcUAServerInfo ST_OpcUAServerInfo

[} 127]
Contains status information from the server when
ServerInfo is selected at the eOpcUAServerOption input.

bBusy BOOL TRUE as long as processing of the function block is in
progress.

bError BOOL Becomes TRUE as soon as an error situation occurs.
nErrorId UDINT Contains the error code when an error (bError) occurs.

5.1.2.2 FB_OpcUAServerGetStatus

The function block enables the current status (Running, NotResponding) of a TwinCAT OPC UA Server to
be read. It should be noted at this point that this function block deals with the ADS interface of the
OPC UA Server. If the OPC UA Server is restarted or shut down, the ADS interface of the server remains
accessible. The ADS interface can only be closed by terminating the server process.

Syntax

Definition:
FUNCTION_BLOCK FB_OpcUAServerGetStatus
VAR_INPUT
 sNetId : T_AmsNetId;
 bGetStatus : BOOL;
 tTimeout : TIME;
END_VAR
VAR_OUTPUT
 eOPCUAServerStatus : E_OPCUAServerStatus;
 bDone : BOOL;
 bBusy : BOOL;
 bError : BOOL;
 nErrorId : UDINT;
END_VAR

PLC API

TS6100130 Version: 1.0.0

 Inputs

Name Type Description
sNetId T_AmsNetId AmsNetId of the system on which the TwinCAT OPC

UA Server runs.
bGetStatus BOOL A rising edge activates processing of the function block.
tTimeout TIME ADS Timeout

 Outputs

Name Type Description
eOPCUAServerStatu
s

E_OpcUAServerStatus
[} 128]

Contains status information about the server.

bDone BOOL TRUE when processing of the function block is complete.
bBusy BOOL TRUE as long as processing of the function block is in

progress.
bError BOOL Becomes TRUE as soon as an error situation occurs.
nErrorId UDINT Contains the error code when an error (bError) occurs.

Samples

TS6100 131Version: 1.0.0

6 Samples
Sample code and configurations for this product can be obtained from the corresponding repository on
GitHub: https://github.com/Beckhoff/TF6100_Samples. There you have the option to clone the repository or
download a ZIP file containing the sample.

The following samples exist:

Name TwinCAT Ver-
sion

Description

TF6100_OpcUa_Client_Sample TwinCAT 3 This sample contains sample code for various
functions of the TwinCAT OPC UA Client (PLCOpen
function blocks). These include Browse, Connect,
HistoryUpdate, MethodCall, Read and Write. The
server sample for access is also included.

TF6100_OpcUa_Server_Sample TwinCAT 3 This sample contains a PLC with extensive provision
of PLC data for the TwinCAT OPC UA Server
(OPC UA Data Access).

TS6100_OpcUa_Client_Sample TwinCAT 2 This sample contains sample code for various
functions of the TwinCAT OPC UA Client (PLCOpen
function blocks). These include MethodCall, Read
and Write.

https://github.com/Beckhoff/TF6100_Samples

Appendix

TS6100132 Version: 1.0.0

7 Appendix

7.1 Attributes and comments
The following table provides an overview of all pragmas and comments that can be configured in the server.
These can be defined in the various real-time environments of TwinCAT to enable different functionalities. A
detailed description of the use of attributes and comments can be found in chapter Enabling symbols [} 43].

Using the tags in the PLC
When using the pragmas in the PLC, please ensure that you place the key and value in quotation
marks. You can find an example in the chapter Enabling symbols\PLC [} 45].

TwinCAT 3

Key Value Meaning
OPC.UA.DA 0 Blocks a symbol explicitly for OPC UA.
OPC.UA.DA 1 Enables a symbol for OPC UA.
OPC.UA.DA 2 Enables a symbol for OPC UA. In the case of a

structure and the StructuredDataType, member
variables are not loaded into the server's
address space as separate nodes.

OPC.UA.DA.Access 1 Sets a node read-only [} 74].
OPC.UA.DA.Access 2 Sets a node write-only.
OPC.UA.DA.Access 3 Enables read/write access to a node (default if

not set).
OPC.UA.DA.Alias <string> Defines a different name (alias [} 75]) for a

node.
OPC.UA.DA.Description <string> Defines the content of the OPC UA attribute

"Description [} 72]".
OPC.UA.DA.StructuredType 0 Disables the StructuredDataType for a

structure [} 65].
OPC.UA.DA.StructuredType 1 Enables the StructuredDataType for a structure

[} 65].
OPC.UA.DA.Status quality Manually define the StatusCode [} 69] of a

symbol in the OPC UA namespace.

Appendix

TS6100 133Version: 1.0.0

TwinCAT 2

PLC comment Meaning
(*~ (OPC:0:not available) *) Locks a variable for OPC UA, whereupon it is

no longer visible in the UA namespace.
(*~ (OPC:1:available) *) Enables a variable for OPC UA, whereupon it

becomes visible in the UA namespace. This
tag must always be set if you want to use a
variable for UA.

(*~ (OPC_PROP[0005]:1:read-only) *) Sets the write protection for a variable. Must be
used together with (*~ (OPC: 1: available) *).

(*~ (OPC_UA_PROP[5100] : x: Alias name) *) Specifies x as node name in the UA
namespace, so-called alias mapping.

(*~ (OPC_UA_PROP[5000]:x:Storage media) *) Enables a variable for "Historical Access".
Must be used together with (*~ (OPC: 1:
available) *). x defines the storage medium for
storing the data values:
1 = RAM
2 = File
3 = SQL Compact Database
4 = SQL Server Database

(*~ (OPC_UA_PROP[5000][1]:x:SamplingRate) *) Determines the sampling rate at which the
variable values are to be stored, in [ms]
depending on the parameter "x"

(*~ (OPC_UA_PROP[5000][2]:x:Buffer) *) Defines the maximum number of values that
remain in the data memory, depending on the
parameter "x".

7.2 32-bit and 64-bit process
The TwinCAT OPC UA Server is available as a 32-bit and 64-bit process. The corresponding files are
installed automatically via the setup or package.

Which variant is active on your system?
ü A little trick in the Windows Task Manager allows you to easily recognize which variant is currently active

on your system.
1. Open the Task Manager.
2. Navigate to the "TwinCAT OPC UA Server" process.
3. Open the file location via the context menu.
ð In the address bar of the File Explorer you can now see which variant of TcOpcUaServer.exe is currently

registered on your system and is therefore active:

Appendix

TS6100134 Version: 1.0.0

Register/unregister

To register or unregister another variant of the TwinCAT OPC UA Server, please follow the steps below.

Before changing the variant, please note that you must first end the running process.

Switch from 32-bit to 64-bit process:
• End the running process of the TcOpcUaServer.exe file in the Task Manager.

• Open the Windows command prompt as an administrator and change to the installation directory [} 37]
of the 32-bit version.

• Enter the following command to unregister the process:
TcOpcUaServer.exe /UnRegTcServer2

A dialog box informs you that the TwinCAT system service must be restarted for unregistration. Confirm this
dialog box with Yes.

Appendix

TS6100 135Version: 1.0.0

As a result of this command, the TwinCAT OPC UA Server is no longer started automatically with TwinCAT.

In the next step, you will learn how to register the 64-bit variant of the server with the TwinCAT system
service.

• Change to the server installation directory [} 37] of the 64-bit variant and enter the following command
to register the process:
TcOpcUaServer.exe /RegTcServer2

A dialog box informs you once again that the TwinCAT system service must be restarted for unregistration.
Confirm this dialog box with "Yes".

As a result of this command, the TwinCAT OPC UA Server is registered with the TwinCAT system service
and starts automatically together with TwinCAT. If you get the error message when entering this command,
make sure that you are not inadvertently trying to register the 64-bit process on a 32-bit system.

Conversely, the 32-bit process can of course be registered on a 64-bit system.

7.3 Error diagnosis
In the event of undesirable operating behavior, an extended diagnosis may be necessary. Depending on the
situation, this may include the following measures: ADS Trace, Wireshark Trace, log file, Memory Dump. A
log function may also be available and useful on the client side. The appropriateness of the action depends
heavily on the appearance of the behavior. Take another look at the software architecture of the
TwinCAT OPC UA Server and compare it with the operating behavior. The following figure illustrates where
the individual measures (described in more detail in the table) could be helpful.

Appendix

TS6100136 Version: 1.0.0

Measure Use case Link
Client Log Useful for recording extended

protocol functions on the client
side.

Please contact the manufacturer of
the client for more information
about its logging functions.

Wireshark Trace Useful for examining
communication between client and
server.

https://www.wireshark.org/

Server Log Useful for logging advanced
server-side logging functions.

See chapter Logging [} 125] in this
documentation.

Memory Dump It can be useful to create a Memory
Dump in case the
TwinCAT OPC UA Server is
unexpectedly terminated. The tools
required for this depend on the
operating system.

Microsoft Debug Diagnostics

ADS Trace Useful for examining the
communication between server
and PLC.

Beckhoff Download Finder (TF6010
TC3 ADS Monitor)

Support
The Beckhoff support department [} 142] will be happy to assist you in implementing the
appropriate measures.

The following table provides an overview of possible unexpected operating behavior and measures to
resolve it.

https://www.wireshark.org/
https://www.microsoft.com/en-us/download/details.aspx?id=58210
https://www.beckhoff.com/en-us/support/download-finder/

Appendix

TS6100 137Version: 1.0.0

Behavior Measure(s)
An OPC UA client does not see the PLC
namespace.

TF6100 Setup Version 3.x and older: this status indicates
a missing license. Check whether you have activated a
valid TF6100 license.

An OPC UA client is assigned the StatusCode
0x810e0000 when reading nodes.

TF6100 Setup Version 4.x: this status indicates a missing
license. Check whether you have activated a valid TF6100
license.

The variables enabled via comments/attributes
are not displayed in the OPC UA server.

Check whether the symbol file has been correctly
transferred to the controller (e.g., check boxes in the PLC
project), verify that it exists in the boot directory and that
the path to the symbol file in the configuration file of the
server refers to the correct symbol file. You can also use
the DeviceState Node in the respective namespace to
check any error messages that may have occurred. An
entry is made here if the symbol file was not found.
Also check that the comments/attributes are spelled
correctly.

The server does not comply with the sampling
rate/publishing interval required by the
OPC UA Client.

OPC UA client/server is not a real-time protocol, i.e., there
is no guarantee that the server will always meet 100% of
the sampling rate or publishing interval required by the
client. The available sampling rates and publishing
intervals can be viewed in the server configuration file and
modified if required (<AvailableSamplingRates> and
<MinPublishingInterval>).

An OPC UA Client cannot connect to the server
although the server is displayed in the Windows
Task Manager. The error message "Host
unreachable" (or similar) appears.

Check whether firewall settings prevent communication
with the server. The server port must be open for incoming
TCP communication so that a client can connect.

An OPC UA client sees the server's endpoints,
but a connection with them fails with the error
message "Host unreachable".

Check that the name resolution in your network is working
properly and that the server is accessible under its host
name. Even if the OPC UA Client apparently connects to
the IP address of the server (e.g., opc.tcp://
192.168.0.1:4840) to access the server's endpoints, the
server always returns its own host name in its endpoints. If
the client connects directly to one of the endpoints, it will
use the host name of the server again. If the name
resolution does not work, the connection fails.

An OPC UA Client sees the endpoints of the
server, but a connection to a secure endpoint
fails. The error message
"BadSecurityChecksFailed" appears

Check whether the server trusts the client certificate. The
required configuration steps can be found in section
Certificate exchange. In this case, it must also be ensured
that a signature hash algorithm of the SHA 2 group
(SHA256, SHA364, SHA512) is used to sign the client
certificate. If deprecated algorithms such as SHA1 are
used, the TwinCAT OPC UA Server does not allow a
connection.

When using an SQL server to store Historical
Access information, the values are not added to
the SQL database.

Check the access data to the SQL Server and verify that
the SQL Server is also accessible in the network. Also
make sure that you are using a "Big Windows" operating
system on the TwinCAT OPC UA Server, since SQL
Server cannot be used for Historical Access under
Windows CE (although SQL Compact is OK).

When reading nodes, an OPC UA client
receives the error message "BadDeviceFailure".

This is an indication that the associated ADS device
cannot be reached, for example if no PLC program has
been started. Check the connectivity with the ADS device
and make sure that the appropriate runtime is active.

When reading nodes, an OPC UA client
receives the error message
"BadLicenseExpired".

This is an indication that no TF6100 license is active on
the system or that it has expired. Please make sure that
you have activated a TF6100 license on the device on
which the server was installed.

Appendix

TS6100138 Version: 1.0.0

Behavior Measure(s)
Arrays are not displayed in the namespace with
full resolution.

By default, arrays of simple data types are not displayed in
expanded form in the namespace. However, individual
array indices can still be addressed using the IndexRange
function of OPC UA. An OPC UA Client should therefore
support this function. If this is not the case, a radio button
in the configuration file of the server can be used to display
an array in expanded form, so that each individual array
element can be addressed as a separate node. This radio
button is described in the section Arrays [} 50].

7.4 ADS Return Codes
Grouping of error codes:
Global error codes: ADS Return Codes [} 138]... (0x9811_0000 ...)
Router error codes: ADS Return Codes [} 138]... (0x9811_0500 ...)
General ADS errors: ADS Return Codes [} 139]... (0x9811_0700 ...)
RTime error codes: ADS Return Codes [} 141]... (0x9811_1000 ...)

Global error codes

Hex Dec HRESULT Name Description
0x0 0 0x98110000 ERR_NOERROR No error.
0x1 1 0x98110001 ERR_INTERNAL Internal error.
0x2 2 0x98110002 ERR_NORTIME No real time.
0x3 3 0x98110003 ERR_ALLOCLOCKEDMEM Allocation locked – memory error.
0x4 4 0x98110004 ERR_INSERTMAILBOX Mailbox full – the ADS message could not be sent.

Reducing the number of ADS messages per cycle will
help.

0x5 5 0x98110005 ERR_WRONGRECEIVEHMSG Wrong HMSG.
0x6 6 0x98110006 ERR_TARGETPORTNOTFOUND Target port not found – ADS server is not started or is

not reachable.
0x7 7 0x98110007 ERR_TARGETMACHINENOTFOUND Target computer not found – AMS route was not found.
0x8 8 0x98110008 ERR_UNKNOWNCMDID Unknown command ID.
0x9 9 0x98110009 ERR_BADTASKID Invalid task ID.
0xA 10 0x9811000A ERR_NOIO No IO.
0xB 11 0x9811000B ERR_UNKNOWNAMSCMD Unknown AMS command.
0xC 12 0x9811000C ERR_WIN32ERROR Win32 error.
0xD 13 0x9811000D ERR_PORTNOTCONNECTED Port not connected.
0xE 14 0x9811000E ERR_INVALIDAMSLENGTH Invalid AMS length.
0xF 15 0x9811000F ERR_INVALIDAMSNETID Invalid AMS Net ID.
0x10 16 0x98110010 ERR_LOWINSTLEVEL Installation level is too low –TwinCAT 2 license error.
0x11 17 0x98110011 ERR_NODEBUGINTAVAILABLE No debugging available.
0x12 18 0x98110012 ERR_PORTDISABLED Port disabled – TwinCAT system service not started.
0x13 19 0x98110013 ERR_PORTALREADYCONNECTED Port already connected.
0x14 20 0x98110014 ERR_AMSSYNC_W32ERROR AMS Sync Win32 error.
0x15 21 0x98110015 ERR_AMSSYNC_TIMEOUT AMS Sync Timeout.
0x16 22 0x98110016 ERR_AMSSYNC_AMSERROR AMS Sync error.
0x17 23 0x98110017 ERR_AMSSYNC_NOINDEXINMAP No index map for AMS Sync available.
0x18 24 0x98110018 ERR_INVALIDAMSPORT Invalid AMS port.
0x19 25 0x98110019 ERR_NOMEMORY No memory.
0x1A 26 0x9811001A ERR_TCPSEND TCP send error.
0x1B 27 0x9811001B ERR_HOSTUNREACHABLE Host unreachable.
0x1C 28 0x9811001C ERR_INVALIDAMSFRAGMENT Invalid AMS fragment.
0x1D 29 0x9811001D ERR_TLSSEND TLS send error – secure ADS connection failed.
0x1E 30 0x9811001E ERR_ACCESSDENIED Access denied – secure ADS access denied.

Router error codes

Appendix

TS6100 139Version: 1.0.0

Hex Dec HRESULT Name Description
0x500 1280 0x98110500 ROUTERERR_NOLOCKEDMEMORY Locked memory cannot be allocated.

0x501 1281 0x98110501 ROUTERERR_RESIZEMEMORY The router memory size could not be changed.

0x502 1282 0x98110502 ROUTERERR_MAILBOXFULL The mailbox has reached the maximum number of
possible messages.

0x503 1283 0x98110503 ROUTERERR_DEBUGBOXFULL The Debug mailbox has reached the maximum
number of possible messages.

0x504 1284 0x98110504 ROUTERERR_UNKNOWNPORTTYPE The port type is unknown.
0x505 1285 0x98110505 ROUTERERR_NOTINITIALIZED The router is not initialized.
0x506 1286 0x98110506 ROUTERERR_PORTALREADYINUSE The port number is already assigned.
0x507 1287 0x98110507 ROUTERERR_NOTREGISTERED The port is not registered.
0x508 1288 0x98110508 ROUTERERR_NOMOREQUEUES The maximum number of ports has been reached.
0x509 1289 0x98110509 ROUTERERR_INVALIDPORT The port is invalid.
0x50A 1290 0x9811050A ROUTERERR_NOTACTIVATED The router is not active.
0x50B 1291 0x9811050B ROUTERERR_FRAGMENTBOXFULL The mailbox has reached the maximum number for

fragmented messages.
0x50C 1292 0x9811050C ROUTERERR_FRAGMENTTIMEOUT A fragment timeout has occurred.
0x50D 1293 0x9811050D ROUTERERR_TOBEREMOVED The port is removed.

General ADS error codes

Appendix

TS6100140 Version: 1.0.0

Hex Dec HRESULT Name Description
0x700 1792 0x98110700 ADSERR_DEVICE_ERROR General device error.
0x701 1793 0x98110701 ADSERR_DEVICE_SRVNOTSUPP Service is not supported by the server.
0x702 1794 0x98110702 ADSERR_DEVICE_INVALIDGRP Invalid index group.
0x703 1795 0x98110703 ADSERR_DEVICE_INVALIDOFFSET Invalid index offset.
0x704 1796 0x98110704 ADSERR_DEVICE_INVALIDACCESS Reading or writing not permitted.
0x705 1797 0x98110705 ADSERR_DEVICE_INVALIDSIZE Parameter size not correct.
0x706 1798 0x98110706 ADSERR_DEVICE_INVALIDDATA Invalid data values.
0x707 1799 0x98110707 ADSERR_DEVICE_NOTREADY Device is not ready to operate.
0x708 1800 0x98110708 ADSERR_DEVICE_BUSY Device is busy.
0x709 1801 0x98110709 ADSERR_DEVICE_INVALIDCONTEXT Invalid operating system context. This can result

from use of ADS blocks in different tasks. It may be
possible to resolve this through multitasking
synchronization in the PLC.

0x70A 1802 0x9811070A ADSERR_DEVICE_NOMEMORY Insufficient memory.
0x70B 1803 0x9811070B ADSERR_DEVICE_INVALIDPARM Invalid parameter values.
0x70C 1804 0x9811070C ADSERR_DEVICE_NOTFOUND Not found (files, ...).
0x70D 1805 0x9811070D ADSERR_DEVICE_SYNTAX Syntax error in file or command.
0x70E 1806 0x9811070E ADSERR_DEVICE_INCOMPATIBLE Objects do not match.
0x70F 1807 0x9811070F ADSERR_DEVICE_EXISTS Object already exists.
0x710 1808 0x98110710 ADSERR_DEVICE_SYMBOLNOTFOUND Symbol not found.
0x711 1809 0x98110711 ADSERR_DEVICE_SYMBOLVERSIONINVALID Invalid symbol version. This can occur due to an

online change. Create a new handle.
0x712 1810 0x98110712 ADSERR_DEVICE_INVALIDSTATE Device (server) is in invalid state.
0x713 1811 0x98110713 ADSERR_DEVICE_TRANSMODENOTSUPP AdsTransMode not supported.
0x714 1812 0x98110714 ADSERR_DEVICE_NOTIFYHNDINVALID Notification handle is invalid.
0x715 1813 0x98110715 ADSERR_DEVICE_CLIENTUNKNOWN Notification client not registered.
0x716 1814 0x98110716 ADSERR_DEVICE_NOMOREHDLS No further handle available.
0x717 1815 0x98110717 ADSERR_DEVICE_INVALIDWATCHSIZE Notification size too large.
0x718 1816 0x98110718 ADSERR_DEVICE_NOTINIT Device not initialized.
0x719 1817 0x98110719 ADSERR_DEVICE_TIMEOUT Device has a timeout.
0x71A 1818 0x9811071A ADSERR_DEVICE_NOINTERFACE Interface query failed.
0x71B 1819 0x9811071B ADSERR_DEVICE_INVALIDINTERFACE Wrong interface requested.
0x71C 1820 0x9811071C ADSERR_DEVICE_INVALIDCLSID Class ID is invalid.
0x71D 1821 0x9811071D ADSERR_DEVICE_INVALIDOBJID Object ID is invalid.
0x71E 1822 0x9811071E ADSERR_DEVICE_PENDING Request pending.
0x71F 1823 0x9811071F ADSERR_DEVICE_ABORTED Request is aborted.
0x720 1824 0x98110720 ADSERR_DEVICE_WARNING Signal warning.
0x721 1825 0x98110721 ADSERR_DEVICE_INVALIDARRAYIDX Invalid array index.
0x722 1826 0x98110722 ADSERR_DEVICE_SYMBOLNOTACTIVE Symbol not active.
0x723 1827 0x98110723 ADSERR_DEVICE_ACCESSDENIED Access denied.
0x724 1828 0x98110724 ADSERR_DEVICE_LICENSENOTFOUND Missing license.
0x725 1829 0x98110725 ADSERR_DEVICE_LICENSEEXPIRED License expired.
0x726 1830 0x98110726 ADSERR_DEVICE_LICENSEEXCEEDED License exceeded.
0x727 1831 0x98110727 ADSERR_DEVICE_LICENSEINVALID Invalid license.
0x728 1832 0x98110728 ADSERR_DEVICE_LICENSESYSTEMID License problem: System ID is invalid.
0x729 1833 0x98110729 ADSERR_DEVICE_LICENSENOTIMELIMIT License not limited in time.
0x72A 1834 0x9811072A ADSERR_DEVICE_LICENSEFUTUREISSUE Licensing problem: time in the future.
0x72B 1835 0x9811072B ADSERR_DEVICE_LICENSETIMETOLONG License period too long.
0x72C 1836 0x9811072C ADSERR_DEVICE_EXCEPTION Exception at system startup.
0x72D 1837 0x9811072D ADSERR_DEVICE_LICENSEDUPLICATED License file read twice.
0x72E 1838 0x9811072E ADSERR_DEVICE_SIGNATUREINVALID Invalid signature.
0x72F 1839 0x9811072F ADSERR_DEVICE_CERTIFICATEINVALID Invalid certificate.
0x730 1840 0x98110730 ADSERR_DEVICE_LICENSEOEMNOTFOUND Public key not known from OEM.
0x731 1841 0x98110731 ADSERR_DEVICE_LICENSERESTRICTED License not valid for this system ID.
0x732 1842 0x98110732 ADSERR_DEVICE_LICENSEDEMODENIED Demo license prohibited.
0x733 1843 0x98110733 ADSERR_DEVICE_INVALIDFNCID Invalid function ID.
0x734 1844 0x98110734 ADSERR_DEVICE_OUTOFRANGE Outside the valid range.
0x735 1845 0x98110735 ADSERR_DEVICE_INVALIDALIGNMENT Invalid alignment.
0x736 1846 0x98110736 ADSERR_DEVICE_LICENSEPLATFORM Invalid platform level.

Appendix

TS6100 141Version: 1.0.0

Hex Dec HRESULT Name Description
0x737 1847 0x98110737 ADSERR_DEVICE_FORWARD_PL Context – forward to passive level.
0x738 1848 0x98110738 ADSERR_DEVICE_FORWARD_DL Context – forward to dispatch level.
0x739 1849 0x98110739 ADSERR_DEVICE_FORWARD_RT Context – forward to real time.
0x740 1856 0x98110740 ADSERR_CLIENT_ERROR Client error.
0x741 1857 0x98110741 ADSERR_CLIENT_INVALIDPARM Service contains an invalid parameter.
0x742 1858 0x98110742 ADSERR_CLIENT_LISTEMPTY Polling list is empty.
0x743 1859 0x98110743 ADSERR_CLIENT_VARUSED Var connection already in use.
0x744 1860 0x98110744 ADSERR_CLIENT_DUPLINVOKEID The called ID is already in use.
0x745 1861 0x98110745 ADSERR_CLIENT_SYNCTIMEOUT Timeout has occurred – the remote terminal is not

responding in the specified ADS timeout. The route
setting of the remote terminal may be configured
incorrectly.

0x746 1862 0x98110746 ADSERR_CLIENT_W32ERROR Error in Win32 subsystem.
0x747 1863 0x98110747 ADSERR_CLIENT_TIMEOUTINVALID Invalid client timeout value.
0x748 1864 0x98110748 ADSERR_CLIENT_PORTNOTOPEN Port not open.
0x749 1865 0x98110749 ADSERR_CLIENT_NOAMSADDR No AMS address.
0x750 1872 0x98110750 ADSERR_CLIENT_SYNCINTERNAL Internal error in Ads sync.
0x751 1873 0x98110751 ADSERR_CLIENT_ADDHASH Hash table overflow.
0x752 1874 0x98110752 ADSERR_CLIENT_REMOVEHASH Key not found in the table.
0x753 1875 0x98110753 ADSERR_CLIENT_NOMORESYM No symbols in the cache.
0x754 1876 0x98110754 ADSERR_CLIENT_SYNCRESINVALID Invalid response received.
0x755 1877 0x98110755 ADSERR_CLIENT_SYNCPORTLOCKED Sync Port is locked.
0x756 1878 0x98110756 ADSERR_CLIENT_REQUESTCANCELLED The request was cancelled.

RTime error codes

Hex Dec HRESULT Name Description
0x1000 4096 0x98111000 RTERR_INTERNAL Internal error in the real-time system.
0x1001 4097 0x98111001 RTERR_BADTIMERPERIODS Timer value is not valid.
0x1002 4098 0x98111002 RTERR_INVALIDTASKPTR Task pointer has the invalid value 0 (zero).
0x1003 4099 0x98111003 RTERR_INVALIDSTACKPTR Stack pointer has the invalid value 0 (zero).
0x1004 4100 0x98111004 RTERR_PRIOEXISTS The request task priority is already assigned.
0x1005 4101 0x98111005 RTERR_NOMORETCB No free TCB (Task Control Block) available. The

maximum number of TCBs is 64.
0x1006 4102 0x98111006 RTERR_NOMORESEMAS No free semaphores available. The maximum number of

semaphores is 64.
0x1007 4103 0x98111007 RTERR_NOMOREQUEUES No free space available in the queue. The maximum

number of positions in the queue is 64.

0x100D 4109 0x9811100D RTERR_EXTIRQALREADYDEF An external synchronization interrupt is already applied.
0x100E 4110 0x9811100E RTERR_EXTIRQNOTDEF No external sync interrupt applied.
0x100F 4111 0x9811100F RTERR_EXTIRQINSTALLFAILED Application of the external synchronization interrupt has

failed.
0x1010 4112 0x98111010 RTERR_IRQLNOTLESSOREQUAL Call of a service function in the wrong context
0x1017 4119 0x98111017 RTERR_VMXNOTSUPPORTED Intel VT-x extension is not supported.
0x1018 4120 0x98111018 RTERR_VMXDISABLED Intel VT-x extension is not enabled in the BIOS.
0x1019 4121 0x98111019 RTERR_VMXCONTROLSMISSING Missing function in Intel VT-x extension.
0x101A 4122 0x9811101A RTERR_VMXENABLEFAILS Activation of Intel VT-x fails.

Specific positive HRESULT Return Codes:

HRESULT Name Description
0x0000_0000 S_OK No error.
0x0000_0001 S_FALSE No error.

Example: successful processing, but with a negative or
incomplete result.

0x0000_0203 S_PENDING No error.
Example: successful processing, but no result is available
yet.

0x0000_0256 S_WATCHDOG_TIMEOUT No error.
Example: successful processing, but a timeout occurred.

TCP Winsock error codes

Appendix

TS6100142 Version: 1.0.0

Hex Dec Name Description
0x274C 10060 WSAETIMEDOUT A connection timeout has occurred - error while establishing the

connection, because the remote terminal did not respond properly after a
certain period of time, or the established connection could not be
maintained because the connected host did not respond.

0x274D 10061 WSAECONNREFUSED Connection refused - no connection could be established because the
target computer has explicitly rejected it. This error usually results from an
attempt to connect to a service that is inactive on the external host, that is,
a service for which no server application is running.

0x2751 10065 WSAEHOSTUNREACH No route to host - a socket operation referred to an unavailable host.
More Winsock error codes: Win32 error codes

7.5 Support and Service
Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Download finder

Our download finder contains all the files that we offer you for downloading. You will find application reports,
technical documentation, technical drawings, configuration files and much more.

The downloads are available in various formats.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on our internet
page: www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:

• support
• design, programming and commissioning of complex automation systems
• and extensive training program for Beckhoff system components

Hotline: +49 5246 963-157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

• on-site service
• repair service
• spare parts service
• hotline service

Hotline: +49 5246 963-460
e-mail: service@beckhoff.com

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

https://www.beckhoff.com/en-gb/support/download-finder/index-2.html
https://www.beckhoff.com/support
https://www.beckhoff.com/

Appendix

TS6100 143Version: 1.0.0

Huelshorstweg 20
33415 Verl
Germany

Phone: +49 5246 963-0
e-mail: info@beckhoff.com
web: www.beckhoff.com

https://www.beckhoff.com/

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/ts6100

mailto:info@beckhoff.de?subject=TS6100
https://www.beckhoff.com
https://www.beckhoff.com/ts6100

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security

	2 Overview
	3 Installation
	3.1 System requirements
	3.2 Installation
	3.3 Update installation
	3.4 Installation variants
	3.5 Licensing

	4 Technical introduction
	4.1 Quick start
	4.2 Initialization
	4.3 Recommended steps
	4.4 Software architecture
	4.5 Configurator
	4.6 Optimizations
	4.7 Application directories
	4.8 Data Access
	4.8.1 Overview
	4.8.2 Connection with the runtime
	4.8.3 Enabling symbols
	4.8.3.1 PLC
	4.8.3.2 C++
	4.8.3.2.1 Arrays

	4.8.3.3 Matlab/Simulink
	4.8.3.4 EtherCAT Master
	4.8.3.5 I/O task
	4.8.3.6 Online symbolism

	4.8.4 Nodesets
	4.8.5 Data types
	4.8.6 Arrays
	4.8.7 Enums
	4.8.8 Structures
	4.8.9 Properties
	4.8.10 StatusCode
	4.8.11 AnalogItemType
	4.8.12 Description
	4.8.13 ReadOnly
	4.8.14 Alias
	4.8.15 Pointers and references
	4.8.16 Type system
	4.8.17 DI Components
	4.8.18 DeviceState
	4.8.19 ServerState

	4.9 Historical Access
	4.9.1 Overview
	4.9.2 Supported functions
	4.9.3 Configuration
	4.9.4 HistoryUpdate
	4.9.5 TwinCAT Analytics
	4.9.6 Access to historical data

	4.10 Alarms and Conditions
	4.10.1 Overview
	4.10.2 Supported functions
	4.10.3 Configuration
	4.10.4 Additional application data
	4.10.5 Access to alarms and events

	4.11 Method calls
	4.11.1 Overview
	4.11.2 Job methods
	4.11.3 RPC methods

	4.12 TwinCAT EventLogger
	4.12.1 Overview
	4.12.2 Configuration
	4.12.3 Access to alarms and events

	4.13 Global Discovery Server
	4.13.1 Overview
	4.13.2 Push
	4.13.3 Pull

	4.14 Security
	4.14.1 Overview
	4.14.2 Endpoints
	4.14.3 Certificate exchange
	4.14.4 Authentication
	4.14.5 Access rights

	4.15 File Transfer
	4.15.1 Overview
	4.15.2 Configuration

	4.16 Reverse Connect
	4.17 Logging
	4.18 System Tray

	5 PLC API
	5.1 Tc2_OpcUa
	5.1.1 Data types
	5.1.1.1 ST_OpcUAServerInfo
	5.1.1.2 E_OpcUAServerOption
	5.1.1.3 E_OpcUAServerStatus

	5.1.2 Function blocks
	5.1.2.1 FB_OpcUAServer
	5.1.2.2 FB_OpcUAServerGetStatus

	6 Samples
	7 Appendix
	7.1 Attributes and comments
	7.2 32-bit and 64-bit process
	7.3 Error diagnosis
	7.4 ADS Return Codes
	7.5 Support and Service

		documentation@beckhoff.com
	2024-04-04T12:15:29+0200
	Beckhoff Automation, Verl
	Documentation Publishing

