BECKHOFF

156100

TwinCAT 2 | OPC UA Client

Supplement | Communication

2024-04-03 | Version: 1.0.0

BEGKHOFF Table of contents

Table of contents

1

L o] =3V o c S 5
1.1 Notes on the doCUMENTALION ... e e e e e 5
L o Yo TN T =Y |V USRS POPPPP 5
1.3 Notes on infOrmation SECUNITYcooi i 7
L0 Y= T PR 8
LTS3 =11 1T o 10
3.1 SyYSIEM REQUIMEMENTSt e e e e e e e e e e e e e e e e eaeeeeeesanssbeaneeeeaaaeens 10
R 35 | 1< =11 =1 o o SO 10
R TR T I (oY 13 o T PRSPPI 12
Technical INtrOAUCTIONee e mmmn e e e e e e s 15
g O O T T = o A USSP 15
4.2 SOftWare arChitECIUIE ...t e e e e e e e s s e e e e e aee e e e e s e nnnnrenneees 18
v 3G RS TW] o] oo 5 (Yo I8 11 Uox 1T 1= 19
4.4 ApPlication AIFECIOMIESoieieeeeeeeee ettt s s e e e e e e e e e e e e e aeaaeeeeeeeeeneanrnra 21
4.5 Reading VariabIescooeeiiiiii e 21
I A4 ([g To TRV = T = o) [U UR 23
A\ = T To I = | PP PPPP PP 24
4.8 Timestamp and STAtUSCOUE........ue it e e e e e e e e e e e e e e e neeees 27
S] 1 U [y (B = PSPPSR 27
o L Oo T [N o =T g =Y =1 i o] o PSPPSR 30
V7 S T T = I @7 o] o 1Y o I {1 T 1 o] g T o] o T3 << S 34
IO L PSR 46
LS 0t B I @ o T £ T SO 46

5.1.1 DALA BYPES .ottt e e e e ettt ———————————— 46

51.2 FUNCHON DIOCKS ...ttt e e e e e e e e eeeeeeeae s 47
5.2 TC3 PLCOPEN OPCUA ...t et a e e 49

5.2.1 [0 F Y = TR 1] 1= T 49

5.2.2 FUNCHON DIOCKS ... e e e e e e e e e e eae s 63
8T 1 4 o =SOSR 84
7 o 1= o 1S 85
4% B =4 o Tl [=T [T 1S RSO 85
A S - Y (U< oo To =SS 85

7.2.1 ADS REIUIN COUES.......iiiiie ettt ettt e e et e e e e et e e e e e s nbe e e e e e enbeeeeeennnees 85

7.2.2 (O] 11=70 1 1 ISP P PR RRRORI 89

7.2.3 L0 15T | I o o1 o ISR a0
7.3 SUPPOIT @NA SEIVICEuuiiiiiiiiiiee et e et e e e e e e e e e s et e e e e e e e e e e e e e s s aasbaaaeeeeaeaeans 93

TS6100 Version: 1.0.0 3

Table of contents BECKHOFF

4 Version: 1.0.0 TS6100

BEGKHOFF Foreword

1 Foreword

1.1 Notes on the documentation

This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.

For installation and commissioning of the components, it is absolutely necessary to observe the
documentation and the following notes and explanations.

The qualified personnel is obliged to always use the currently valid documentation.

The responsible staff must ensure that the application or use of the products described satisfies all
requirements for safety, including all the relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.

We reserve the right to revise and change the documentation at any time and without notice.

No claims to modify products that have already been supplied may be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10°, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered and licensed trademarks of
Beckhoff Automation GmbH.

If third parties make use of designations or trademarks used in this publication for their own purposes, this
could infringe upon the rights of the owners of the said designations.

Patents

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:

EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702

and similar applications and registrations in several other countries.

——
EtherCAT.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The distribution and reproduction of this document as well as the use and communication of its contents
without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

1.2 For your safety

Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

TS6100 Version: 1.0.0 5

Foreword BECKHOFF

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

A DANGER

Hazard with high risk of death or serious injury.

Hazard with medium risk of death or serious injury.

A CAUTION

There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

The environment, equipment, or data may be damaged.

Information on handling the product

d This information includes, for example:

recommendations for action, assistance or further information on the product.

Version: 1.0.0 TS6100

(e}

BEGKHOFF Foreword

1.3 Notes on information security

The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our

https://www.beckhoff.com/secquide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

TS6100 Version: 1.0.0 7

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Overview BEGKHOFF

2 Overview

OPC Unified Architecture (OPC UA) is the next generation of the familiar OPC standard. This is a globally
standardized communication protocol via which machine data can be exchanged irrespective of the
manufacturer and platform. OPC UA already integrates common security standards directly in the protocol.
Another major advantage of OPC UA over the conventional OPC standard is its independence from the
COM/DCOM system.

o
1 Detailed information on OPC UA can be found on the web pages of the OPC Foundation.

The TwinCAT 3 Function TF6100 OPC UA consists of several software components that enable data
exchange with TwinCAT based on OPC UA.
The following table provides an overview of the individual product components.

Software component Description

TwinCAT OPC UA Server Provides an OPC UA Server interface so that UA
clients can access the TwinCAT runtime.

TwinCAT OPC UA Client Provides OPC UA Client functionality to enable

communication with other OPC UA Servers based on
PLCopen-standardized function blocks and an easy-
to-configure I/O device.

TwinCAT OPC UA Configurator Graphical user interface for configuring the TwinCAT
OPC UA Server.
TwinCAT OPC UA Sample Client Graphical sample implementation of an

OPC UA Client in order to carry out a first connection
test with the TwinCAT OPC UA Server.

TwinCAT OPC UA Gateway Wrapper technology that provides both an

OPC COM DA Server interface and OPC UA Server
aggregation capabilities.

This documentation describes the TwinCAT 3 OPC UA Client, which is a software component that provides
an OPC UA Client interface for the TwinCAT Runtime environment. The TwinCAT 3 OPC UA Client can
therefore be used to initiate connections with OPC UA servers in order to exchange data with them.

8 Version: 1.0.0 TS6100

https://opcfoundation.org/

BEGKHOFF Overview

OPC UA Server

W /N

F

OPC UA Server

The technical use cases range from TCP-based (and therefore non-real-time capable) machine-to-machine
communication to machine-to-cloud communication if the OPC UA server to be connected is located in the
cloud.

The TwinCAT OPC UA Client is technically available in two different variants:

1. As a TwinCAT I/O device
2. As PLC function blocks

Further information

» For an overview of any functional differences, we recommend our article Supported functions [»_19].

» Please note the System Requirements [P_10] for this product.

» For a quick introduction to the product, we recommend our articles Installation [»_10] and Quick start
[»15].

TS6100 Version: 1.0.0 9

Installation BEGKHOFF

3 Installation

3.1 System Requirements

The following system requirements apply for the installation and operation of this product.

Client
Technical data Description
Operating system Windows 10
Windows CE 6/7
Windows Server 2022
Target platforms PC architecture (x86, x64, ARM)
.NET Framework -
TwinCAT version TwinCAT 3
Minimum TwinCAT installation level TwinCAT 3 XAE, XAR
Required TwinCAT license TF6100 TC3 OPC UA

Sample Server

Technical data Description

Operating system Windows 10 (>= 21H2)
Windows Server 2022

Target platforms PC-Architektur (x86, x64)

.NET Framework 4.8.1

TwinCAT version -
Minimum TwinCAT installation level -
Required TwinCAT license -

3.2 Installation

Depending on the TwinCAT version and operating system used, this TwinCAT 3 Function can be installed in
different ways, which are described in more detail below.

Update installation

An update installation always uninstalls the previous installation. Please make sure that you have backed
up your configuration files beforehand.

TwinCAT Package Manager

If you are using TwinCAT 3.1 Build 4026 (and higher) on the Microsoft Windows operating system, you can
install this function via the TwinCAT Package Manager, see Installation documentation.

Normally you install the function via the corresponding workload; however, you can also install the packages
contained in the workload individually. This documentation briefly describes the installation process via the
workload.

Command line program TcPkg

You can use the TcPkg Command Line Interface (CLI) to display the available workloads on the system:

tcpkg list -t workload

You can use the following command to install the workload of a function.
Shown here using the example of the TF6100 TwinCAT OPC UA Client:

10 Version: 1.0.0 TS6100

https://infosys.beckhoff.com/content/1033/tc3_installation/index.html?id=3481283926605773347

BEGKHOFF Installation

tcpkg install tf6100-opc-ua-client

TwinCAT Package Manager Ul

You can use the User Interface (Ul) to display all available workloads and install them if required.
To do this, follow the corresponding instructions in the interface.

Unprepared TwinCAT restart can cause data loss

The installation of this function may result in a TwinCAT restart.
Make sure that no critical TwinCAT applications are running on the system or shut them down in an orderly
manner first.

Setup

If you are using TwinCAT 3.1 Build 4024 on the Microsoft Windows operating system, you can install this
function via a setup package, which you can download from the Beckhoff website at https://
www.beckhoff.com/download.

Depending on the system on which you need the function, the installation can be done on either the
engineering or runtime side. The following screenshot shows an example of the setup interface using the
TF6100 TwinCAT OPC UA Client setup.

ﬁ Beckhoff TFG100 OPC-UA-Clent - 4.4.37.0 >

Welcome to the Beckhoff Setup for Beckhoff
TF6100 OPC-UA-Client

Bedkhoff Setup will allow you to modify, repair, or remave
Beckhoff TF6100 OPC-JA-Client. To continue, dick Mext.

To complete the installation process, follow the instructions in the Setup dialog.

Unprepared TwinCAT restart can cause data loss

Installing this function may cause TwinCAT to restart.
Make sure that no critical TwinCAT applications are running on the system or shut them down in an orderly
manner first.

TS6100 Version: 1.0.0 1

https://www.beckhoff.com/download
https://www.beckhoff.com/download

Installation

BECKHOFF

Windows CE

If you are using Microsoft Windows CE as your operating system, you

can install this function via the

respective CAB files, which are delivered with the setup or TcPkg workload. The CAB files are usually stored
in the subdirectory CE-ARMC4| and CE-X86 relative to the installation directory of the function.

» ThisPC » Local Disk (C:) » Program Files (x86) » Beckhoff > TwinCAT »

~

Name Date modified

CE-ARMVA4
CE-ARMVA4I-LF
CE-X86

Win32

Wint4

Functions » TF6100-OPC-UA »

Type Size
File folder
File folder
File folder
File folder
File folder

<« Local Disk (C:) » Program Files (x86) » Beckhoff > TwinCAT » Functions > TF6100-OPC-UA > CE-ARMV4| >

~

Date modified Type

Name

12/2023 5:54 PM

2 8:33 AM

Cabinet File

J TF6100-OPC-UA_Client. ARMV4|
| TF6100-OPC-UA_Server. ARMV4I

9/29/202 Cabinet File

From there they can be transferred to the Windows CE device via file
files then install and register the function on the respective system.

transfer and executed there. The CAB

Always use the appropriate CAB file for your system. Specifically, this means

* CE-ARMV4Il: ARM-based devices, e.g. CX8190, CX9020
+ CE-X86: x86-based devices, e.g. CX51xx, CX52xx, CX20xx

The CAB file can be transferred to the device either via the CF/SD card or the FTP server integrated in

Windows CE.

@® Device restart

1 After installing this function, a device restart is required so that the function can be used.

3.3 Licensing

The TwinCAT 3 function can be activated as a full version or as a 7-day test version. Both license types can

be activated via the TwinCAT 3 development environment (XAE).

The licensing of a TwinCAT 3 function is described below. The description is divided into the following

sections:

 Licensing a 7-day trial version [P 12]

* Licensing a full version [P_14]

Further information on TwinCAT 3 licensing can be found in the Beckhoff Information System in the

documentation "TwinCAT 3 Licensing").

Licensing the 7-day test version of a TwinCAT 3 Function

1 A 7-day test version cannot be enabled for a TwinCAT 3 license dongle.

1. Start the TwinCAT 3 development environment (XAE).
2. Open an existing TwinCAT 3 project or create a new project.

12 Version: 1.0.0

TS6100

https://infosys.beckhoff.com/content/1033/tc3_licensing/index.html?id=4971678236866464095
https://infosys.beckhoff.com/content/1033/tc3_licensing/3511048971.html

BEGKHOFF Installation

3. If you want to activate the license for a remote device, set the desired target system. To do this, select
the target system from the Choose Target System drop-down list in the toolbar.

= The licensing settings always refer to the selected target system. When the project is activated on
the target system, the corresponding TwinCAT 3 licenses are automatically copied to this system.

4. In the Solution Explorer, double-click License in the SYSTEM subtree.

Solution Explorer * 0 X

@ o-a|s =
Search Solution Explorer (Ctrl+0) P

m Solution TwinCAT SampleProject’ (1 project)
4 Iii TwinCAT SampleProject
4 || SYSTEM
¥ License
b @) Real-Time
b B Tasks
gfs Routes
215 Type System
|88 TcCOM Objects

= The TwinCAT 3 license manager opens.

5. Open the Manage Licenses tab. In the Add License column, check the check box for the license you
want to add to your project (e.g. "TF4100 TC3 Controller Toolbox").

Order Information (Rurtime) Manage Licenses Project Licenses Online Licenses

] Disable automatic detection of required licenses for project

Order Mo License |Add License
TF3601 TC3 Condition Menitoring Level 2 I_ cpu license
TF3650 TC3 Power Monitoring I_ cpu license
TF3620 TC3 Filter I_ cpu license
TF3200 TC3 Machine Learning Inference Engine I_ cpu license
TF3210 TC3 Meural Metwork Inference Engine I_ cpu license
TF3900 TC3 Solar-Position-Algorithm I_ cpu license
TF4100 TC3 Controller Toolbox
TR0 TC3 Temperature-Controller I_ cpu license
TR4500 TC3 Speech I_ cpu license

6. Open the Order Information (Runtime) tab.

= In the tabular overview of licenses, the previously selected license is displayed with the status
“missing”.

TS6100 Version: 1.0.0 13

Installation

BECKHOFF

7. Click 7-Day Trial License... to activate the 7-day trial license.

Order Information (Runtime) ~ Manage Licenses Project Licenses Orline Licenses

License Device Target (Hardware |1d) ~
System Id: Platform:
2DB25408-B4C0-810F-5488-6A305B45EF 15 | other (31)

License Request

Provider: Beckhoff Automation w Generate File. ..
License |d: | Customer Id:
Comment: |

License Activation

7 Days Tral License... I License Response File...

= A dialog box opens, prompting you to enter the security code displayed in the dialog.

Enter Security Code *

Fleaze type the following 5 characters: k.

| Ke8T4 |

8. Enter the code exactly as it is displayed and confirm the entry.

9. Confirm the subsequent dialog, which indicates the successful activation.

= In the tabular overview of licenses, the license status now indicates the expiry date of the license.

10. Restart the TwinCAT system.
= The 7-day trial version is enabled.

Licensing the full version of a TwinCAT 3 Function

A description of the procedure to license a full version can be found in the Beckhoff Information System in

the documentation "TwinCAT 3 Licensing".

14 Version: 1.0.0

TS6100

https://infosys.beckhoff.com/content/1033/tc3_licensing/117093592658046731.html?id=5546616718344501207

BECKHOFF Technical introduction

4 Technical introduction

4.1 Quick start

The following chapter provides a quick start to the TwinCAT OPC UA 1/O Client. In these instructions, the
connection to a Sample OPC UA Server is set up, which offers some variables in its namespace. These
variables are added to the process image of the TwinCAT OPC UA I/O Client and then linked to PLC
variables.

® Sample OPC UA Server

1 The Sample OPC UA Server is delivered together with the TF6100 OPC UA Client setup and is
located in the installation directory [»_21] of the client. Alternatively, you can also use the
TwinCAT OPC UA Server instead of the Sample OPC UA Server to provide a few variables via
OPC UA.

The steps are described below in the order in which they are performed:
Starting the Sample OPC UA Server

» Creating a TwinCAT project

Reading the OPC UA variables

Starting the code generation

Starting the Sample OPC UA Server

1. In Windows Explorer, navigate to the installation directory of the TF6100 FunctionSample and then to the
subdirectory "SampleServer".

2. Start the file TcOpcUaSampleServer.exe as administrator.

= The server is started in a console window and can then be accessed at the following OPC UA URL:
opc.tcp://localhost:48030

1 Clut pomesBechet XOpcsampisenentecho. — O X

(
1 You can confirm the message regarding the limited runtime.

Creating a TwinCAT project
1. Open the TwinCAT XAE Shell.
2. In the File menu, select the command New > Project.
3. Add a PLC project to the project.
= A new TwinCAT project including PLC project was created.

Reading the OPC UA variables

v In this step, the TwinCAT OPC UA Client is used to establish a connection to the server and read in the
variables available there.

1. Add a new I/O device to the TwinCAT project.
Use "OPC UA Virtual Device" as the device type

TS6100 Version: 1.0.0 15

Technical introduction BEGKHOFF

%] Solution '"TwinCAT Project2' (1 project)
4 o] TwinCAT Project2

b Gl SYSTEM
= moTion
PLC
(| SAFETY Insert Device
E C++
VISION Type: -7 EtheiCAT
& AnaLymcs - Ethemet
4 o /0 4% Profibus DP Cancel
" Devices -4 Profinet
=7 Wappinge f--till CAN/CANopen
+-=z+ DeviceNet
-+ EtherNet/IP
+-f#f SERCOS interface
+-41i0 Beckhoff Lightbus
+-=m® LSB
1B BACHet Target Type
—-9C OPC LA ® FC only
e (O X only
SR .1 - (O BX only
+-50 Miscellaneous O Al
Name: [Device 1

2. Add an OPC UA Client to the device

Solution Explorer
Qe o-a| p=
Search Solution Explorer (Ctrl+@)

fa] Solution "TwinCAT Project2’ (1 project)
4 LJ] WinCAT Project?
b @l SYSTEM
= moToN
PLC
| SAFETY
E [Insert TcCom Object
VISION
& AnaLvmcs Seach: | [MName: [Nodel (OPCUA Client) | oK
4 1/0
“E. Devices Type: = @
2% Dewvice 1 (OPC UA Virtual) E
& appings

ation GmbH & Co. KG Cancel

Multiple: |1 =

Insert Instance...

Reload

3. Open the settings of the OPC UA Client by double-clicking on the client.

4. Navigate to the Settings tab. Enter the server URL of the OPC UA Server. In this sample this is
"opc.tcp://localhost:48030".

16 Version: 1.0.0 TS6100

BEGKHOFF Technical introduction

5. Click Add Nodes. A connection to the server is established and the address space of the server is
displayed in a separate dialog.

. Select Nodes

=-{J2) Objects
.1|:|_] Locations
.:D_] Sample

& @ MyMethod

[[] Enable Write
Cancel Bro eeded.
wee succ 0 o st 01

6. Select the nodes shown above and click the Ok button.
= The variables and the method for the process image of the client have been added.

a
>

AAAAAAAA

Starting the code generation

v Automatic code generation should be used to generate PLC variables to match the added OPC UA
nodes. The generated PLC variables are automatically linked to the nodes. Alternatively, you can
perform the mapping manually.

1. Double-click the OPC UA client.
2. In the Settings tab, select the DataType Settings
DataType Seftings

MName Prefix Opclla

m
[

String Size

Load Size 256 - Create Pic Code
section.

3. Click the Create Plc Code button, which starts the code generation.

¥

= The code generator creates a GVL in the existing PLC project whose name is derived from the
OPC UA Client device name. PLC variables have now been automatically created within the GVL
and linked to the corresponding nodes in the process image of the 1/O device via the "TcLinkTo"
pragma.

TS6100 Version: 1.0.0

Technical introduction

BECKHOFF

b G PlcTask (PlcTask)
I} Untitled1 Instance
1 SAFETY
[id c++
&l AnaLvTICS
4 F@vo
4 * Devices
4 ¢ Device 1 (OPC UA Virtual)
*® Image
3 Inputs
W Outputs
4 9% Client #1
3 Inputs
W Outputs

Solution Explorer BB Device 1 Client 1 & X
a v VAR_GLOBAL
[AR=FRAICRA- /’E -
Search Solution Explorer (Ctrl+; P~ bConnected AT $I* : BOOL;
1] Solution TwinCAT Project7' (1 project)
4 G TwinCAT Project? bReadBusy AT $I* : BOOL;
b @l sysTEm bKeepAl AT 3I* : BOOL,
& Momon KeepAlives : :
o
“ PLC nStmState AT $I* : BYTE;
4 [0 Untitled1
4 g Untitled1 Project bResetStm AT 3Q* : BOOL;
b [External Types
b [References bExecute AT $Q* : BOOL;
(3 DUTs
4L GUL birite_Enable AT $Q* : BOOL:
B Device_1_Client_1
>—gPOV"
3 VISUs

Sample_MyObject_MyMethod : FB_Device_l_Client_l_Sample MyObject_MyMethod:

Sample_MyIntlé AT $I* : INT;

Sample_MyInt32 AT $I' : DINT;

3
b & Sample.MyObject MyMethod
b @ Sample.Mylnt16 Sample_MyInté4 AT $I* : LINT;
b @ SampleMylnt32

b @ SampleMylnt6d

b @ SampleMyStructure
&, Mappings

Sample_MyStructure AT $I* : OpcUa MyStructure;

4. Activate the configuration.

= The values of the OPC UA nodes are read from the server and written to the PLC variables via the
mapping.

Further information on calling the method

(
1 Further PLC logic is required to call the method. For this purpose, a suitable function block has
already been created by the code generation and provided with the corresponding input/output

parameters, see chapter Method calls [P 24].

4.2 Software architecture

You do not need to know the internal software architecture of this product to use it, but it may be of interest
in some cases. We will therefore briefly present it to you below.

The TwinCAT OPC UA Client essentially consists of the following components:
» The process in the operating system
* The communication driver in real-time
+ The TwinCAT XAE extension
e The PLC library

The interaction of the individual components is described in more detail in the following diagram:

18 Version: 1.0.0 TS6100

BEGKHOFF Technical introduction

OPC UA Server

—-———

ADS

»
i <<configures>>
4

PLC Library

Process in the operating system

The process in the operating system (TcOpcUaClient.exe) takes care of the OPC UA protocol functions and
makes them available via an ADS server so that the TwinCAT real-time components (e.g. the driver or the
PLC library) can access them.

Communication driver in real-time

The driver in real-time is responsible for the communication of the 1/0 device with the process in the
operating system. It converts the configured process data into ADS telegrams, which are exchanged with the
process in order to be converted into OPC UA commands. There is an engineering component in

TwinCAT XAE for the configuration of the communication connection and the choice of data points.

TwinCAT XAE Extension

The engineering component in TwinCAT XAE provides a graphical configuration interface for the 1/0 device.
This means that variables can be read from OPC UA servers and added to the process image so that they
can be processed later at runtime.

PLC library

The PLC library provides the OPC UA functions of the process in the operating system for the PLC logic.
Similar to the driver, the PLC library communicates with the process via ADS in order to access the
OPC UA functions.

4.3 Supported functions

The TwinCAT OPC UA Client enables access to the OPC UA server directly from the real-time logic.

General functionality

OPC UA defines a wide range of functions that may not be able to be mapped 1:1 to a PLC real-time
environment. The following table provides an overview of the current functionality of the
TwinCAT OPC UA Client. Missing features will be delivered in the future - as usual - in the form of updates.

TS6100 Version: 1.0.0 19

Technical introduction

BECKHOFF

Feature PLCopen function blocks 1/0 Client
Polling X X
Subscriptions - X
Method calls X X
Basic data types according to IEC61131 |x X
Structures - X
Arrays of basic data types according to |x X
IEC61131

Arrays of structures - X
Arrays with fixed length X X
Arrays with dynamic length - -
Security at transport layer with X.509 X X
certificates (self-signed + CA)

Security at application layer with user |x X
name/password

Security at application layer with X.509 |x X
certificates

Communication with None/None X X
endpoint

Communication with Basic128 endpoint |x X
Communication with Basic128Rsa15 X

endpoint

Communication with Basic256 endpoint |x

Communication with Basic256Sha256 |x X
endpoint

Basic data types according to IEC61131

For the reading and writing of data, the data type of the OPC UA Node must be assigned to the TwinCAT

data type (mapping). The assignment of basic data types is described in the standardized information model
"PLCopen OPC UA Information Model for IEC 61131-3" and is listed below. You can apply this mapping both
to the PLCopen function blocks and to the TwinCAT OPC UA I/O Client.

PLC data type OPC UA data type
BOOL Boolean

SINT SByte

USINT Byte

INT Int16

DINT Int32

STRING String

BYTE USint

REAL Float

LREAL Double

UINT UInt16

UDINT UInt32

LINT Int64

ULINT Uint64

DT DateTime

TIME Int64

LTIME Int64

20 Version: 1.0.0 TS6100

BEGKHOFF Technical introduction

4.4 Application directories

This application uses various directories to store relevant information, such as configuration or certificate
files.

Installation directory

The base installation directory of the application is relative to the TwinCAT installation directory.

$TcInstallDir$\Functions\TF6100-OPC-UA

The application is then installed in the following directory below this directory:

$TcInstallDir$\Functions\TF6100-OPC-UA\Win32\Client

Certificate directory

Certificate files, which are used to establish a secure communication connection, are stored in the following
directory:

$ProgramData%\Beckhoff\TF6100-OPC-UA\TcOpcUaClient\PKI

Log files

Log files are stored in the following directory:

%$ProgramData%\Beckhoff\TF6100-0OPC-UA\TcOpcUaClient\Logs

4.5 Reading variables

Variable values can be read from an OPC UA server via the TwinCAT OPC UA 1/O Client. The values can be
sampled using various mechanisms, which are described in more detail below.

The various settings in this context are made in the configuration pages of the 1/O device. The Process Data
Configuration area shows various parameters for setting the different modes of data collection from a
server.

The TwinCAT OPC UA 1/O Client offers three different modes for data collection:
+ Polling (cyclic reading/writing)
» Subscriptions
» OnTrigger

Polling (cyclic reading/writing)

One of the possible types of data collection is cyclic reading and writing. Time intervals are defined for both
reading and writing. You can also specify how many variables are to be read in one read command.

® Writing variables in polling and subscription mode

When writing, please note that writing only takes place when the value changes. If no value change
has taken place in the configured variables at the end of a cycle, no new value is written.

Process Data Configuration
Data Collection Puolling e

Read Cycle Time 1000| ms
Write Cycle Time 1000| me [] Amay Single Write

ReadLlist 1005 Modes per Request (1 Modes 1 Requests)

TS6100 Version: 1.0.0 21

Technical introduction

BECKHOFF

Parameter

Description

Read Cycle Time

Specifies how fast variables are cyclically read.

Write Cycle Time

Defines how often a write command is triggered on the OPC UA channel. If a

variable value changes several times within a specific cycle time, only the last
value is written to the OPC UA channel. If no configured value has changed in
the cycle time, no write command is triggered.

Read commands on the OPC UA channel are bundled to save bandwidth. This
parameter specifies how many variables are collected in a single read command
on the OPC UA channel. The labeling behind it indicates how many read
commands arise from the current configuration.

If a value in an array is changed, a write operation is only carried out for this
value on the OPC UA channel when activated. If not activated, the entire array is
always written.

ReadList

Array Single Write

OnTrigger

In addition, there is an option to trigger reading and writing via trigger variables. For each OPC UA Client
device there is a trigger variable (it can be found under Outputs/Control/Execute) that can be connected to a
variable from the PLC and set if required. This option is suitable, for example, if data is only to be read from
an OPC UA Server when a certain event occurs in the PLC. If the trigger variable remains permanently set,
the data collection type behaves in the same way as the cyclic configuration.

When writing, on the other hand, a value is written in each cycle if the trigger variable is set. No change in
value is considered here.

Process Data Corfiguration
Data Collection Trigger w

Read Cycle Time 1000| ms
Write Cycle Time 1000| me [Amay Single Write

ReadList 1003 Modes per Request (1 Modes 1 Regquests)

Subscriptions

The third and last way of data collection is to use subscriptions. The I/O client registers a subscription with
the connected OPC UA Server. The parameters described below can be specified for Publish Interval,
Lifetime Count and Keepalive Count.

Subscription mode is primarily intended for reading variables. If you write values in this mode, the same
behavior applies as for cyclical writing (see above).

Process Data Configuration

Data Collection Subscriptions ~
Publish Interval 1000 =~ ms
Lifetime Count 120015 (20m)
Keepalive Count 1280 =

22 Version: 1.0.0 TS6100

BECKHOFF

Technical introduction

Parameter

Description

Publish Interval

After the specified time the connected OPC UA Server checks where there are
new notification packets for the Client. If several value changes occur in a
publishing interval, only the last value is transferred.

Lifetime Count

The OPC UA Client is responsible for sending a PublishRequest to the server. In
the PublishResponse, the server returns the respective notification packages.
The Lifetime Count indicates after how many failed PublishRequests from the
client the server deletes the subscription. The calculated duration is shown in
brackets (in the sample 1200 multiplied by 1000 ms = 20 minutes).

Keepalive Count

If the server does not have new notification packets for the client, it will not return
any data. The Keepalive Count indicates after how many missed messages the
server would send an empty message to the client to indicate that it is still active
and the subscription is still in place.

4.6 Writing variables

To enable the writing of variables, several conditions must be met:

1. The flag "Enable Write" must be set for the variable. This can be done either during the adding
process via the button Add Nodes or afterwards in the parameter settings of the variable.

2.

Before a write command, the "Write Enable" output for the 1/0O client must be enabled globally. Only

then are the write commands generated.

. In the "Polling" and "Subscriptions" modes, writing only takes place after a value change within the 1/0
client. This is particularly important for server restarts. After a server restart, values written once in

these modes are not automatically written again, as another OPC UA Client could have written a new
value in the meantime and this would then be overwritten by an "old" value.

Setting Enable Write for a variable

In order to add not only an input (Read) element but also an output (Write) element for a variable in the

process image, it must be enabled explicitly. This can be done by using the Add Nodes dialog while adding
the variables, for example:

& Select Nodes

EID) Ohjects

|:|_| AlamsConditions
|:|) Corfiguration
|:|) HistoricalAccess

- DeviceSet

- PLCT

=-15) MAIN
-l nTest

m ref To Test
DeviceState
Programs

Tasks
DeviceManual
DeviceRevision
Hardware Revision
Manufacturer
Madel
RevisionCounter
SerialNumber

- Software Revision

-1 B8 Server

&-&-8-8-u-u-a-u-a-g-g---
0 o o

LU S S U S S SR

W

Cancel Browse succeeded.

Enable Wi

TS6100

Version: 1.0.0

23

Technical introduction

BECKHOFF

Alternatively, this setting can be enabled/disabled at a later stage via the configuration parameters of the

variables in the process image.

Attributes

Nodeld: [ns=4:s=MAINnTest

NsName: [um:Beckhoff Automation:Ua:PLC1

Ehln;Zle [] Provide timestamp and status code varables

Name

Walue

Nodeld

ns=4:5=MAIN nTest

NodeClass

2

BrowseName

4nTest

DisplayMame

nTest

Description

Write Mask

User\Write Mask

Value

DataType

WalueRank

AmrayDimensions

Accesslevel

UserAccesslevel

MinimumSamplinglIrterval

Histarizing

Enabling write access globally

Before write commands can be sent, they must be enabled globally. This is done by setting the output

variable "Write Enable" for the 1/0O client:

4 s}
A “f'g Devices
4 UPC Device 1 (OPC UA Virtual)
B Image
[Inputs
B Outputs
4 OFC Client #1
F Inputs
P ¥l Status
4 [y Outputs
4 [Er Control
B ResetStm
- Execute
- Write Enable
4 @@ PLCLMAIN.nTest

F| Inputs
Value

4 [Outputs
E- Value

ﬁ:l Mappings

4.7 Method calls

The TwinCAT OPC UA 1/O Client supports the calling of server methods. You can add a method to the
process image like any other variable. The "input arguments" of the method are then available as output
variables in the process image, whereas the "output arguments" are added as input variables. Additional
input and output variables, e.g. bExecute, bBusy, bError, are added to the process image so that the method

can be called.

Example: Method on server

24

Version: 1.0.0

TS6100

BECKHOFF

Technical introduction

B call Multiply on 003_Method ? e

Returns the product of the two given numbers

Input Arguments

Name Value DataType Description
a | | Double parameter a
b | | Double parameter b
Name Value DataType Description
result | | Double result =a *b

]

o1 o

Example: Method after addition to the process image

o]
4 "L Devices
4 T Device 1 (OPC UA Virtual)
*® Image
f Inputs
B Outputs
4 OPC Client #1
B Inputs
b [Outputs
4 [Dermo (OPC UA Folder)
B 001 _Dynamic (OPC UA Folder)
4 |5 003_Method (OPC UA Folder)
4 =iy Multiply (OPC UA Method)
4 Inputs
#| nErrorlD
#| bDone
#| bBusy
#| bError
1 result
4 [Outputs
- bExecute
- a
Eb

You can then create a mapping between the input/output variables and the PLC variables.

TS6100 Version: 1.0.0

25

Technical introduction

BECKHOFF

PLC
4 B Untitled?
b @= Untitled! Project
4 OF Untitled] Instance
F| PlcTask Inputs
MAIMN.bDone
MAIM.BError
MAIM.nErrorlD
MAIM.BBusy
MAIM. result
4 [PlcTask Qutputs
M- MAIMN. bExecute
B MAIM.a
B MAIN.b
1 SAFETY
E C++
/0
4 "L Devices
4 UPC Device 1 (OPC UA Virtual)
*E Image

Iy oy g gy

B Inputs
B Outputs
4 OPC Client #1
[Inputs
[Outputs
4 [Dermo (OPC UA Folder)
[} 001 _Dynamic (OPC UA Folder)
4) 003_Method (OPC UA Folder)
4 =i Multiply (OPC UA Method)
4 Inputs
! nErrorlD
%! bDone
2 bBusy
3 bError
&
0

result
4 [y Outputs
B bExecute
- a
&b

Calling of a method

To call a method, set the output variable bExecute to TRUE. You can check whether the method call has
been completed and whether it was successful via the input variables nErrorlD, bDone, bBusy and bError.

@ a LREAL 3
b LREAL 42

@ result LREAL 126

@ bExecute BOOL

@& nErrorlD DIMNT 0

@ bDone BOCL

@ bError BOOL FALSE

@ bBusy BOOL FALSE

26 Version: 1.0.0 TS6100

BEGKHOFF Technical introduction

4.8 Timestamp and StatusCode

If you double-click on a node in the process image, you will see the UA attributes with their current values as
they were at the time of opening the window.

cient = > |

AMtributes
Modeld: |n5 =2:g=Demo Static.Scalar Int16 |
MsMame: |http:ffwww.un'rﬁedautumatiun.cnmeemuSewerf |
[] Provide timestamp and status code variables
Mame Value
ns=2;3=Dema.Static. Scalar. Int 16
NodeClass 2
BrowseMName Zint16
DiigplayMame Irt16
Description
WriteMask 1]
Useririte Mask 1]
Value 42
Diata Type i=4
ValueRank -1
AmaylDimensions
Accesslevel 3
UserAccessLevel 3
Minimum SamplingInterval 0
Historizing False

Further variables that can be used for diagnostic purposes are added to the process image using the check
box Provide timestamp and status code variables.

@ Int16 (OPC UA Variable)
4 Inputs

#] TimeStamp

#| ErrorCode

2 Value
4 [Outputs

B Value

4.9 Structures

The OPC UA 1/O Client supports read/write procedures with structured data types (StructuredTypes). You
can also add StructuredTypes to the process image like any other variable. When adding a StructuredType
to the process image, the type to be parsed is added to the TwinCAT type system so that, for example, it can
simply be used by a PLC application.

Example: StructuredType on the server

TS6100 Version: 1.0.0 27

Technical introduction

BECKHOFF

¥ Value
SourceTimestamp
SourcePicoseconds
ServerTimestamp
ServerPicoseconds
StatusCode
* Value
Mame
Height
Weight
Gender
w DataType
Mamespacelndex
IdentifierType
Identifier

17.12.2021 12:18:50.450
0

17.12.2021 12:18:52.887
0

Good (Cx00000000)
Person

lohn Wayne

143

7

0 (Male)

Person

2

Mumeric

5343210

In this example the server contains a node of the structured data type "Person", which contains various
member variables (Name, Height, Weight, Gender).

Example: StructuredTypes in the process image

/0
4 "L Devices
4 OPE Device 1 (OPC UA Virtual)
*B Image
B Inputs
B Outputs
4 9% Client #1
[Inputs
[Outputs
4 [Demo (OPC UA Folder
4 |2 000 Static (OPC UA Folder)
4 |7 Scalar (OPC UA Falder)
4 [Structures (OPC UA Folder)

4 @ Personl (OPC UA Variable)

4 Inputs
4 F Value
Mame
Height
Weight
Gender
4 [Outputs
4 B Value
E- Mame
- Height
E- Weight
- Gender

After you have added a node to the process image, the process image contains the node and also the
structural information of the type, e.g. whether individual member variables of the node should be read or

written.

StructuredTypes in the TwinCAT type system

The data type is added to the type system of TwinCAT. The "Value" tree items then have this data type.

28 Version: 1.0.0

TS6100

BEGKHOFF Technical introduction

Varable Fags Online

Name: |Value |
Type: [Person ({3DCIDBTC-DA21-4069-A16A-ECS85785785E3) |
Group: |Inputs | Size: [91.0 |
Address: [10(2<A) | UserID: [|

You can also view the data type in the TwinCAT type system under SYSTEM > Type System.

Data Types Intefaces Functions Event Classes

Mame /+, Mamespace | GUID Size Type
Person 3DCSDEY.. 91 Struct

To distinguish the data type from other data types you can add a prefix in the settings of the OPC UA Client.
DataType Settings
Mame Prefix: QOPC_

String Size: = pdate

Mapping a StructuredType

Since every StructuredType is added to the TwinCAT type system, the mapping of the variables is simple.
Create an input/output variable of this data type and subsequently a mapping.

ovi = > [

1

= z VAR GLOBAL
3 Personl AT:I* : Person;
4 END VAR

TS6100 Version: 1.0.0 29

BECKHOFF

Technical introduction

PLC
4 Untitled
b @= Untitled! Project
4 OF Untitled] Instance
F| PlcTask Inputs
4 % GVLPersonl
Mame
#| Height
#1 Weight
Gender
[SAFETY
E C++
/0
4 "L Devices
4 U Device 1 (OPC UA Virtual)
*E Image
[Inputs
B Outputs
4 OPC Client #1
[Inputs
[Outputs
4 [Dermo (OPC UA Folder)
4 |23 000 Static (OPC UA Folder)
4 [0) Scalar (OPC UM Folder)
4 7)) Structures (OPC UA Folder)
4 i Personl (OPC UA Vanable)
4 Inputs
4 %l Value
Mame
#1 Height
Weight
Gender
[Outputs

mai onine) = > [

TwinCAT_Project5.Untitled1.MAIN

Expression Type Value
= @ Personl Opclla_Person
Mame STRING John Wayne'
@ Height UINT 183
@ Weight REAL 77
@ Gender OPCUA_GEMDER — Male

410 Code generation

With the help of the automatic code generation, PLC variables for the OPC UA nodes configured in the 1/O
process image can be generated quickly and easily and linked to them automatically. This function is
available in the configuration dialog of the 1/O client via the button Create Plc Code. This function requires

an existing PLC project in the current solution.

30 Version: 1.0.0 TS6100

BEGKHOFF Technical introduction

DataType Settings

Mame Prefix: OpcUa
String Size: B0 %
Load Size: 256 < Create Plc Code

After calling this function, a new Global Variable List (GVL) with the name of the 1/O client is created in the
PLC project. Subsequently, all OPC UA nodes are read and corresponding variables are created in the GVL.
Each variable receives the TcLinkTo attribute for an automatic linking with the corresponding variable from
the 1/0O process image.

Example: In the 1/O part of TwWinCAT XAE a TwinCAT OPC UA 1/O client with the name "Client 1" was
created, to which various OPC UA nodes from a server were added.

& 170

4 NJ'}'I:: Devices
4 OT Doyice 1 (OPC UA Virtual)
+ 0
u+ Image

b Inputs
= Outputs

4 ®C (Client #1
p Inputs
G Outputs
P @ PLCI.GVL_nodes_dynamic.dyn_scalar |1
b @ PLC1.GVL_nodes_dynamic.dyn_scalar 12
b @ PLC1.GVL_nodes_dynamic.dyn scalar 14
P @ PLC1.GVL_nodes_dynamic.dyn_scalar |8
P @ PLC1.GVL_nodes_dynamic.dyn_scalar_R4
P @ PLC1.GVL nodes dynamic.dyn scalar R8

After calling the code generation, a new GVL with the name "Client_1" was now created in the (already
existing) PLC project. This then contains corresponding PLC variables for the individual nodes, which were
then automatically linked via the TcLinkTo attribute.

8l ric
T :
d ServerSampleProject
4 n'li ServerSampleProject Project

b [External Types
P (=l References

b DUTs

4 0 GVis

&P Client 1

TS6100 Version: 1.0.0 31

Technical introduction BEGKHOFF

VAR GLOBAL

dynamic dyn scalar l Client 1 Dewvice 1 AT * + BINT;
r AT INT
FLC WL nodes dynami lyn scalar 4 Client Dev AT * : DINT;
ynamic dyn scalar lient 1 Devic 1 AT * : LINT:
iynamic dyn scalar R4 Client Devic AT i+ REAL:
iynamic dyn scalar R lient 1 Devieo 1 AT * : LREAL;

END_VAR

In addition, the control variables from the respective 1/O client are also created and linked as variables in the
GVL (not shown in the screenshot above).

Code generation for structures

An OPC UA node, which represents a so-called StructuredDataType, is also considered by the code
generation and a corresponding variable is created in the GVL. Since the StructuredDataType was created
as a native data type in the TwinCAT type system, it can be handled like a normal structure.

Example: Two StructuredDataTypes from a server were added to the process image of the 1/O client. The
data types of the StructuredDataTypes on the server are ST_Complex1 and ST_Complex2 (not visible in the
screenshot below).

& /o
4 "2 Devices
4 UL Device 1 (OPC UA Virtual)
* ¥ Image
b Inputs
A Outputs
4 OFC Client #1
b Inputs
b Bl Outputs
b @ PLC1GVI _structures StructuredType1
b @ PLC1.GVL structures. StructuredType?

The code generation has now created a corresponding GVL with two variables from the respective
automatically generated TwinCAT data type, which corresponds to the respective StructuredDataType.

VAR GLOBAL

END VAR

Code generation for methods

An OPC UA method has input and output parameters which are passed to or returned from the method
accordingly. Furthermore, a method is a self-contained call; it must be explicitly started by the client. This
methodology is mapped accordingly in the process image of the 1/O client at the method and is also taken
into account during code generation. For a method, unlike normal variables or structures, a separate function
block is created, which is then referenced in the GVL.

32 Version: 1.0.0 TS6100

BEGKHOFF Technical introduction

Example: Two methods from a server have been added to the process image of the 1/O client.

& /0
A af': Devices
4 %L Dayice 1 (OPC UA Virtual)
+ 0
4+ Image

b 5 Inputs
& Outputs
4 ¢ Client 11
] Inputs
Ll Outputs
¥ PLC1.GVL_methods.Mathematics. Add?
¥ PLC1.GVL methods.Mathematics.Sub2

R A

The code generation has now created a corresponding GVL, as well as two function blocks, which represent
the input/output and control variables of the respective method.

VAR _GLORBAL

GVL_methods Mathematics AddZ Client 1 Dewvice 1l : FB_PLCL GVL methods Mathematica Add? Client 1 Dewvice 1;

END VAR

FUMCTION BLOCK FB PLC1 GVL methods Mathematics Add2 Client 1 Device 1
VAR_INFUT
bExecute AT %0+ : BOOL;
a AT %0* : LREAL;
b AT %Q* : LREAL;
END_VAR
VAR _OUTFUT
nErrorll AT [* : DINT:
bDone AT L* : BOOL;
BRu=y AT I* : BOOL;

bError AT o BOOL;

BEeturnValus AT I* : LREAL:?
EHD VAR
FUNCTION BLOCK FB PLC]1 GVL methods Mathematics Sub2 Client 1 Device 1
VAR _INPUT

bExecute AT o= : BOOL:
a AT %0* : LREAL:
b AT %Q* : LREAL;
END_VAR
VAR _OUTPUT
nErrorlD AT [* + DINT:
blone AT %1* ¢ BOOL;
bBRusy AT I* : BOOL:
bhError AT [* : BOOL;
BeturnValue AT [* : LREAL;
END_VAR

TS6100 Version: 1.0.0 33

Technical introduction BEGKHOFF

411 PLCopen function blocks

The TwinCAT OPC UA Client offers several options for communicating directly with one or more

OPC UA servers from the control logic. On the one hand, there is a TwinCAT 1/O device, which offers a
simple, mapping-based interface. On the other hand, PLCopen provides standardized function blocks that
can be used to initiate a connection with an OPC UA server directly from the PLC logic. The handling of
these function blocks is described in more detail below. This article consists of the following sections:

* Workflow

» Determination of the communication parameters
 Establishing a connection

* Reading variables

» Writing variables

+ Calling methods

Workflow

The general workflow when using the PLCopen function blocks can be schematically represented as follows:

Preparation Work - Cleanup

UA_Connect b — UA_Disconnect

In the preparation phase, the communication parameters are set up and a connection to the server is
established. The desired function is then executed (read, write, method calls), followed by disconnection of
the communication connection.

Determination of the communication parameters
In general a graphic OPC UA Client is used to determine the attributes of a node or methods that have to be
used together with the PLC function blocks, e.g.:

* NodelD

* Namespacelndex and corresponding NamespaceURI

« DataType

» MethodNodelD and ObjectNodelD

The following documentation uses the generic OPC UA Client UA Expert as an example. This client can be
purchased via the Unified Automation web pages: www.unified-automation.com.

Nodes are characterized by the following three attributes, which form the so-called NodelD:
+ Namespacelndex: The namespace in which the node is located, such as the PLC runtime.
* |dentifier: Unique identifier of the node within its namespace
« ldentifierType: Type of node: String, Guid and Numeric

These attributes represent the so-called NodelD - the representation of a node on an OPC UA server - and
are required by many subsequent function blocks.

With the help of the UA Expert software you can simply determine the attributes of a node by establishing a
connection to the OPC UA server and browsing to the desired node. The attributes are then visible in the
Attributes panel, e.g.

34 Version: 1.0.0 TS6100

http://www.unified-automation.com

BEGKHOFF Technical introduction

- Nodeld MNodeld
MNamespacelndex 5
IdentifierType String
Identifier MAIN.nCounter

According to the OPC UA specification, the Namespacelndex can be a dynamically generated value.
Therefore, OPC UA Clients must always use the corresponding namespace URI to resolve the
Namespacelndex before a node handle is detected.

Use the function block UA GetNamespacelndex [P _68] to obtain the Namespacelndex for a NamespaceURI.
The NamespaceURI required for this can be determined with the help of UA Expert by establishing a
connection to the OPC UA server and browsing to the NamespaceArray node.
= Root
-2 Objects
+- ¢y DeviceSet
e MyMeteringPoint
oe PLC1
o PLC2
- o Server
¥ Auditing
+- % GetMonitoredltems

¥ NamespaceArray

¥ ServerArray

+

+

+

This node contains information about all namespaces registered on the OPC UA Server.
The corresponding namespace URIs are visible in the Attributes panel, for example:

-+ Value

SourceTimestamp 16.02.2015 08:56:060.350

ServerTimestamp 16.02.2015 09:31:01.945

SourcePicoseconds 0

ServerPicoseconds 0

- Value String Array[9]

[0] http://opcfoundation.org/UA/S
[1] urn:SvenG-NB04:BeckhoffAutomation:TcOpcUaServer:1
(2] http://opcfoundation.org/UA/DI/
(3] http://PLCopen.org/OpcUa/IEC61131-3/
[4] urny//SVENG-MNBO4/BeckhoffAutomation/Ua/Typesystem
[5] urn://SVENG-NB04/BeckhoffAutomation/Ua/PLC1
(6] urn://SVENG-MNEBED04/BeckhoffAutomation/Ua/PLC2
[7] http://www.opcfoundation.org/Energy/DataAcquisition/
[8] http://Beckhoff.com/TwinCAT/TF6100/Server/Configuration

The section above shows an example of a NodelD in which the namespace index is 5. According to the
NamespaceArray shown in the figure, the corresponding NamespaceURI is urn://SVENG-NB04/
BeckhoffAutomation/Ua/PLC1. This URI can now be used for the function block UA_GetNamespacelndex.
The OPC UA Server ensures that the URI always remains the same, even after a restart.

® Observe the correct Namespacelndex

1 As the Namespacelndex shown can change, the NamespaceURI should always be used in
combination with the function block UA_GetNamespacelndex for later use with other function

blocks, e.g. UA Read [»_80], UA Write [»_82], to resolve the correct Namespacelndex.

DataType

TS6100 Version: 1.0.0 35

Technical introduction BEGKHOFF

The data type of a node is required in order to see which PLC data type needs to be used in order to assign
a read value or write it to a node. With the help of UA Expert you can simply determine the data type of a
node by establishing a connection to the OPC UA Server and browsing to the desired node.

The data type is then visible in the Attributes panel, for example:

E} DataType Int16

] %----Namespacelndex 0
IdentifierType Mumeric
- Identifier 4

In this case the data type (DataType) is "Int16". This must be assigned to an equivalent data type in the PLC,
e.g. "INT".

MethodNodelD and ObjectNodelD

When calling methods from the OPC UA namespace, two identifiers are required if the method handle is get
using the function block UA MethodGetHandle [P 741:

» ObjectNodelD: Identifies the UA object that contains the method.
* MethodNodelD: Identifies the method itself.

With the help of UA Expert you can simply determine both NodelDs by establishing a connection to the
OPC UA server and browsing to the desired method or the desired UA object that contains the method.

Sample Method M_Mul:

= &% PLCT
- DeviceManual
- DeviceRevision
+- 2 DeviceState
- HardwareRevision
=2 MAIN
= & fbMathematics
R -\ Mul
#- @ nNumberOfCallsMMul

¥l

Il

The method identifier is then visible in the Attributes panel.

= Nodeld Nodeld
E Mamespacelndex 5
IdentifierType String
- |dentifier MAIN.foMathematics#M_Mul

Sample Object fbMathematics:

=% PLC1
- @ DeviceManual
- W DeviceRevision
#-2 DeviceState
- w HardwareRevision
=2 MAIN
=2 - fbMathematics
- E% M_Mul
@ nNumberOfCallsMMul

The object identifier is then visible in the Attributes panel.

36 Version: 1.0.0 TS6100

BEGKHOFF Technical introduction

-+ Nodeld Nodeld
Namespacelndex 5
IdentifierType String
Identifier MAIN.foMathematics

Establishing a connection

The following section describes how you use the function block TcX_PLCopen_OpcUa to establish a
connection to a local or remote OPC UA server. This connection can then be used to call other functions,
such as read or write nodes, or call methods.

The following function blocks are required to establish a connection to an OPC UA server and subsequently
interrupt the session: UA Connect [P 65], UA Disconnect [»_67].

d First read the section How to determine communication parameters to better understand certain UA
1 functionalities (e.g. how to determine Nodeldentifiers).

The function block UA_Connect requires the following information in order to be able to establish a
connection to a local or remote OPC UA server:

e Server URL
» Session Connect Information

The Server URL basically consists of a prefix, a host name and a port. The prefix describes the OPC UA
transport protocol that should be used for the connection, e.g. "opc.tcp://" for a binary TCP connection
(default). The host name or IP address part describes the address information of the OPC UA target server,
e.g. "192.168.1.1" or "CX-12345". The port number is the target port of the OPC UA Server, e.g. "4840". The
Server URL can then look like this: opc.tcp://CX-12345:4840.

Declaration:

(* Declarations for UA Connect ¥*)

fbUA Connect : UA Connect;

SessionConnectInfo : ST _UASessionConnectInfo;
nConnectionHdl : DWORD;

(* Declarations for UA Disconnect *)
fbUA Disconnect : UA Disconnect;

(* Declarations for state machine and output handling *)
iState : INT;

bDone : BOOL;

bBusy : BOOL;

bError : BOOL;

nErrorID : DWORD;

Implementation:

CASE iState OF

0:
bError := FALSE;
nErrorID := 0;
SessionConnectInfo.tConnectTimeout := T#1M;
SessionConnectInfo.tSessionTimeout := T#1M;
SessionConnectInfo.sApplicationName := '';
SessionConnectInfo.sApplicationUri := '';
SessionConnectInfo.eSecurityMode := eUASecurityMsgMode None;
SessionConnectInfo.eSecurityPolicyUri := eUASecurityPolicy None;
SessionConnectInfo.eTransportProfileUri := eUATransportProfileUri UATcp;
stNodeAddInfo.nIndexRangeCount := nIndexRangeCount;
stNodeAddInfo.stIndexRange := stIndexRange;
iState := iState + 1;

i3

fbUA Connect (

Execute := TRUE,
ServerURL := ‘opc.tcp://192.168.1.1:4840",
SessionConnectInfo := SessionConnectInfo,
Timeout := T#5S,

TS6100 Version: 1.0.0 37

Technical introduction BEGKHOFF

ConnectionHdl => nConnectionHdl) ;
IF NOT fbUA Connect.Busy THEN

fbUA Connect (Execute := FALSE);

IF NOT fbUA Connect.Error THEN
iState := iState + 1;

ELSE
bError := TRUE;
nErrorID := fbUA Connect.ErrorID;
nConnectionHdl := 0;
iState := 0;

END IF

END IF

fbUA Disconnect (
Execute := TRUE,
ConnectionHdl := nConnectionHdl) ;

IF NOT fbUA Disconnect.Busy THEN

fbUA Disconnect (Execute := FALSE);

IF NOT fbUA Disconnect.Error THEN
iState := 0;

ELSE
bError := TRUE;
nErrorID := fbUA Disconnect.ErrorID;
iState := 0;
nConnectionHdl := 0;

END IF

END IF
END_CASE

Reading variables

The following section describes how to use the function blocks TcX_PLCopen_OpcUa to read an OPC UA
node from a local or remote OPC UA server. The following function blocks are required to establish a
connection to an OPC UA server, read UA nodes and later interrupt the session: UA Connect [»_65],

UA GetNamespacelndex [P 68], UA NodeGetHandle [» 76], UA Read [» 80], UA NodeReleaseHandle
[»_78], UA Disconnect [P 67].

The schematic workflow of each TwinCAT OPC UA Client can be categorized into three different phases:
Preparation, Work and Cleanup.

The use case described in this section can be visualized as follows:

Preparation Work Cleanup
UA Connect | UA Read P UA NodeReleaseHandle
= UA GetNamespacelndex kst 3 =l UA Disconnect

i UA NodeGetHandle

« The function block UA_Connect requires the following information to establish a connection to a local
or remote OPC UA Server (see also How to establish a connection):

o Server URL
o Session Connect Information

» The function block UA_GetNamespacelndex requires a Connection Handle (from UA_Connect) and a
NamespaceURI for resolution to a Namespacelndex, which is later used by UA_NodeGetHandle to
capture a node handle (see also How to determine communication parameters).

38 Version: 1.0.0 TS6100

BEGKHOFF Technical introduction

» The function block UA_NodeGetHandle requires a Connection Handle (from UA_Connect) and NodelD
(from ST_UANodelD) to capture a node handle (see also How to determine communication
parameters).

» The function block UA_Read requires a connection handle (from UA_Connect), a node handle (from
UA_NodeGetHandle) and a pointer to the target variable (where the read value is to be saved). Make
sure that the target variable has the correct data type (see also How to determine communication
parameters).

» The function block UA_NodeReleaseHandle requires a connection handle (from UA_Connect) and a
node handle (from UA_NodeGetHandle).

Declaration:

(* Declarations for UA GetNamespaceIndex *)
fbUA GetNamespaceIndex : UA GetNamespacelIndex;
nNamespaceIndex : UINT;

(* Declarations for UA NodeGetHandle ¥*)
fbUA NodeGetHandle : UA NodeGetHandle;
NodeID : ST UANodeID;

nNodeHdl : DWORD;

(* Declarations for UA Read *)

fbUA Read : UA Read;

stIndexRange : ARRAY [1l..nMaxIndexRange] OF ST UAIndexRange;
nIndexRangeCount : UINT;

stNodeAddInfo : ST UANodeAdditionalInfo;

sNodeIdentifier : STRING (MAX STRING LENGTH) := 'MAIN.nCounter';
nReadData : INT;

cbDataRead : UDINT;

(* Declarations for UA NodeReleaseHandle ¥*)
fbUA NodeReleaseHandle : UA NodeReleaseHandle;

Implementation:

CASE iState OF
0:
[...]

2: (* GetNS Index *)
fbUA GetNamespaceIndex (

Execute := TRUE,
ConnectionHdl := nConnectionHdl,
NamespaceUri := sNamespaceUri,

NamespaceIndex => nNamespacelndex
)
IF NOT fbUA GetNamespaceIndex.Busy THEN

fbUA GetNamespaceIndex (Execute := FALSE);

IF NOT fbUA GetNamespaceIndex.Error THEN
istate := iState + 1;

ELSE
bError := TRUE;
nErrorID := fbUA GetNamespacelIndex.ErrorID;
istate := 6;

END IF

END IF

3: (* UA NodeGetHandle *)

NodeID.eIdentifierType := eUAIdentifierType String;
NodeID.nNamespacelIndex := nNamespacelndex;
NodeID.sIdentifier := sNodeIdentifier;
fbUA NodeGetHandle (

Execute := TRUE,

ConnectionHdl := nConnectionHdl,

NodeID := NodelD,

NodeHdl => nNodeHdl) ;
IF NOT fbUA NodeGetHandle.Busy THEN

fbUA NodeGetHandle (Execute := FALSE);

IF NOT fbUA NodeGetHandle.Error THEN
istate := iState + 1;

ELSE
bError := TRUE;
nErrorID := fbUA NodeGetHandle.ErrorID;
iState := 6;

END IF

END IF

TS6100 Version: 1.0.0 39

Technical introduction BEGKHOFF

4: (* UA Read *)

fbUA Read (
Execute := TRUE,
ConnectionHdl := nConnectionHdl,
NodeHdl := nNodeHdl,
cbData := SIZEOF (nReadData),
stNodeAddInfo := stNodeAddInfo,
pVariable := ADR(nReadData)) ;

IF NOT fbUA Read.Busy THEN
fbUA Read(Execute := FALSE, cbData R => cbDataRead);
IF NOT fbUA Read.Error THEN

iState := iState + 1;
ELSE
bError := TRUE;
nErrorID := fbUA Read.ErrorID;
iState := 6;
END IF
END IF
5: (* Release Node Handle ¥*)
fbUA NodeReleaseHandle (
Execute := TRUE,
ConnectionHdl := nConnectionHdl,
NodeHdl := nNodeHdl) ;

IF NOT fbUA NodeReleaseHandle.Busy THEN
fbUA NodeReleaseHandle (Execute := FALSE);
IF NOT fbUA NodeReleaseHandle.Error THEN

iState := iState + 1;
ELSE
bError := TRUE;
nErrorID := fbUA NodeReleaseHandle.ErrorID;
iState := 6;
END IF
END IF
6:
[...]
END_CASE

Writing variables

The following section describes how you use the function block TcX_PLCopen_OpcUa to write values in an
OPC UA node from a local or remote OPC UA server. The following function blocks are required to establish

a connection to an OPC UA server, write UA nodes and subsequently interrupt the session: UA Connect
[» 65], UA GetNamespacelndex [» 68], UA NodeGetHandle [P 76], UA Write [P 82],
UA NodeReleaseHandle [» 78], UA Disconnect [» 67].

The schematic workflow of each TwinCAT OPC UA Client can be categorized into three different phases:
Preparation, Work and Cleanup.

The use case described in this section can be visualized as follows:

Preparation Work Cleanup

UA Connect Pl UA Write P+ UA NodeReleaseHandle

=t UA GetNamespacelndex =l UA Disconnect

i A NodeGetHandle

« The function block UA_Connect requires the following information in order to be able to establish a
connection to a local or remote OPC UA server (see also How to establish a connection):

o Server URL

40 Version: 1.0.0 TS6100

BEGKHOFF Technical introduction

o Session Connect Information

The function block UA_GetNamespacelndex requires a Connection Handle (from UA_Connect) and a
NamespaceURI for resolution to a Namespacelndex, which is later used by UA_NodeGetHandle to
capture a node handle (see also How to determine communication parameters).

The function block UA_NodeGetHandle requires a Connection Handle (from UA_Connect) and NodelD

(from ST_UANodelD) to capture a node handle (see also How to determine communication

parameters).

» The function block UA_Write requires a connection handle (from UA_Connect), a node handle (from
UA_NodeGetHandle) and a pointer to a variable containing the value that is to be written. Make sure
that the target variable has the correct data type (see also How to determine communication

parameters).

» The function block UA_NodeReleaseHandle requires a connection handle (from UA_Connect) and a

node handle (from UA_NodeGetHandle).

Declaration:

(* Declarations for UA GetNamespaceIndex *)

fbUA GetNamespaceIndex : UA GetNamespacelIndex;

nNamespaceIndex : UINT;

(* Declarations for UA NodeGetHandle ¥*)
fbUA NodeGetHandle : UA NodeGetHandle;
NodeID : ST UANodeID;

nNodeHdl : DWORD;

(* Declarations for UA Write *)
fbUA Write : UA Write;

stIndexRange : ARRAY [1l..nMaxIndexRange] OF ST UAIndexRange;

nIndexRangeCount : UINT;

stNodeAddInfo : ST UANodeAdditionallInfo;
sNodeIdentifier: STRING(MAX STRING LENGTH)
nWriteData: INT := 42;

(* Declarations for UA NodeReleaseHandle *)

:= 'MAIN.nNumber';

fbUA NodeReleaseHandle : UA NodeReleaseHandle;

Implementation:

CASE iState OF
0:
[...]

2: (* GetNS Index *)
fbUA GetNamespaceIndex (

Execute := TRUE,
ConnectionHdl := nConnectionHdl,
NamespaceUri := sNamespaceUri,

NamespaceIndex => nNamespacelndex
)i

IF NOT fbUA GetNamespaceIndex.Busy THEN

fbUA GetNamespaceIndex (Execute := FALSE);

IF NOT fbUA GetNamespaceIndex.Error THEN
iState := iState + 1;

ELSE
bError := TRUE;
nErrorID := fbUA GetNamespacelndex.ErrorID;
iState := 6;

END IF

END IF

3: (* UA NodeGetHandle *)

NodeID.elIdentifierType := eUAIdentifierType String;
NodeID.nNamespaceIndex := nNamespacelndex;
NodeID.sIdentifier := sNodelIdentifier;
fbUA NodeGetHandle (

Execute := TRUE,

ConnectionHdl := nConnectionHdl,

NodeID := NodelD,

NodeHdl => nNodeHdl) ;
IF NOT fbUA NodeGetHandle.Busy THEN

fbUA NodeGetHandle (Execute := FALSE);
IF NOT fbUA NodeGetHandle.Error THEN
iState := iState + 1;
ELSE
bError := TRUE;

TS6100

Version: 1.0.0

41

Technical introduction

BECKHOFF

nErrorID :=
iState := 6;
END IF
END IF

fbUA NodeGetHandle.ErrorID;

4: (* UA Write *)

fbUA Write(
Execute := TRUE,
ConnectionHdl := nConnectionHdl,
NodeHdl := nNodeHdl,
stNodeAddInfo := stNodeAddInfo,
cbData := SIZEOF (nWriteData),
pVariable := ADR(nWriteData));

IF NOT beAﬁWrite.Busy THEN
fbUA Write(

Execute := FALSE,
pVariable := ADR(nWriteData));
IF NOT fbUA Write.Error THEN
iState := iState + 1;
ELSE
bError := TRUE;
nErrorID := fbUA Write.ErrorID;
iState := 6;
END IF
END IF
5: (* Release Node Handle *)
fbUA NodeReleaseHandle (
Execute := TRUE,
ConnectionHdl := nConnectionHdl,
NodeHdl := nNodeHdl) ;
IF NOT fbUA NodeReleaseHandle.Busy THEN
fbUA NodeReleaseHandle (Execute := FALSE);
IF NOT fbUA NodeReleaseHandle.Error THEN
iState := iState + 1;
ELSE
bError := TRUE;
nErrorID := fbUA NodeReleaseHandle.ErrorID;
iState := 6;
END IF
END IF
6:
loool
END CASE

Calling methods

The following section describes how you use the function block TcX_PLCopen_OpcUa to call methods on a
local or remote OPC UA server. The following function blocks are required to connect to an OPC UA server,

call UA methods, and subsequently interrupt the session: UA Connect [P 65], UA GetNamespacelndex
[»_68], UA MethodGetHandle [» 74], UA MethodCall [» 71], UA MethodReleaseHandle [» 75],

UA Disconnect [» 67].

The schematic workflow of each TwinCAT OPC UA Client can be categorized into three different phases:

Preparation, Work and Cleanup.

The use case described in this section can be visualized as follows:

42 Version: 1.0.0

TS6100

BECKHOFF Technical introduction

Preparation Work Cleanup
UA_Connect | UA MethodCall g UA_MethodReleaseHandle
9 UA_GetNamespacelndex T SRR TN - UA_ Disconnect

i UA MethodGetHandle

» The function block UA_Connect requires the following information in order to be able to establish a
connection to a local or remote OPC UA server (see also How to establish a connection):

o Server URL
o Session Connect Information

» The function block UA_GetNamespacelndex requires a Connection Handle (from UA_Connect) and a
NamespaceURI for resolution to a Namespacelndex, which is later used by UA_NodeGetHandle to
capture a node handle (see also How to determine communication parameters).

» The function block UA_MethodGetHandle requires a connection handle (from UA_Connect), an
ObjectNodelD and a MethodNodelD to capture a method handle (see also How to determine
communication parameters).

» The function block UA_MethodCall requires a connection handle (from UA_Connect), a method handle
(from UA_MethodGetHandle) and information about the input and output arguments of the method that
is to be called. Information about the input arguments is represented by the input parameters
plnputArginfo and plnputArgData of UA_MethodCall. Information about the output parameters is
represented by the pOutputArginfo and pOutputArgData input parameters of UA_MethodCall. The
input parameter pOutputArginfoAndData then represents a pointer to a structure containing the results
of the method call, including all output parameters. The following code snippet calculates and creates
the plnputArginfo and pIinputArgData parameters in the M_Init method.

» The function block UA_NodeReleaseHandle requires a connection handle (from UA_Connect) and a
method handle (from UA_MethodGetHandle).

M_lInit initialization method of the function block containing the UA method call:

MEMSET (ADR (nInputData), 0, SIZEOF (nInputData)) ;
nArg := 1;

(********** Input parameter 1 **********)

InputArguments [nArg] .DataType := eUAType Intlé6;
InputArguments [nArg] .ValueRank := -1; (* Scalar = -1 or Array ¥*)
InputArguments [nArg] .ArrayDimensions[1] := 0; (* Number of Dimension in case its an array *)
InputArguments [nArg] .nLenData := SIZEOF (numberInl); (* Length if its a STRING *)
IF nOffset + SIZEOF (numberInl) > nInputArgSize THEN
bInputDataError := TRUE;
RETURN;
ELSE
MEMCPY (ADR (nInputData) +nOffset, ADR (numberInl), SIZEOF (numberInl)); (* VALUE in BYTES FORM *)
nOffset := nOffset + SIZEOF (numberInl) ;
END IF
nArg := nArg + 1;

(********** Input parameter 2 **********)

InputArguments [nArg] .DataType := eUAType Intl6;
InputArguments [nArg] .ValueRank := -1; (* Scalar = -1 or Array *)
InputArguments[nArg] .ArrayDimensions[1] := 0; (* Number of Dimension in case its an array *)
InputArguments [nArg] .nLenData := SIZEOF (numberIn2); (* Length if its a STRING ¥*)
IF nOffset + SIZEOF (numberIn2) > nInputArgSize THEN
bInputDataError := TRUE;
RETURN;
ELSE
MEMCPY (ADR (nInputData) +nOffset, ADR (numberIn2) , SIZEOF (numberIn2)); (* VALUE in BYTES FORM *)
nOffset := nOffset + SIZEOF (numberIn2?);
END IF
cbWriteData := nOffset;

TS6100 Version: 1.0.0 43

Technical introduction

BECKHOFF

Declaration:

(* Declarations for UA GetNamespaceIndex *)
fbUA GetNamespaceIndex UA GetNamespacelIndex;
nNamespaceIndex UINT;

(* Declarations for UA MethodGetHandle *)
fbUA MethodGetHandle: UA MethodGetHandle;

ObjectNodeID: ST UANodelID;
MethodNodeID: ST UANodeID;
nMethodHdl: DWORD;

(* Declarations for UA MethodCall ¥*)

fbUA MethodCall: UA MethodCall;
sObjectNodeIdIdentifier STRING (MAX STRING_ LENGTH)
sMethodNodeIdIdentifier STRING (MAX STRING_ LENGTH)
nAdrWriteData: PVOID;

numberInl: INT 42; // change according to input
numberIn2: INT 42; // change according to input
numberOutPro: DINT; // result (output parameter of
cbWriteData: UDINT; // calculated automatically by
InputArguments: ARRAY[1..2] OF ST UAMethodArgInfo;
stOutputArgInfo: ARRAY[1..1] OF ST UAMethodArgInfo;
stOutputArgInfoAndData: ST OutputArgInfoAndData;
nInputData: ARRAY[1..4] OF BYTE;
nOffset: UDINT; // calculated by M Init ()
nArg: INT; // used by M Init ()

(* Declarations for UA MethodReleaseHandle *)
fbUA MethodReleaseHandle: UA_MethodReleaseHandle;

Implementation:

CASE iState OF

0:
[...]
2: (* GetNS Index *)
fbUA GetNamespaceIndex (
Execute := TRUE,
ConnectionHdl := nConnectionHdl,
NamespaceUri := sNamespaceUri,

NamespacelIndex => nNamespacelndex) ;

IF NOT fbUA GetNamespaceIndex.Busy THEN
fbUA GetNamespaceIndex (Execute FALSE) ;
IF NOT fbUA GetNamespaceIndex.Error THEN

// numberInl (INT16) (2)

'MAIN. fbMathematics';
= 'MAIN.fbMathematics#M Mul';
value and data type
value and data type
M Mul())
M Init ()
// change according to input parameters
// change according to output parameters

+ numberIn2 (INT16) (2)

iState := iState + 1;
ELSE
bError := TRUE;
nErrorID := fbUA GetNamespacelndex.ErrorID;
iState := 7;
END IF
END IF
3: (* Get Method Handle *)
ObjectNodeID.elIdentifierType := eUAIdentifierType String;
ObjectNodeID.nNamespacelndex := nNamespacelndex;
ObjectNodeID.sIdentifier := sObjectNodeIdIdentifier;
MethodNodeID.eIdentifierType := eUAIdentifierType String;
MethodNodeID.nNamespaceIndex := nNamespacelndex;
MethodNodeID.sIdentifier := sMethodNodeIdIdentifier;
M Init();

IF bInputDataError FALSE THEN

iState := iState + 1;
ELSE
bBusy := FALSE;
bError := TRUE;
nErrorID := 16#70A; //out of memory
END IF
4: (* Method Get Handle *)
fbUA MethodGetHandle (
Execute := TRUE,
ConnectionHdl := nConnectionHdl,
ObjectNodeID := ObjectNodelD,
MethodNodeID := MethodNodelID,

MethodHdl => nMethodHdl) ;
IF NOT fbUA MethodGetHandle.Busy THEN

44

Version: 1.0.0

TS6100

BEGKHOFF Technical introduction

fbUA MethodGetHandle (Execute := FALSE);

IF NOT fbUA MethodGetHandle.Error THEN
istate := iState + 1;

ELSE
bError := TRUE;
nErrorID := fbUA MethodGetHandle.ErrorID;
iState := 6;

END IF

END IF

5: (* Method Call *)

stOutputArgInfo[l] .nLenData := SIZEOF (stOutputArgInfoAndData.pro);
fbUA MethodCall (
Execute := TRUE,
ConnectionHdl := nConnectionHdl,
MethodHdl := nMethodHdl,
nNumberOfInputArguments := nNumberOfInputArguments,
pInputArgInfo := ADR(InputArguments),
cbInputArgInfo := SIZEOF (InputArguments),
pInputArgData := ADR(nInputData),
cbInputArgData := cbWriteData,
pInputWriteData := O,
cbInputWriteData := 0,
nNumberOfOutputArguments := nNumberOfOutputArguments,
pOutputArgInfo := ADR(stOutputArgInfo),
cbOutputArgInfo := SIZEOF (stOutputArgInfo),
pOutputArgInfoAndData := ADR (stOutputArgInfoAndData),
cbOutputArgInfoAndData := SIZEOF (stOutputArgInfoAndData)) ;
IF NOT fbUA MethodCall.Busy THEN
fbUA MethodCall (Execute := FALSE);
IF NOT fbUA MethodCall.Error THEN
iState := iState + 1;
numpberOutPro := stOutputArgInfoAndData.pro;
ELSE
bError := TRUE;
nErrorID := fbUA MethodCall.ErrorID;
iState := 6;
END IF
END IF

6: (* Release Method Handle *)
fbUA MethodReleaseHandle (

Execute := TRUE,
ConnectionHdl := nConnectionHdl,
MethodHdl := nMethodHdl) ;

IF NOT fbUA MethodReleaseHandle.Busy THEN
fbUA MethodReleaseHandle (Execute := FALSE) ;
bBusy := FALSE;

IF NOT fbUA MethodReleaseHandle.Error THEN
istate := 7;
ELSE
bError := TRUE;
nErrorID := fbUA MethodReleaseHandle.ErrorID;
istate := 7;
END IF
END IF
7
[oool
END_CASE

TS6100 Version: 1.0.0 45

PLC AP BECKHOFF
5 PLC API

5.1 Tc2_OpcUa

5.1.1 Data types

5111 ST_OpcUAServerinfo

ST_OpcUAServerinfo contains session information of a TwinCAT OPC UA Server.

Syntax
TYPE ST OpcUAServerInfo :
STRUCT
nReserved : UDINT;
nCummulatedSessionCount : UDINT;
nCurrentSessionCount : UDINT;
nRejectedSessionCount : UDINT;
nSecurityRejectedSessionCount : UDINT;
nSessionTimeoutCount : UDINT;
nCurrentSubscriptionCount : UDINT;
nRejectedRequestCount : UDINT;
nSecurityRejectedRequestCount : UDINT;
END_ STRUCT
END TYPE
Parameter
Name Type Description
nReserved UDINT |Placeholder.
nCummulatedSessionCount UDINT |Total number of client sessions since the server was
started.
nCurrentSessionCount UDINT |Total number of current client sessions.
nRejectedSessionCount UDINT |Total number of sessions rejected by the server.
nSecurityRejectedSessionCount UDINT |Total number of sessions rejected by the server for
security reasons (example: incorrect combination of
user name and password).
nSessionTimeoutCount UDINT |Total number of sessions that had a timeout.
nCurrentSubscriptionCount UDINT |Total number of current subscriptions in the server.
nRejectedRequestCount UDINT |Total number of failed requests.
nSecurityRejectedRequestCount UDINT |Total number of failed requests for security reasons.
5.1.1.2 E_OpcUAServerOption

E_OpcUAServerOption determines which command is to be sent to the TwinCAT OPC UA Server.

Syntax

TYPE E OpcUAServerOption

(
eOPCUAServerOption None,
eOPCUAServerOption Restart,
eOPCUAServerOption Shutdown,
eOPCUAServerOption RefreshCfg,
e0OPCUAServerOption ServerInfo

)7

END TYPE

46 Version: 1.0.0 TS6100

BECKHOFF PLC AP

Parameter

Name Description
eOPCUAServerOption_Non |Initial state of the enumeration.
e

eOPCUAServerOption_Res |This option triggers a restart of the OPC UA interface of the server.
tart

eOPCUAServerOption_Shu | This option triggers the shutdown of the OPC UA interface of the server. As the
tdown restart option above works via OPC UA, it is no longer available after using this
option until a complete server restart.

eOPCUAServerOption_Refr | This option currently has no function.
eshCfg

eOPCUAServerOption_Ser |This option queries the server information contained in ST OpcUAServerinfo
verinfo > 46].

5.1.1.3 E_OpcUAServerStatus
E_OpcUAServerStatus represents the runtime status of a TwinCAT OPC UA Server.

Syntax

TYPE E OpcUAServerStatus

(
eOPCUAServerStatus_None,
eOPCUAServerStatus_Alive,
eOPCUAServerStatus NotResponding

)

END TYPE

Parameter

Name Description

eOPCUAServerStatus_None Initial state of the enumeration.

eOPCUAServerStatus_Alive The ADS interface of the TwinCAT OPC UA Server is
accessible.

eOPCUAServerStatus_NotResponding The ADS interface of the TwinCAT OPC UA Server is not
accessible.

51.2 Function blocks

5.1.21 FB_OpcUAServer

FB_OpcUAServer
—sNetTd stOpcUAServerInfol—
—bExecute bBusy —
—e0pcUAServerOption bErrorf—
—{tTimeout nErrorldf—

The function block enables status information to be read out and a TwinCAT OPC UA Server to be restarted.

Syntax

Definition:

FUNCTION BLOCK FB OpcUAServer

VAR INPUT
sNetId : T AmsNetId;
bExecute : BOOL;
eOpcUAServerOption : E OpcUAServerOption;
tTimeout : TIME;

END VAR

TS6100 Version: 1.0.0 47

PLC API BECKHOFF
VAR OUTPUT
stOpcUAServerInfo : ST OpcUAServerInfo;
bBusy : BOOL;
bError : BOOL;
nErrorId : UDINT;
END_ VAR
Inputs
Name Type Description
sNetld T_AmsNetld AmsNetld of the system on which the TwinCAT OPC
UA Server runs.
bExecute BOOL A rising edge activates processing of the function block.
eOpcUAServerOption |E OpcUAServerOption Specifies the operation to be performed.
[» 46]
tTimeout TIME ADS Timeout
& Qutputs
Name Type Description
stOpcUAServerinfo |ST OpcUAServerlnfo Contains status information from the server when
> 46] ServerInfo is selected at the eOpcUAServerOption input.
bBusy BOOL TRUE as long as processing of the function block is in
progress.
bError BOOL Becomes TRUE as soon as an error situation occurs.
nErrorld UDINT Contains the error code when an error (bError) occurs.
5.1.2.2 FB_OpcUAServerGetStatus
FB_OpcUAServerGetStatus
—sNetTd e0PCUAServerstatust—
—bGetstatus bDonef—
—tTimeout bBusy —
bErrorf—
nErrarldf—

The function block enables the current status (Running, NotResponding) of a TwinCAT OPC UA Server to
be read. It should be noted at this point that this function block deals with the ADS interface of the

OPC UA Server. If the OPC UA Server is restarted or shut down, the ADS interface of the server remains
accessible. The ADS interface can only be closed by terminating the server process.

Syntax

Definition:

FUNCTION_ BLOCK FB OpcUAServerGetStatus

VAR INPUT
sNetId : T AmsNetId;
bGetStatus : BOOL;
tTimeout : TIME;

END VAR

VAR OUTPUT
eOPCUAServerStatus : E_OPCUAServerStatus;
bDone : BOOL;
bBusy : BOOL;
bError : BOOL;
nErrorId : UDINT;

END VAR

48

Version: 1.0.0

TS6100

BECKHOFF

PLC API

% Inputs

Name Type Description

sNetld T_AmsNetld AmsNetld of the system on which the TwinCAT OPC

UA Server runs.

bGetStatus BOOL A rising edge activates processing of the function block.

tTimeout TIME ADS Timeout

& Qutputs

Name Type Description

eOPCUAServerStatu |E OpcUAServerStatus Contains status information about the server.

S [»47]

bDone BOOL TRUE when processing of the function block is complete.

bBusy BOOL TRUE as long as processing of the function block is in
progress.

bError BOOL Becomes TRUE as soon as an error situation occurs.

nErrorld UDINT Contains the error code when an error (bError) occurs.

5.2

5.2.1

5.2.1.1

Syntax

TYPE E UAAttributelID:

(
eUAAT NodeID
eUAAT NodeClass

eUAAT BrowseName
eUAAI DisplayName
eUAAT Description

eUAAI WriteMask

eUAATI UserWriteMask
eUAAI IsAbstract

eUAAI:Symmetric

eUAAI InverseName
eUAATI ContainsNoLoops
eUAAI EventNotifier

eUAAT Value
eUAAT DataType
eUAAT ValueRank

eUAAI ArrayDimensions :

) DINT;
END TYPE

Data types

E_UAAttributelD

~ 0~ ~

~

~ 0~

O Joy Ul b WN

~

Tc3 _PLCopen_OpcUa

TS6100

Version: 1.0.0

49

PLC API BECKHOFF
Values

Name Description

NodelD OPC UA NodelD
NodeClass OPC UA NodeClass
BrowseName OPC UA BrowseName
DisplayName OPC UA DisplayName
Description OPC UA Description
WriteMask OPC UA WriteMask
UserWriteMask OPC UA UserWriteMask
IsAbstract OPC UA IsAbstract
Symmetric OPC UA Symmetric
InverseName OPC UA InverseName
ContainsNoLoops OPC UA ContainsNoLoops
EventNotifier OPC UA EventNotifier
Value OPC UA Value

DataType OPC UA DataType
ValueRank OPC UA ValueRank
ArrayDimensions OPC UA ArrayDimensions

Requirements

Development environment

Target platform

PLC libraries to include

TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM |Tc3_PLCopen_OpcUa
5.21.2 E_UABrowseDirection
Syntax

TYPE E_UABrowseDirection:

(
eUABD Forward
eUABD_Inverse
eUABD Both

) DINT;

END_ TYPE

Values

0,
1,
2

Name

Description

eUABD_Forward

Forward references

eUABD_Inverse

Inverse references

eUABD_Both

Forward and inverse references

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa
5.21.3 E_UABrowseResultMask

Syntax

TYPE E UABrowseResultMask:

(

eUABRM ReferenceTypeld

eUABRM IsForward

eUABRM ReferenceTypelnfo :

50

Version: 1.0.0

TS6100

BECKHOFF

PLC API

eUABRM NodeClass
eUABRM BrowseName
eUABRM DisplayName
eUABRM TypeDefinition
eUABRM TargetInfo
eUABRM All

) DINT;

END TYPE

1 | | A
w
N

Values

Name

Description

eUABRM_ReferenceTypeld

ReferenceTypeld

eUABRM_IsForward

IsForward

eUABRM_ReferenceTypelnfo

ReferenceTypelnfo

eUABRM_NodeClass

NodeClass

eUABRM_BrowseName

BrowseName

eUABRM_DisplayName

DisplayName

eUABRM_TypeDefinition

TypeDefinition

eUABRM_Targetinfo

Targetinfo

eUABRM_AI|

All

Requirements

Development environment

Target platform

PLC libraries to include

TwinCAT 3.1

Win32, Win64, CE-X86, CE-ARM

Tc3 PLCopen_OpcUa

5214

Syntax

TYPE E_UAConnectionStatus:

(
Connected =
ConnectionError := 1,
Shutdown =

) DINT;

END TYPE

Values

E_UAConnectionStatus

Name Description

Connected

The connection has been established.

ConnectionError

An error occurred while establishing the connection.

Shutdown

The connection was disconnected.

Requirements

Development environment

Target platform

PLC libraries to include

TwinCAT 3.1

Win32, Win64, CE-X86, CE-ARM

Tc3_PLCopen_OpcUa

PLC library

Required version

Tc3 _PLCopen_OpcUa

>=3.2.11.0

5.2.1.5

Syntax

TYPE E _UADataType:

(
eUAType Undefinied

E_UADataType

TS6100

Version: 1.0.0

51

PLC AP BECKHOFF

eUAType Null =0,

eUAType Boolean =1,

eUAType SByte = 2,

eUAType Byte = 3,

eUAType Intlé = 4,

eUAType UIntlé = 5,

eUAType Int32 = 6,

eUAType UInt32 =17,

eUAType Int64 = 8,

eUAType UInto64 =9,

eUAType Float = 10,

eUAType Double = 11,

eUAType String =12,

eUAType DateTime = 13,

eUAType Guid = 14,

eUAType ByteString = 15,

eUAType XmlElement = 16,

eUAType NodeId =17,

eUAType ExpandedNodeId = 18,

eUAType StatusCode =19,

eUAType QualifiedName = 20,

eUAType LocalizedText = 21,

eUAType ExtensionObject := 22,

eUAType DataValue = 23,

eUAType Variant = 24,

eUAType DiagnosticInfo = 25
) DINT;
END_TYPE
Values
Name Description
eUAType_Undefinied Undefinied
eUAType_Null Zero
eUAType_Boolean Boolean
eUAType_SByte SByte
eUAType_Byte Byte
eUAType_Int16 Int16
eUAType_UInt16 Uint16
eUAType_Int32 Int32
eUAType_UInt32 UInt32
eUAType_Int64 Int64
eUAType_UInt64 Uint64
eUAType_Float Float
eUAType_Double Double
eUAType_String String
eUAType_DateTime DateTime
eUAType_Guid Guid
eUAType_ByteString ByteString
eUAType_XmlElement XmlElement
eUAType_Nodeld Nodeld
eUAType_ExpandedNodeld ExpandedNodeld
eUAType_StatusCode StatusCode
eUAType_QualifiedName QualifiedName
eUAType_LocalizedText LocalizedText
eUAType_ExtensionObject ExtensionObject
eUAType_DataValue DataValue
eUAType_Variant Variant
eUAType_Diagnosticlnfo Diagnosticlnfo

52

Version: 1.0.0

TS6100

BECKHOFF

PLC API

Requirements

Development environment

Target platform

PLC libraries to include

TwinCAT 3.1

Win32, Win64, CE-X86, CE-ARM

Tc3_PLCopen_OpcUa

5.2.1.6

Syntax

TYPE E UAIdentifierType:

(
eUAIdentifierType String
eUAIdentifierType Numeric :
eUAIdentifierType GUID
eUAIdentifierType Opaque

) DINT;

END TYPE

BSw N
~

Values

E_UAldentifierType

~ 0~

Name

Description

eUAldentifierType_String

String

eUAldentifierType_Numeric

Numeric

eUAldentifierType_GUID

GUID

eUAldentifierType_Opaque

Opaque

Requirements

Development environment

Target platform

PLC libraries to include

TwinCAT 3.1

Win32, Win64, CE-X86, CE-ARM

Tc3 PLCopen_OpcUa

5.21.7

Syntax

TYPE E_UANodeClassMask:

(
eUANCM Unspecified
eUANCM Object
eUANCM Variable
eUANCM Method
eUANCM ObjectType
eUANCM VariableType
eUANCM ReferenceType :
eUANCM DataType
eUANCM View
eUANCM All

) DINT;

END TYPE

E_UANodeClassMask

TS6100

Version: 1.0.0

53

PLC API BECKHOFF
Values

Name Description

eUANCM_Unspecified Unspecified

eUANCM_Object Object

eUANCM_Variable Variable

eUANCM_Method Method

eUANCM_ObijectType ObjectType

eUANCM_VariableType VariableType

eUANCM_ReferenceType ReferenceType

eUANCM_DataType DataType

eUANCM_View View

eUANCM_AII All

Requirements

Development environment Target platform PLC libraries to include

TwinCAT 3.1

Win32, Win64, CE-X86, CE-ARM

Tc3_PLCopen_OpcUa

5.2.1.8

Syntax

TYPE E _UASecurityMsgMode:
(

eUASecurityMsgMode BestAvailable :

eUASecurityMsgMode None
eUASecurityMsgMode Sign

eUASecurityMsgMode Sign Encrypt

) DINT;
END TYPE

Values

E_UASecurityMsgMode

~

~

w NP o
~

Name

Description

eUASecurityMsgMode BestAvailable

Highest available security

eUASecurityMsgMode_None

No security

eUASecurityMsgMode_Sign

Signing

eUASecurityMsgMode_Sign_Encrypt

Signing and encryption

Requirements

Development environment

Target platform

PLC libraries to include

TwinCAT 3.1

Win32, Win64, CE-X86, CE-ARM

Tc3_PLCopen_OpcUa

5.2.1.9

Syntax

TYPE E UASecurityPolicy:
(

E_UASecurityPolicy

eUASecurityPolicy BestAvailable :

eUASecurityPolicy None
eUASecurityPolicy Basicl28
eUASecurityPolicy Basicl28Rsal5
eUASecurityPolicy Basic256

) DINT;

END TYPE

SwWw NP O
~ ~ ~

54

Version: 1.0.0

TS6100

BECKHOFF PLC API
Values
Name Description
BestAvailable Highest available security.
None Guideline for configurations with minimal security requirements.
Basic128 Guideline for configurations with low to medium security requirements.
Basic128Rsa15 Defines a security guideline for configurations with moderate to high security
requirements.
Basic256 Defines a security policy for configurations with high security requirements.
Requirements
Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM |Tc3_PLCopen_OpcUa
5.2.1.10 E_UAServerState
Syntax
TYPE E UAServerState:
(
Running =0
Failed = 1!
NoConfiguration = 2,
Suspended = 3,
Shutdown =4,
Test = 5,
CommunicationFault := 6,
Unknown =7
) DINT;
END TYPE
Values
Name Description
Running Running
Failed Failed
NoConfiguration NoConfiguration
Suspended Suspended
Shutdown Shutdown
Test Test
CommunicationFault CommunicationFault
Unknown Unknown
Requirements
Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM |Tc3_PLCopen_OpcUa
PLC library Required version
Tc3 PLCopen_OpcUa >=3.2.11.0
5.21.11 E_UATransportProfile
Syntax
TYPE E_UATransportProfile:
(
eUATransportProfileUri UATcp =1,
eUATransportProfileUri WSHttpBinary = 2,
eUATransportProfileUri WSHttpXmlOrBinary := 3,
TS6100 Version: 1.0.0 55

PLC AP BECKHOFF
eUATransportProfileUri WSHttpXml =4

) DINT;

END_TYPE

Values

Name Description

eUATransportProfileUri_ UATcp UATcp

eUATransportProfileUri_ WSHttpBinary WSHLttpBinary

eUATransportProfileUri_WSHttpXmIOrBinary WSHttpXmIOrBinary

eUATransportProfileUri_ WSHttpXml WSHttpXml

Requirements

Development environment

Target platform

PLC libraries to include

TwinCAT 3.1

Win32, Win64, CE-X86, CE-ARM

Tc3 PLCopen_OpcUa

5.2.1.12

Syntax

TYPE E_UAUserIdentityTokenType:
(
eUAUITT Anonymous
eUAUITT Username
eUAUITT x509
eUAUITT IssuedToeken
) DINT;
END_TYPE

LU |
~ S~ N

w N = o

Values

E_UAUserldentityTokenType

Name

Description

eUAUITT_Anonymous

Anonymous user.

eUAUITT_Username

Log in by user name.

eUAUITT_x509

Certificate file for logging in.

eUAUITT _IssuedToeken

Log in via token.

Requirements

Development environment

Target platform

PLC libraries to include

TwinCAT 3.1

Win32, Win64, CE-X86, CE-ARM

Tc3_PLCopen_OpcUa

5.2.1.13

Syntax

TYPE ST UABrowseDescription:
STRUCT

ST_UABrowseDescription

: E UABrowseDirection;

: E UABrowseResultMask;

stStartingNodeId : ST UANodeId;
eDirection
stReferenceTypelId : ST UANodeId;
bIncludeSubtypes : BOOL;
eNodeClass : E UANodeClassMask;
eResultMask

END_STRUCT

END_TYPE

56

Version: 1.0.0

TS6100

BECKHOFF PLC API
Values
Name Description
stStartingNodeld Default Starting Node: ObjectRoot
eDirection Default Browse Direction: Forward
stReferenceTypeld Default ReferenceType: Hierarchical
bincludeSubtypes Default IncludeSubtypes: TRUE
eNodeClass Default NodeClassMask: All
eResultMask Default BrowseResultMask: All
Requirements
Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM |Tc3_PLCopen_OpcUa
5.2.1.14 ST_UAExpandedNodelD
Syntax
TYPE ST UAExpandedNodeID:
STRUCT
nServerIndex : UDINT;
sNamespaceURI : STRING(MAX STRING LENGTH) ;
stNodeID : ST _UANodelID;
END_STRUCT
END TYPE
Values
Name Description
nServerindex Serverindex
sNamespaceURI NamespaceName
stNodelD NodelD (ST_UANodelD [»_59])
Requirements
Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM |Tc3 PLCopen_OpcUa
5.21.15 ST_UASessionConnectinfo
Syntax
TYPE ST UASessionConnectInfo:
STRUCT
sApplicationName 3 STRING(MAXisTRINGiLENGTH);
eSecurityMode : E_UASecurityMsgMode;
eSecurityPolicyUri : E_UASecurityPolicy;
eTransportProfileUri : E UATransportProfile;
tSessionTimeout : TIME;
tConnectTimeout : TIME;
END_STRUCT
END TYPE
TS6100 Version: 1.0.0 57

PLC API

BECKHOFF

Values

Name

Description

sApplicationUri (obsolete)

Application Uri maximum string length 255.

From TcUACIient 2.0.0.14 or higher this is automatically specified by the
certificate, as defined in the PLCOpen specification. Therefore no longer used in
current library versions.

sApplicationName

Application name with a maximum string length of 255.

eSecurityMode

Security message mode. For available modes see E_ UASecurityMsgMode
[»_541.

eSecurityPolicyUri

Security policy Uri. For available security policy Uri see E UASecurityPolicy

[» 54].

eTransportProfileUri

Transport profile Uri. For available transport profile Uri see E UATransportProfile
[»55];

stUserldentTokenType

Structure with authentication data for logging on to the OPC UA Server. Full
description under ST UAUserldentityTokenType [» 61].

tSessionTimeout

Session timeout value.

tConnectTimeout

Value for the connection timeout. This must be set at the UA_Connect function
block to match the ADS timeout. The rule of thumb is: ADS Timeout > 2 *
ConnectionTimeout.

Requirements

Development environment

Target platform PLC libraries to include

TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa
5.2.1.16 ST_UAIndexRange
Syntax

TYPE ST UAIndexRange:
STRUCT

nStartIndex : UDINT;

nEndIndex : UDINT;
ENDisTRUCT
END_TYPE
Values
Name Description
nStartindex Start index of the data.
nEndIindex End index of the data.

For all dimensions:

 Startindex and Endindex must be assigned.

« Startindex must be smaller than EndIindex.

* To be able to access all elements in a dimension, Startindex and EndIindex must be assigned in the
dimension depending on the total number of elements.

« Individual elements of a dimension can be selected by specifying the same Startindex and EndIndex.

Requirements

Development environment

Target platform

PLC libraries to include

TwinCAT 3.1

Win32, Win64, CE-X86, CE-ARM

Tc3_PLCopen_OpcUa

58

Version: 1.0.0

TS6100

BECKHOFF

PLC A

Pl

5.21.17 ST_UALocalizedText
Syntax
TYPE ST UALocalizedText:
STRUCT
sLocale : STRING(6);
sText : STRING (MAX STRING_ LENGTH) ;
END STRUCT
END TYPE
Values
Name Description
sLocale Language identifier of the LocalizedText
sText Text

Requirements

Development environment Target platform

PLC libraries to include

TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM |Tc3_PLCopen_OpcUa
5.2.1.18 ST_UAMethodArginfo
Syntax
TYPE ST UAMethodArgInfo:
STRUCT
DataType : E UADataType := -1;
ValueRank : DINT := 2147483647;
ArrayDimensions : ARRAY[1..3] OF UDINT := [0,0,0];
nLenData : DINT;
END_ STRUCT
END_TYPE
Values
Name Description
DataType Defines the UA data type for the method parameter. (Type: E_ UADataType [» 51])
ValueRank Determines whether the parameter is scalar (-1) or array.

ArrayDimensions
determines the length per dimension.

If the parameter is an array, it specifies the dimensions of the array. Each element

nLenData

this element.

Specifies the length of the argument. For output information STRUCT only requests

Requirements

Development environment Target platform

PLC libraries to include

TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM | Tc3_PLCopen_OpcUa

5.2.1.19 ST_UANodelD

Syntax

TYPE ST UANodelID:

STRUCT
nNamespaceIndex : UINT;
nReserved : ARRAY [1..2] OF BYTE; //fill bytes
sIdentifier : STRING (MAX STRING LENGTH) ;
eldentifierType : E UAIdentifierType;

END_STRUCT

END TYPE

TS6100

Version: 1.0.0

59

PLC API

BECKHOFF

Values

Name Description

nNamespacelndex

Namespace index under which the node is available.
Can be determined with the function block

UA GetNamespacelndex [» 68].

nReserved Placeholder

sldentifier
'ldentifier’).

Identifier as shown in the UA namespace (attribute

eldentifierType

Variable type, described by E UAldentifierType [P 53].

Requirements

Development environment Target platform

PLC libraries to include

TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM |Tc3_PLCopen_OpcUa
5.2.1.20 ST_UANodeAdditionallnfo
Syntax
TYPE ST UANodeAdditionalInfo:
STRUCT
eAttributelID : E_UAAttributelD;
nIndexRangeCount : UINT;
nReserved : ARRAY[1..2] OF BYTE; // fill bytes
stIndexRange : ARRAY[1..nMaxIndexRange] OF ST UAIndexRange;
END_STRUCT
END TYPE
Values
Name Description

eAttributelD
E UAAttributelD [»_49]).

Specifies the ID of the OPC UA attribute. eUAAI_Value is used by default. (Type:

nindexRangeCount

Determines how many index ranges are used in stindexRange.

nReserved Placeholder

stindexRange

ST UAIndexRange [P 58]).

Specifies an index range for reading values from an array. (Type:

Requirements

Development environment Target platform

PLC libraries to include

TWinCAT 3.1 Win32, Win64, CE-X86, CE-ARM |Tc3_PLCopen_OpcUa
5.21.21 ST_UAReferenceDescription
Syntax
TYPE ST UAReferenceDescription:
STRUCT
stReferenceTypeId : ST _UANodeId;
bIsForward : BOOL;
stNodeId : ST UAExpandedNodeId;
stBrowseName : STRING (MAX STRING LENGTH) ;
stDisplayName : ST UALocalizedText;
eNodeClass : E UANodeClassMask;
stTypeDefinition : ST UAExpandedNodeId;
END_STRUCT
END_TYPE

60 Version: 1.0.0

TS6100

BECKHOFF

PLC API

Values

Name Description

stReferenceTypeld Nodeld of the reference type (e.g. Organizes, HasChild, HasTypeDefinition, ...) as
data type ST UANodeld [» 59].

blsForward Indicates whether the reference is a forward or backward reference.

stNodeld Nodeld as data type ST UAExpandedNodeld [» 57].

stBrowseName BrowseName of the reference.

stDisplayName DisplayName of the reference (ST UALocalizedText [»_59]).

eNodeClass NodeClass of the reference (E_UANodeClassMask [»_53]).

stTypeDefinition Type definition (HasTypeDefinition) (ST_UAExpandedNodeld [} 571).

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa
5.2.1.22 ST_UAUserldentityTokenType
Syntax
TYPE ST UAUserIdentityTokenType:
STRUCT

eUserIdentTokenType : E UAUserIdentityTokenType;

sTokenParaml : STRING (MAX STRING LENGTH) ;

sTokenParam?2 : STRING (MAX STRING LENGTH) ;
END_STRUCT
END TYPE
Values
Name Description
eUserldentTokenType Type of user, described using

E UAUserldentityTokenType [» 56]..

sTokenParam1 User name for logging on to the OPC UA Server.
sTokenParam2 Password for logging on to the OPC UA Server.

Requirements

Development environment Target platform

PLC libraries to include

TwinCAT 3.1

Win32, Win64, CE-X86, CE-ARM

Tc3 _PLCopen_OpcUa

5.2.1.23 UAHADataValue

This function block acts as a data object. An instance represents a value for the OPC UA Historical Access
function. A whole field of these values is transferred to the UA HistoryUpdate [» 69] function block on

calling.

Syntax

aDataValues : ARRAY

..50] OF UAHADataValue (ValueSize:=SIZEOF (LREAL)) ;

Each data object is initialized with the expected size (in bytes) of the value.

TS6100

Version: 1.0.0

61

PLC AP BECKHOFF

= Properties

Name Type Access Initial value Description

Value PVOID Set - Specifies the address of a
variable containing the
desired value. This is usually
assigned with the help of the
operator ADR(). The value
itself is hereby assigned at
the same time and copied into
the data object.

StatusCode UAHAUpdateSt |Get, Set UAHAUpdateStat |Indicates the status code of
atusCode usCode.Historian |the value.

I 62] Raw
SourceTimeStamp ULINT Get, Set 0 Indicates the timestamp of the
source in UTC format. This
can be determined with the
help of the function

F_GetSystemTime
(Tc2_System PLC library).
ServerTimeStamp ULINT Get, Set 0 Indicates the timestamp of the
OPC UA Serverin UTC
format. This function is not
currently supported.

Data type size of the value

o
1 The size of the data type used is already indicated and thus defined in the declaration of the data
object. This size is taken as the basis when assigning a value later.

Values of the type STRING are accordingly also saved and transmitted with a fixed initialized size.
An indication of the current text length cannot be made.

Sample

{attribute 'OPC.UA.DA' := '1'}

fMyValue : LREAL; // Variable for HistorcalAccess

aDataValues : ARRAY [1..50] OF UAHADataValue (ValueSize:=SIZEOF (LREAL)) ;
fMyValue := 27.75;

aDataValues[1l] .Value
aDataValues[1l].StatusCode
aDataValues[1l].SourceTimeStamp

ADR (fMyValue) ;
UAHAUpdateStatusCode.HistorianRaw;
F GetSystemTime () ;

In this sample a field of 50 values is defined, of which each is represented by a data object. The current
content of the variable fMyValue (= 27.75) is assigned to the first value.

The field can now be filled by means of further assignments in subsequent PLC cycles.

Requirements

Development environment Target platform PLC libraries to include

TwinCAT 3.1 >=4024.1 Win32, Win64, WinCE-x86 Tc3 PLCopen_OpcUa
>=v3.1.9.0

5.2.1.24 UAHAUpdateStatusCode

A status code is assigned to each data value transferred using the OPC UA Historical Access function. This
is a property of the object UAHADataValue [»_61].

62 Version: 1.0.0 TS6100

BECKHOFF

PLC API

Syntax

{attribute 'qualified only'}

TYPE UAHAUpdateStatusCode
(
HistorianRaw
HistorianCalculated

HistorianInterpolated :

Reserved
HistorianPartial

HistorianExtraData
HistorianMultiValue

) UDINT;
END_TYPE

Values

Il
NNV S o)

// Undefined.

o // A raw data value.

’ // A data value which was calculated.
, // A data value which was interpolated.
’
’

// A data value which was calculated with an incomplete interva

:= 8, // A raw data value that hides other data at the same timestamp.

:= 16 // Multiple values match the Aggregate criteria
imum values at different timestamps within the same interval).

(i.e. multiple min

Name

Description

HistorianRaw

HistorianRaw

HistorianCalculated

HistorianCalculated

Historianinterpolated

HistorianInterpolated

Reserved

Reserved

HistorianPartial

HistorianPartial

HistorianExtraData

HistorianExtraData

HistorianMultiValue

HistorianMultiValue

Requirements

Development environment

Target platform

PLC libraries to include

TwinCAT 3.1 >=4024.1

Win32, Win64, WinCE-x86

Tc3_PLCopen_OpcUa
>=v3.1.9.0

5.2.2 Function blocks
5.2.2.1 UA_Browse
UA_Browse
—|Execute Donef—
— ConnectionHdl Busy[—

—BrowseDescription

— ContinuationPointIn
— Timeout
—ReferenceDescriptions

Errorj—

ErrorID[—
ContinuationPointOut
cbBrowseResultCount

This function block allows browsing through the namespace of a server. Starting from a start node, its

references are read and returned accordingly.

Inputs

VAR INPUT
Execute
ConnectionHdl
BrowseDescription
ContinuationPointIn
Timeout

END_VAR

: BOOL;

DWORD;
ST UABrowseDescription;
DWORD;

: TIME;

TS6100

Version: 1.0.0

63

PLC API BECKHOFF

Name Type Description

Execute BOOL The command is triggered by a rising edge at
this input.

ConnectionHdI DWORD Connection handle previously output by the
function block UA_Connect.

BrowseDescription ST UABrowseDescription [» 56] |The address information for the node to be read

is specified here.

ContinuationPointin DWORD If a previous call of the function block returned a
value as ContinuationPointOut, this value can
be created here to get further data from the
server.

Timeout TIME Time until the function is aborted.

#/E» Inputs/outputs
VAR _IN_OUT
ReferenceDescriptions : POINTER TO ST UAReferenceDescriptions;

END VAR

Name Type Description

ReferenceDescript |POINTER |Contains the list of ReferenceDescriptions returned by the server, i.e. the

ions TO result of the UA_Browse call. The contained ReferenceDescriptions can
ST_UARef |then be used for further UA_Browse calls in the BrowseDescription, e.g. to
erenceDes |navigate deeper into the namespace.
criptions

& QOutputs
VAR OUTPUT
Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : DWORD;
ContinuationPointOut : DWORD;
cbBrowseResultCnt : UDINT;
END VAR
Name Type Description
Done BOOL Switches to TRUE if the function block was executed successfully.
Busy BOOL TRUE until the function block has executed a command, at the most for
the duration of the "Timeout" at the input. The inputs accept no new
command as long as Busy = TRUE. It is not the connection time that is
monitored but the reception time.
Error BOOL Switches to TRUE if an error occurs while executing a command. The
command-specific error code is included in ErroriD.
ErrorlD DWORD Contains the command-specific error code of the most recently executed
command.
ContinuationPoint |DWORD If the server returns data batch-wise (ContinuationPointOut != 0), the value
Out of ContinuationPointOut can be used as ContinuationPointin at the next
call of the function block to get the further data.
cbBrowseResultC |UDINT Number of ReferenceDescriptions.
nt

Requirements

Development environment

Target platform PLC libraries to include

TwinCAT 3.1

Win32, Win64, CE-X86, CE-ARM |Tc3_PLCopen_OpcUa

64

Version: 1.0.0 TS6100

BECKHOFF PLC API

5.2.2.2 UA_Connect
UA_Connect
— Execute ConnectionHd f—
—serverlrl Donef—
—SessionConnectInfo Busy —
—Timeout Errorfp—
ErrorlD —

This function block establishes an OPC UA Remote connection to another OPC UA Server, which is
specified via ServerUrl and SessionConnectinfo. The function block returns a connection handle that can be
used for other function blocks, such as UA_Read.

% Inputs

VAR INPUT
Execute : BOOL;
ServerUrl : STRING (MAX STRING LENGTH) ;
SessionConnectInfo : ST UASessionConnectInfo;
Timeout : TIME := DEFAULT ADS TIMEOUT;

END VAR

Name Type Description

Execute BOOL The command is triggered by a rising

edge at this input.

ServerUrl STRING(MAX_STRING_LENGTH) OPC UA Server URL, i.e. 'opc.tcp://

172.16.3.207:4840' or 'opc.tcp://
CX_0193BF:4840'".
SessionConnectinfo ST_UASessionConnectinfo Connection information (see
ST UASessionConnectinfo [P 57])
Timeout TIME Time until the function is aborted.
DEFAULT_ADS_TIMEOUT is a global
constant, set to 5 seconds. The value
must be set to match the
ST_UASessionConnectinfo.tConnecti
onTimeout. The rule of thumb is: ADS
Timeout > 2 * ConnectionTimeout.
E QOutputs
VAR OUTPUT
ConnectionHdl : DWORD;
Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : DWORD;

END_ VAR

Name Type Description

ConnectionHdlI DWORD |OPC UA connection handle.

Done BOOL Switches to TRUE if the function block was executed successfully.

Busy BOOL TRUE until the function block has executed a command, at the most for the
duration of the "Timeout" at the input. The inputs accept no new command
as long as Busy = TRUE. It is not the connection time that is monitored but
the reception time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The
command-specific error code is included in ErrorID.

ErrorlD DWORD |Contains the command-specific error code of the most recently executed
command.

TS6100 Version: 1.0.0 65

PLC API

BECKHOFF

Requirements

Development environment

Target platform PLC libraries to include

TwinCAT 3.1

Win32, Win64, CE-X86, CE-ARM |Tc3_PLCopen_OpcUa

5.2.2.3 UA_ConnectGetStatus
UA_ConnectGetStatus

—Execute Donef—
—{ConnectionHd| Busy [—
— GetServicelevel Error|—
—Timeout ErrorlD—
ConnectionStatus—
ServerState—
Servicelevel -

This function block checks the connection status of an existing connection to another OPC UA Server. The
connection is referenced via the respective connection handle. The status is then returned as

E UAConnectionStatus [P 51]. The connection status is determined based on the internal session info or the
OPC UA heartbeat, no additional communication (read or similar) is performed.

The service level of the OPC UA Server can be read out via the additional input parameter GetServicelLevel.
For this purpose, a read command is sent to the server in the background to determine this information.

Inputs
VAR INPUT
Execute : BOOL;
ConnectionHdl : DWORD;
GetServiceLevel : BOOL;
Timeout : TIME := DEFAULT ADS TIMEOUT;

END VAR

Name Type Description

Execute BOOL The command is triggered by a rising edge at this input.

ConnectionHdl DWORD |Connection handle of an existing communication link.

GetServicelLevel BOOL Reads out the ServicelLevel of the OPC UA Server.

Timeout TIME Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global
constant, set to 5 seconds. The value must be set to match the
ST_UASessionConnectinfo.tConnectionTimeout. The rule of thumb is:
ADS Timeout > 2 * ConnectionTimeout.

& Qutputs

VAR OUTPUT

Done : BOOL;

Busy : BOOL;

Error : BOOL;

ErrorID : DWORD;
ConnectionStatus : E UAConnectionStatus;
ServerState : E UAServerState;
ServiceLevel : BYTE;

END_VAR

66

Version: 1.0.0 TS6100

BECKHOFF PLC API

Name Type Description

Done BOOL Switches to TRUE if the function block was executed
successfully.

Busy BOOL TRUE until the function block has executed a

command, at the most for the duration of the
"Timeout" at the input. The inputs accept no new
command as long as Busy = TRUE. It is not the
connection time that is monitored but the reception
time.

Error BOOL Switches to TRUE if an error occurs while executing
a command. The command-specific error code is
included in ErroriID.

ErrorlD DWORD Contains the command-specific error code of the
most recently executed command.

ConnectionStatus E_UAConnectionStatus Connection status (see E UAConnectionStatus
[»_51]).

ServerState E_UAServerState Server state (see E_UAServerState [»_55]).

ServerState BYTE ServicelLevel of the OPC UA Server.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM |Tc3_PLCopen_OpcUa
PLC library Required version

Tc3_PLCopen_OpcUa >=3.211.0
5.2.2.4 UA_Disconnect

UA_Disconnect

—{Execute Donef—

—ConnectionHd| Busyr—

—{Timeout Errorp—

ErrarlDF—

This function block closes an OPC UA Remote connection to another OPC UA Server. The connection is
specified via its connection handle.

@® Disconnect all connections

1 If the UA-Disconnect method is called and a connection handle of 0 is passed, the OPC UA client
disconnects all existing connections. This also applies to connections established via an OPC UA I/
O client configuration.

Inputs
VAR INPUT
Execute : BOOL;
ConnectionHdl : DWORD;
Timeout : TIME := DEFAULT ADS TIMEOUT;
END VAR
Name Type Description
Execute BOOL The command is triggered by a rising edge at this input.
ConnectionHdlI DWORD |Connection handle previously output by the function block UA_Connect.
Timeout TIME Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global
constant, set to 5 seconds.

TS6100 Version: 1.0.0 67

PLC AP BECKHOFF

& QOutputs

VAR OUTPUT
Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : DWORD;

END VAR

Name Type Description

Done BOOL Switches to TRUE if the function block was executed successfully.

Busy BOOL TRUE until the function block has executed a command, at the most for the
duration of the "Timeout" at the input. The inputs accept no new command as long
as Busy = TRUE. It is not the connection time that is monitored but the reception
time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The command-
specific error code is contained in nErriD.

ErrorlD DWORD |Contains the command-specific error code of the most recently executed command.

Requirements

Development environment Target platform PLC libraries to include

TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM |Tc3 PLCopen_OpcUa

5.2.2.5 UA_GetNamespacelndex

UA_GetNamespaceIndex

—Execute Mamespacelndext—

—ConnectionHd| Donef—

—MNamespacelJri Busyp—

—{Timeout Errorf—
ErrorlDfp—

This function block collects the namespace index for a namespace URI. The namespace index is required
for identifying symbols, for example, if the function blocks UA Read [»_80]or UA Write [»_82]are used.

| Inputs
VAR _INPUT
Execute : BOOL;
ConnectionHdl : DWORD;
NamespaceUri : STRING (MAX STRING LENGTH) ;
Timeout : TIME := DEFAULT ADS TIMEOUT;
END VAR
Name Type Description
Execute BOOL The command is triggered by a rising edge at this input.

ConnectionHdlI DWORD |Connection handle previously output by the function block UA_Connect.

NamespaceUri STRING |Namespace URI to be resolved. For the TwinCAT OPC UA Server, this is
"urn:BeckhoffAutomation:Ua:PLC1*" for the first PLC runtime.

Timeout TIME Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global
constant, set to 5 seconds.

& Qutputs

VAR OUTPUT
NamespacelIndex : UINT;
Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : DWORD;

END VAR

68 Version: 1.0.0 TS6100

BECKHOFF PLC API

Name Type Description

Namespacelndex UINT Namespace Index of the given namespace URI. This can be used in
other function blocks, e.g. UA_NodeGetHandle or
UA_MethodGetHandle.

Done BOOL Switches to TRUE if the function block was executed successfully.

Busy BOOL TRUE until the function block has executed a command, at the most for
the duration of the "Timeout" at the input. The inputs accept no new
command as long as Busy = TRUE. It is not the connection time that is
monitored but the reception time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The
command-specific error code is included in ErrorID.

ErrorlD DWORD |Contains the command-specific error code of the most recently executed
command.

Requirements

Development environment

Target platform PLC libraries to include

TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM |Tc3_PLCopen_OpcUa
5.2.2.6 UA_HistoryUpdate

UA_HistoryUpdate
—Execute Donep—
—ConnectionHd| Busyk—
—NodeHd Errorf—
—PerfarmInsert ErrorIDf—

—PerformReplace
—DataValueCount
—{Timeout
—DataValues
—WalueErrorlDs

This function block sends historical data via OPC UA to a server that supports the OPC UA HistoryUpdate
function, e.g. the TwinCAT OPC UA Server. With one call you can transfer a large number of values
including time stamps to the server for a node handle. The server ensures that the values transmitted are
saved in a data memory and are available via Historical Access.

TwinCAT OPC UA Client

4

HistoryUpdate (fimestamp, value)

3_party OPC UA Server

The function block can be instanced several times if values of several node handles (different variables) are

to be transmitted.

TS6100

Version: 1.0.0 69

PLC AP BECKHOFF

Operation with TwinCAT OPC UA Server

The function block is well suited if you use Historical Access in the TwinCAT OPC UA Server and want to
make data available from a certain time interval in which, for example, a special machine state prevailed.
Values for the desired period can be purposefully transmitted.

If on the other hand values are sent cyclically and are to be made available in the server via Historical
Access, then the Historical Access function on the server side is better suited, as in this case you only have
to configure the recording node in the configurator and set the desired sampling rate.

See also: Program sample TF6100_OPCUA_HASample

#* Inputs

VAR INPUT
Execute : BOOL;
ConnectionHdl : DWORD;
NodeHd1 : DWORD;
PerformInsert : BOOL;

PerformReplace : BOOL;
DataValueCount : UINT;

Timeout : TIME := DEFAULT ADS TIMEOUT;

END VAR

Name Type Description

Execute BOOL The command is triggered by a rising edge at this input.

ConnectionHdlI DWORD |Connection handle previously output by the function block UA_Connect.

NodeHdI DWORD |Node handle that was previously output by the function block
UA_NodeGetHandle.

PerformInsert BOOL The default is TRUE.

PerformReplace BOOL The default is FALSE. If a value for the given timestamp already exists in

the history, it should be replaced if the PerformReplace option is set (=
TRUE). Currently this option can only be selected for SQL adapters.
Other adapters do not support the option.

DataValueCount UINT Defines the number of values transferred. A maximum number of 1000
values is supported.
Timeout TIME Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global

constant, set to 5 seconds.

#//E- Inputs/outputs

VAR IN_ OUT
DataValues : ARRAY[*] OF UAHADataValue;
ValueErrorIDs : ARRAY[*] OF DWORD;
END VAR
Name Type Description
DataValues (read-only) ARRAY All collected values are transferred in the form of a field of the
type UAHADataValue. The length of the field is not
prescribed, but it must correspond at least to the specification
of DataValueCount. Internally the values are accessed only
for reading.
ValueErrorIDs (write-only) ARRAY After execution of the command this field contains an error

code for each value. The length of the field must correspond
at least to the specification of DataValueCount. If one or more
values report an error, it is also signaled via the outputs Error
and ErrorID of the function block. With the help of this field
you can then determine which error has occurred for which
value. The error code 16#80000000, for example, signalizes a
failed operation, meaning that the value could not be written.

70 Version: 1.0.0 TS6100

BECKHOFF

PLC API

& QOutputs

VAR OUTPUT
Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : DWORD;

END VAR

Name Type Description

Done BOOL Switches to TRUE if the function block was executed successfully.

Busy BOOL TRUE until the function block has executed a command, at the most for the
duration of the "Timeout" at the input. The inputs accept no new command as long
as Busy = TRUE. It is not the connection time that is monitored but the reception
time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The command-
specific error code is included in ErrorlID.

ErrorlD DWORD |Contains the command-specific ADS error code of the most recently executed
command.

® Number of values transferred

The larger the number, the greater the required computing effort and thus the longer the PLC
execution time when executing the command.

Requirements

Development environment Target platform PLC libraries to include

TwinCAT 3.1 >=4024.1 Win32, Win64, WinCE-x86 Tc3_PLCopen_OpcUa

>=v3.1.9.0

5.2.2.7 UA_MethodCall

UA_MethodCall
—Execute cbRead_RF—
—ConnectionHd| Dong—
—MethodHdI Busyr—
—nMumberOfinputArguments Errorf—
—pInput&rgInfo ErrorIDf—
—cbInputArgInfo
—pInputArgData
—cbInputArgData
—plnputWriteData
—cbInputWriteData
—nMumberOfOutputArguments
—pQutputargInfo
—cbOutputArgInfo
—pQutput&rgInfofndData
—{cbQutputArgInfosndData
—Timeout

This function block calls a method on a remote UA Server. The method is determined by a connection and a
method handle. The former can be queried by UA Connect [P _65], the latter by UA MethodGetHandle

[»_74].

Inputs

VAR INPUT
Execute : BOOL;
ConnectionHdl : DWORD;
MethodHd1l : DWORD;

TS6100

Version: 1.0.0

71

PLC API

BECKHOFF

nNumberOfInputArguments
pInputArgInfo
cbInputArgInfo
pInputArgData
cbInputArgData
pInputWriteData
cbInputWriteData
nNumberOfOutputArguments
pOutputArgInfo
cbOutputArgInfo

UDINT;
POINTER TO ST UAMethodArgInfo;
UDINT;
PVOID;
UDINT;
PVOID;
UDINT;
UDINT;
POINTER TO ST_UAMethodArgInfo;
UDINT;

pOutputArgInfoAndData PVOID;
cbOutputArgInfoAndData UDINT;
Timeout TIME := DEFAULT ADS TIMEOUT;
END_ VAR
72 Version: 1.0.0 TS6100

BECKHOFF PLC API

Name Type Description

Execute BOOL The command is triggered by a rising edge
at this input.

ConnectionHdI DWORD Connection handle previously output by the
function block UA_Connect.

MethodHdI DWORD Method handle, previously output by the
function block UA_MethodGetHandle.

nNumberOflnputAr|UDINT Number of input parameters.

guments

plnputArginfo

POINTER TO ST_UAMethodArginfo

Points to the buffer address where input
parameter information is stored in the form
of an array ST_UAMethodArgInfo.

cblnputArginfo UDINT Size of the buffer where the input
parameter information is stored.

plnputArgData PVOID Points to the buffer address where input
parameters (constant length) are stored.

cbinputArgData UDINT Size of the input buffer where input
parameters (with constant length) are
stored.

plnputWriteData |PVOID Pointer to buffer address where input
parameters (dynamic length) are stored.

cbinputWriteData |UDINT Size of the input buffer where input
parameters (with dynamic length) are
stored.

nNumberOfOutput |UDINT Number of output parameters.

Arguments

pOutputArginfo

POINTER TO ST_UAMethodArginfo

Points to the buffer address where output
parameter information is stored as array
ST_UAMethodArglnfo.

nLenData is required to determine the
target memory of the individual output
parameters. The other elements can be set
in such a way that a type check of the
returned parameters takes place or
remains undefined.

cbOutputArginfo |UDINT Size of the buffer where the output
parameter information is stored.

pOutputArginfoAn |PVOID Points to the buffer address where the

dData output parameters are to be saved as a
BYTE array. The BYTE array contains the
number of output parameters as DINT, four
reserved bytes and parameter information
as ARRAY OF ST UAMethodArginfo [» 59]
(with the length of the output parameters),
followed by pure data. Note that the data is
packed as 1-byte alignment.

cbOutputArginfoA |UDINT Size of the buffer in which the output

ndData parameters are to be saved as a BYTE
array.

Timeout TIME Time until the function is aborted.
DEFAULT_ADS_TIMEOUT is a global
constant, set to 5 seconds.

E- Qutputs

VAR OUTPUT

cbRead R : UDINT;
Done : BOOL;

TS6100

Version: 1.0.0

73

PLC API BECKHOFF
Busy : BOOL;
Error : BOOL;
ErrorID : UDINT;

END VAR

Name Type Description

cbRead R UDINT |Counts all the bytes received.

Done BOOL Switches to TRUE if the function block was executed successfully.

Busy BOOL TRUE until the function block has executed a command, at the most for the
duration of the "Timeout" at the input. The inputs accept no new command as long
as Busy = TRUE. It is not the connection time that is monitored but the reception
time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The command-
specific error code is contained in nErriD.

ErrorlD UDINT |Contains the command-specific error code of the most recently executed
command.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM |Tc3_PLCopen_OpcUa
5.2.2.8 UA_MethodGetHandle
UA_MethodGetHandle
—Execute MethodHdl —
—{ConnectionHd| Dong—
—ObjectModelD Busyr—
—MethodModeD Errorf—
—Timeout ErrorIDf—

This function block collects a handle for a UA method, which can then be used to call a method using
UA MethodCall [»_71].

% Inputs
VAR INPUT
Execute : BOOL;
ConnectionHdl : DWORD;
ObjectNodeID : ST UANodeID;
MethodNodeID : ST_UANodeID;
Timeout : TIME := DEFAULT ADS TIMEOUT;
END VAR
Name Type Description
Execute BOOL The command is triggered by a rising edge at this input.
ConnectionHdI DWORD Connection handle previously output by the function block
UA_Connect.
ObjectNodelD ST_UANodelD Object node ID of the method to be called. (Type: ST UANodelD
[» 59]).
MethodNodelD ST_UANodelD Method node ID of the method to be called. Corresponds to the ID
attribute in the UA namespace. (Type: UA Connect [P 65]).
Timeout TIME Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a
global constant, set to 5 seconds.
74 Version: 1.0.0 TS6100

BECKHOF

F

PLC API

& QOutputs

VAR OUTPUT
MethodHd1 : DWORD;
Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : UDINT;

END_ VAR

Name Type Description

MethodHdl I DWORD |Returns a method handle that can be used to call a method via UA MethodCall
711

Done BOOL Switches to TRUE if the function block was executed successfully.

Busy BOOL TRUE until the function block has executed a command, at the most for the
duration of the "Timeout" at the input. The inputs accept no new command as
long as Busy = TRUE. It is not the connection time that is monitored but the
reception time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The
command-specific error code is contained in nErriD.

ErroriD UDINT Contains the command-specific error code of the most recently executed
command.

Requirements

Development environment Target platform PLC libraries to include

TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM |Tc3_PLCopen_OpcUa

5.2.2.9 UA_MethodReleaseHandle

UA_MethodReleaseHandle
—Execute Donef—
— ConnectionHdl Busyf—
—MethodHdI Errorf—
—Timeout ErrorIDfp—

This function block releases the specified method handle.

Inputs
VAR _INPUT
Execute : BOOL;
ConnectionHdl : DWORD;
MethodHd1 : DWORD;
Timeout : TIME := DEFAULT ADS TIMEOUT;
END_VAR
Name Type Description
Execute BOOL The command is triggered by a rising edge at this input.
ConnectionHdlI DWORD |Connection handle previously output by the function block UA_Connect.
MethodHdl DWORD |Method handle previously output by the function block
UA_MethodGetHandle.
Timeout TIME Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global
constant, set to 5 seconds.
& Qutputs
VAR OUTPUT
Done : BOOL;
Busy : BOOL;

TS6100

Version: 1.0.0

75

PLC API BECKHOFF
Error : BOOL;
ErrorID : UDINT;

END_VAR

Name Type Description

Done BOOL Switches to TRUE if the function block was executed successfully.

Busy BOOL TRUE until the function block has executed a command, at the most for the duration
of the "Timeout" at the input. The inputs accept no new command as long as Busy =
TRUE. It is not the connection time that is monitored but the reception time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The command-
specific error code is contained in nErrID.

ErrorlD UDINT |Contains the command-specific ADS error code of the most recently executed
command.

Requirements

Development environment Target platform PLC libraries to include

TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM |Tc3_PLCopen_OpcUa

5.2.2.10 UA_NodeGetHandle

UA_NodeGetHandle

—Execute NodeHdIF—

— ConnectionHd| Dongp—

—Nodell Busyt—

—Timeout Errorf—

ErrorlDf—

This function block queries a node handle for a given symbol in the UA namespace. The symbol is specified
by a connection handle and its node ID.

! Inputs

VAR INPUT
Execute

: BOOL;

ConnectionHdl : DWORD;

NodeID : ST UANodelID;
Timeout : TIME := DEFAULT ADS TIMEOUT;
END VAR
Name Type Description
Execute BOOL The command is triggered by a rising edge at this input.
ConnectionHdl DWORD Connection handle previously output by the function block
UA_Connect.
Node ID ST_UANodelD Unique addressing of the UA node, consisting of Identifier,
IdentifierType and Namespacelndex, which are resolved from a
NamespaceName, e.g. by means of the method
UA GetNamespacelndex [» 68].
Timeout TIME Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a
global constant, set to 5 seconds.
E- Qutputs
VAR OUTPUT
NodeHd1l : DWORD;
Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : DWORD;
END VAR

76

Version: 1.0.0

TS6100

BECKHOFF PLC API

Name Type Description

NodeHdI DWORD |Node handle that can be used for other function blocks, such as UA Read or
UA_Write.

Done BOOL Switches to TRUE if the function block was executed successfully.

Busy BOOL TRUE until the function block has executed a command, at the most for the
duration of the "Timeout" at the input. The inputs do not accept new commands as
long as Busy is TRUE. It is not the connection time that is monitored but the
reception time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The command-
specific error code is included in ErrorID.

ErrorlD DWORD |Contains the command-specific ADS error code of the most recently executed
command.

Requirements

Development environment

Target platform PLC libraries to include

TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM |Tc3_PLCopen_OpcUa
5.2.2.11 UA_NodeGetHandleList
UA_NodeGetHandleList
—Execute ModeHdlsfF—
—{ConnectionHdl NodeErroriDsf—
—ModelDCount chData_Rf—
—ModelDs Donef—
—Timeout Busyp—
Errorf—
ErrorIDf—

This function block queries node handles for nodes in the UA namespace.

! Inputs
VAR _INPUT

Execute : BOOL;

ConnectionHdl : DWORD;

NodeIDCount : UINT;

NodeIDs : ARRAY[1..nMaxNodeIDsInList] OF ST UANodelID;

Timeout : TIME := DEFAULT ADS TIMEOUT;
END_VAR
Name Type Description
Execute BOOL The command is triggered by a rising edge at this input.
ConnectionHdlI DWORD |Connection handle previously output by the function block UA_Connect.
NodelDCount UINT Number of nodes for which a node handle is required.
NodelDs ARRAY |Array of NodelDs created with struct ST UANodelD [» 59].
Timeout TIME Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global

constant, set to 5 seconds.

E- Qutputs
VAR OUTPUT

NodeHdls : ARRAY[1l..nMaxNodeIDsInList] OF DWORD;

NodeErrorIDs : ARRAY[1..nMaxNodeIDsInList] OF DWORD;

cbData R : UDINT;

Done : BOOL;

Busy : BOOL;

Error : BOOL;

ErrorID : DWORD;
END_ VAR

TS6100

Version: 1.0.0

77

PLC API BECKHOFF

Name Type Description

NodeHdls ARRAY Array of requested node handles.

NodeErrorIDs ARRAY Array of error IDs if no node handles are available.

cbData R UDINT Size of the data read.

Done BOOL Switches to TRUE if the function block was executed successfully.

Busy BOOL TRUE until the function block has executed a command, at the most for the
duration of the "Timeout" at the input. The inputs accept no new command
as long as Busy = TRUE. It is not the connection time that is monitored but
the reception time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The
command-specific error code is in nErriD.

ErrorlD DWORD |Contains the error ID if an error occurs.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa
5.2.2.12 UA_NodeReleaseHandle
UA_NodeReleaseHandle
—Execute Donep—
—ConnectionHd| Busyt—
—NodeHd Errorf—
—{Timeout ErrarlDp—

This function block releases a node handle.

Inputs
VAR _INPUT
Execute : BOOL;
ConnectionHdl : DWORD;
NodeHd1 : DWORD;
Timeout : TIME := DEFAULT ADS TIMEOUT;
END VAR
Name Type Description
Execute BOOL The command is triggered by a rising edge at this input.
ConnectionHdI DWORD |Connection handle previously output by the function block UA_Connect.
NodeHdlI DWORD |Node handle to be released.
Timeout TIME Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global
constant, set to 5 seconds.
E- Qutputs
VAR OUTPUT
Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : DWORD;
END VAR

78

Version: 1.0.0 TS6100

BECKHOFF PLC API

Name Type Description

Done BOOL Switches to TRUE if the function block was executed successfully.

Busy BOOL TRUE until the function block has executed a command, at the most for the
duration of the "Timeout" at the input. The inputs accept no new command as long
as Busy = TRUE. It is not the connection time that is monitored but the reception
time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The command-
specific error code is included in ErrorlD.

ErroriD DWORD |Contains the command-specific ADS error code of the most recently executed
command.

Requirements

Development environment Target platform PLC libraries to include

TwinCAT 3.

1

Win32, Win64, CE-X86, CE-ARM |Tc3_PLCopen_OpcUa

5.2.2.13 UA_NodeReleaseHandleList

UA_NodeReleaseHandleList
—{Execute ModeErroriDs
—{ConnectionHd| Daonge
—NodeHd|Count Busy
—NodeHdls Error
—{Timeout ErrorID

This function block releases several node handles.

#* Inputs
VAR INPUT
Execute : BOOL;
ConnectionHdl : DWORD;
NodeHdlCount : UINT;
NodeHdls : ARRAY[1..nMaxNodeIDsInList] OF DWORD;
Timeout : TIME := DEFAULT ADS TIMEOUT;
END VAR
Name Type Description
Execute BOOL The command is triggered by a rising edge at this input.
ConnectionHdlI DWORD |Connection handle previously output by the function block UA_Connect.
NodeHdICount UINT Number of node handles.
NodeHdls ARRAY Array of node handles to be released.
Timeout TIME Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global
constant, set to 5 seconds.
E- Qutputs
VAR OUTPUT
NodeErrorIDs : ARRAY[1l..nMaxNodeIDsInList] OF DWORD;
Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : DWORD;
END VAR

TS6100

Version: 1.0.0

79

PLC API BECKHOFF

Name Type Description

NodeErrorIDs ARRAY Array of error IDs if a node handle could not be released.

Done BOOL Switches to TRUE if the function block was executed successfully.

Busy BOOL TRUE until the function block has executed a command, at the most for the
duration of the "Timeout" at the input. The inputs accept no new command
as long as Busy = TRUE. It is not the connection time that is monitored but
the reception time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The
command-specific error code is in nErriD.

ErroriD DWORD |Contains the error ID if an error occurs.

Requirements

Development environment

Target platform

PLC libraries to include

TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM |Tc3_PLCopen_OpcUa
5.2.2.14 UA_Read
UA_Read
—Execute Donef—
—ConnectionHd| Busyf—
—NodeHd| Errorf—
—stNodefddInfo ErrorlDE—
—p\Variable chData_Rf—
—chData
—Timeout

This function block reads values from a given node and connection handle.

Inputs
VAR INPUT
Execute : BOOL;
ConnectionHdl : DWORD;
NodeHd1l : DWORD;
stNodeAddInfo : ST UANodeAdditionalInfo;
pVariable : PVOID;
cbData : UDINT;
Timeout : TIME := DEFAULT ADS TIMEOUT;
END_VAR
Name Type Description
Execute BOOL The command is triggered by a rising edge at this input.
Connection | DWORD Connection handle previously output by the function block
Hdl UA_Connect.
NodeHdlI DWORD Node handle that was previously output by the function
block UA_NodeGetHandle.
stNodeAdd! |ST_UANodeAdditionallnfo Defines additional information, such as which attribute is
nfo read from the UA namespace (default: 'Value' attribute) or
which IndexRange is to be used. Specified by STRUCT
ST UANodeAdditionalinfo [»_60].
pVariable |PVOID Pointer to data memory where the read data is to be stored.
cbData UDINT Determines the size of the data to be read.
Timeout TIME Time until the function is aborted.
DEFAULT_ADS_TIMEOUT is a global constant, set to 5
seconds.

80

Version: 1.0.0 TS6100

BECKHOFF PLC API

& QOutputs

VAR OUTPUT
Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : UDINT;
cbbData R : UDINT;

END_ VAR

Name Type Description

Done BOOL Switches to TRUE if the function block was executed successfully.

Busy BOOL TRUE until the function block has executed a command, at the most for the
duration of the "Timeout" at the input. The inputs accept no new command as long
as Busy = TRUE. It is not the connection time that is monitored but the reception
time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The command-
specific error code is contained in nErriID.

ErrorlD UDINT |Contains the command-specific ADS error code of the most recently executed
command.

cbData_R UDINT |Number of bytes to be read.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM |Tc3_PLCopen_OpcUa
5.2.2.15 UA_ReadList
UA_ReadList
—Execute Donef—
—ConnectionHd| Busyp—
—NodeHdICount Errorf—
—{NodeHdls ErrorlDf—
—stNodeaddinfo cbData_Rf—
—pVariable
—cbData
—cbDataTotal
—Timeout

This function block reads values from several given node and connection handles.

Inputs

VAR INPUT
Execute : BOOL;
ConnectionHdl : DWORD;
NodeHdlCount : UINT;
NodeHdls : ARRAY[1..nMaxNodeIDsInList] OF DWORD;
stNodeAddInfo : ARRAY[1..nMaxNodeIDsInList] OF ST UANodeAdditionalInfo;
pVariable : PVOID;
cbData : ARRAY[1..nMaxNodeIDsInList] UDINT;
cbDataTotal : UDINT;
Timeout : TIME := DEFAULT ADS TIMEOUT;

END_VAR

TS6100 Version: 1.0.0 81

PLC AP BECKHOFF

Name Type Description

Execute BOOL The command is triggered by a rising edge at this input.

ConnectionHdI DWORD |Connection handle previously output by the function block UA Connect
[»_65]1.

NodeHdICount UINT Number of node handles stored in the input variable NodeHdls.

NodeHdls ARRAY Array of node handles previously received by the function block

UA NodeGetHandle [P 76] or UA NodeGetHandleList [» 77].

stNodeAddInfo

ARRAY Defines additional information, such as which attribute is read from the UA

namespace (default: 'Value' attribute) or which IndexRange is to be used.
Specified by STRUCT ST UANodeAdditionallnfo [P 60].

pVariable PVOID Pointer to data memory where the read data is to be stored.

cbData ARRAY Determines the size of the data to be read.

cbDataTotal UDINT Total size of the data to be received.

Timeout TIME Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global

constant, set to 5 seconds.

E- Qutputs

VAR OUTPUT

Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : UDINT;
cbData R : UDINT;

END VAR

Name Type Description

Done BOOL Switches to TRUE if the function block was executed successfully.

Busy BOOL TRUE until the function block has executed a command, at the most for the
duration of the "Timeout" at the input. The inputs accept no new command as long
as Busy = TRUE. It is not the connection time that is monitored but the reception
time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The command-
specific error code is in nErriD.

ErrorlD UDINT |Contains the command-specific ADS error code of the most recently executed
command.

cbData_R UDINT |Number of bytes read.

Requirements

Development environment Target platform PLC libraries to include

TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM |Tc3_PLCopen_OpcUa

5.2.2.16 UA_Write

UA_Write
—{Execute Donef—
—ConnectionHd| Busyr—
—ModeHd| Errorf—
—{stNodeAddInfo ErrorlDf—
—pVariable
—cbData
—Timeout
This function block writes values to a given node and connection handle.
82 Version: 1.0.0 TS6100

BECKHOFF

PLC API

% Inputs
VAR INPUT
Execute : BOOL;
ConnectionHdl : DWORD;
NodeHdl : DWORD;
stNodeAddInfo : ST _UANodeAdditionallInfo;
pVariable : PVOID;
cbData : UDINT;
Timeout : TIME := DEFAULT ADS TIMEOUT;
END VAR
Name Type Description
Execute BOOL The command is triggered by a rising edge at this
input.
ConnectionHdlI DWORD Connection handle previously output by the function
block UA _Connect [» 65].
NodeHdI DWORD Node handle that was previously output by the

function block UA NodeGetHandle [» 76].

stNodeAddInfo ST_UANodeAdditionallnfo

Defines additional information, e.g. which IndexRange
or which attribute is to be written (by default, the'
Value' attribute is used). Specified by STRUCT

ST UANodeAdditionallnfo [» 60].

pVariable PVOID Pointer to data to be written.

cbData UDINT Sets the size of the values to be written.

Timeout TIME Time until the function is aborted.

DEFAULT_ADS_TIMEOUT is a global constant, set to
5 seconds.
E- Qutputs
VAR OUTPUT
Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : DWORD;

END_ VAR

Name Type Description

Done BOOL Switches to TRUE if the function block was executed successfully.

Busy BOOL TRUE until the function block has executed a command, at the most for the
duration of the "Timeout" at the input. The inputs accept no new command as long
as Busy = TRUE. It is not the connection time that is monitored but the reception
time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The command-
specific error code is included in ErrorlD.

ErrorlD DWORD |Contains the command-specific ADS error code of the most recently executed
command.

Requirements

Development environment Target platform

PLC libraries to include

TwinCAT 3.1

Win32, Win64, CE-X86, CE-ARM

Tc3 _PLCopen_OpcUa

TS6100

Version: 1.0.0

83

Samples

BECKHOFF

6 Samples

Sample code and configurations for this product can be obtained from the corresponding repository on
GitHub: https://github.com/Beckhoff/TF6100 Samples. There you have the option to clone the repository or

download a ZIP file containing the sample.

®

=] Clone

HTTPS 55H GitHub CL

https://github.com/Beckhoff/TFE188_Sam

Use Git or checkout with SVIN using the web URL

[Open with GitHub Desktop

[} Download ZIP

The following samples exist:

G

Name TwinCAT Ver- Description
sion
TF6100_OpcUa_Client_Sample TwinCAT 3 This sample contains sample code for various
functions of the TwinCAT OPC UA Client (PLCOpen
function blocks). These include Browse, Connect,
HistoryUpdate, MethodCall, Read and Write. The
server sample for access is also included.
TF6100_OpcUa_Server_Sample |TwinCAT 3 This sample contains a PLC with extensive provision
of PLC data for the TwinCAT OPC UA server
(OPC UA Data Access).
TS6100_OpcUa_Client_Sample TwinCAT 2 This sample contains sample code for various

functions of the TwinCAT OPC UA Client (PLCOpen
function blocks). These include MethodCall, Read
and Write.

84

Version: 1.0.0 TS6100

https://github.com/Beckhoff/TF6100_Samples

BECKHOFF

Appendix

7 Appendix

7.1 Error diagnosis

In the following sections, possible errors for all components of the OPC UA setup are shown in the form of a
table. In addition, helpful troubleshooting hints are provided for the respective errors.

Behavior

Remedy

The attempt to read or write a StructuredDataType
from a server using the PLCopen function blocks
fails.

Structured Data Types are not supported by the
PLCopen-based client. Please use the I/O client for
this purpose.

When the PLCopen function blocks are executed, the
Busy output remains TRUE, but no error is output
and the timeout is not triggered.

This is an indication of insufficient ADS router
memory. Please increase your router memory in the
corresponding settings of the TwinCAT ADS router.

When creating a new /O client by specifying the
Server URL with the host name of the server, no
connection can be established subsequently via the
AddNodes dialog.

Please check if name resolution is operational in your
network. Alternatively try again via the IP address of
the server.

Some configuration items from the I/O client are not
present, although they should be according to the
documentation.

In this case, the System Manager description file
(TMC) was probably not updated after a TF6100
update. Please execute the command "Reload TMC"
from the context menu of the 1/O client to reload the
description file.

Write commands to a variable are not executed by
the 1/O client or do not reach the server.

Please check whether the "Write Enable" output has
been enabled on the 1/O client.

7.2 Status codes

7.21 ADS Return Codes

Grouping of error codes:

Global error codes: ADS Return Codes [P 85]... (0x9811_0000 ...)
Router error codes: ADS Return Codes [P 86]... (0x9811_0500 ...)
General ADS errors: ADS Return Codes [P 86]... (0x9811_0700 ...)
RTime error codes: ADS Return Codes [P_88]... (0x9811_1000 ...)

Global error codes

TS6100

Version: 1.0.0

85

Appendix BEGKHOFF
Hex Dec HRESULT Name Description

0x0 0 0x98110000 |ERR_NOERROR No error.

0x1 1 0x98110001 ERR_INTERNAL Internal error.

0x2 2 0x98110002 |ERR_NORTIME No real time.

0x3 3 0x98110003 |ERR_ALLOCLOCKEDMEM Allocation locked — memory error.

0x4 4 0x98110004 |ERR_INSERTMAILBOX Mailbox full — the ADS message could not be sent.
Reducing the number of ADS messages per cycle will
help.

0x5 5 0x98110005 |ERR_WRONGRECEIVEHMSG Wrong HMSG.

0x6 6 0x98110006 ERR_TARGETPORTNOTFOUND Target port not found — ADS server is not started or is
not reachable.

0x7 7 0x98110007 ERR_TARGETMACHINENOTFOUND Target computer not found — AMS route was not found.

0x8 8 0x98110008 |ERR_UNKNOWNCMDID Unknown command ID.

0x9 9 0x98110009 |ERR_BADTASKID Invalid task ID.

0xA 10 0x9811000A |ERR_NOIO No 10.

0xB 11 0x9811000B |ERR_UNKNOWNAMSCMD Unknown AMS command.

0xC 12 0x9811000C |ERR_WIN32ERROR Win32 error.

0xD 13 0x9811000D |ERR_PORTNOTCONNECTED Port not connected.

OxE 14 0x9811000E |ERR_INVALIDAMSLENGTH Invalid AMS length.

OxF 15 0x9811000F |ERR_INVALIDAMSNETID Invalid AMS Net ID.

0x10 16 0x98110010 ERR_LOWINSTLEVEL Installation level is too low —TwinCAT 2 license error.

0x11 17 0x98110011 ERR_NODEBUGINTAVAILABLE No debugging available.

0x12 18 0x98110012 ERR_PORTDISABLED Port disabled — TwinCAT system service not started.

0x13 19 0x98110013 |ERR_PORTALREADYCONNECTED Port already connected.

0x14 20 0x98110014 |ERR_AMSSYNC_W32ERROR AMS Sync Win32 error.

0x15 |21 0x98110015 |ERR_AMSSYNC_TIMEOUT AMS Sync Timeout.

0x16 22 0x98110016 |ERR_AMSSYNC_AMSERROR AMS Sync error.

0x17 23 0x98110017 ERR_AMSSYNC_NOINDEXINMAP No index map for AMS Sync available.

0x18 24 0x98110018 |ERR_INVALIDAMSPORT Invalid AMS port.

0x19 25 0x98110019 |ERR_NOMEMORY No memory.

Ox1A |26 0x9811001A |ERR_TCPSEND TCP send error.

ox1B |27 0x9811001B |ERR_HOSTUNREACHABLE Host unreachable.

0x1C |28 0x9811001C |ERR_INVALIDAMSFRAGMENT Invalid AMS fragment.

0x1D |29 0x9811001D |ERR_TLSSEND TLS send error — secure ADS connection failed.

Ox1E |30 0x9811001E |ERR_ACCESSDENIED Access denied — secure ADS access denied.

Router error codes

Hex Dec HRESULT Name Description

0x500 [1280 |0x98110500 |ROUTERERR_NOLOCKEDMEMORY Locked memory cannot be allocated.

0x501 [1281 |0x98110501 ROUTERERR_RESIZEMEMORY The router memory size could not be changed.

0x502 (1282 |0x98110502 ROUTERERR_MAILBOXFULL The mailbox has reached the maximum number of
possible messages.

0x503 [1283 |0x98110503 |ROUTERERR_DEBUGBOXFULL The Debug mailbox has reached the maximum
number of possible messages.

0x504 |1284 |0x98110504 |ROUTERERR_UNKNOWNPORTTYPE The port type is unknown.

0x505 [1285 |0x98110505 |ROUTERERR_NOTINITIALIZED The router is not initialized.

0x506 [1286 |0x98110506 |ROUTERERR_PORTALREADYINUSE The port number is already assigned.

0x507 [1287 |0x98110507 |ROUTERERR_NOTREGISTERED The port is not registered.

0x508 [1288 |0x98110508 |ROUTERERR_NOMOREQUEUES The maximum number of ports has been reached.

0x509 (1289 |0x98110509 |ROUTERERR_INVALIDPORT The port is invalid.

0x50A [1290 |0x9811050A |ROUTERERR_NOTACTIVATED The router is not active.

0x50B [1291 |0x9811050B |ROUTERERR_FRAGMENTBOXFULL The mailbox has reached the maximum number for
fragmented messages.

0x50C (1292 |0x9811050C |ROUTERERR_FRAGMENTTIMEOUT A fragment timeout has occurred.

0x50D [1293 |0x9811050D |ROUTERERR_TOBEREMOVED The port is removed.

General ADS error codes

86

Version: 1.0.0

TS6100

BEGKHOFF Appendix

Hex Dec HRESULT Name Description
0x700 |1792 |0x98110700 |ADSERR_DEVICE_ERROR General device error.
0x701 |[1793 |0x98110701 |ADSERR_DEVICE_SRVNOTSUPP Service is not supported by the server.
0x702 1794 |0x98110702 |ADSERR_DEVICE_INVALIDGRP Invalid index group.
0x703 1795 |0x98110703 |ADSERR_DEVICE_INVALIDOFFSET Invalid index offset.
0x704 |1796 |0x98110704 |ADSERR_DEVICE_INVALIDACCESS Reading or writing not permitted.
0x705 |1797 |0x98110705 |ADSERR_DEVICE_INVALIDSIZE Parameter size not correct.
0x706 |1798 |0x98110706 |ADSERR_DEVICE_INVALIDDATA Invalid data values.
0x707 |1799 |0x98110707 |ADSERR_DEVICE_NOTREADY Device is not ready to operate.
0x708 |1800 |0x98110708 |ADSERR_DEVICE_BUSY Device is busy.
0x709 [1801 |0x98110709 |ADSERR_DEVICE_INVALIDCONTEXT Invalid operating system context. This can result

from use of ADS blocks in different tasks. It may be
possible to resolve this through multitasking
synchronization in the PLC.

0x70A |1802 |0x9811070A |ADSERR_DEVICE_NOMEMORY Insufficient memory.

0x70B |1803 |0x9811070B |ADSERR_DEVICE_INVALIDPARM Invalid parameter values.
0x70C 1804 |0x9811070C |ADSERR_DEVICE_NOTFOUND Not found (files, ...).

0x70D |1805 |0x9811070D |ADSERR_DEVICE_SYNTAX Syntax error in file or command.
0x70E |1806 |0x9811070E |ADSERR_DEVICE_INCOMPATIBLE Objects do not match.

0x70F [1807 |0x9811070F |ADSERR_DEVICE_EXISTS Object already exists.

0x710 |1808 |0x98110710 |ADSERR_DEVICE_SYMBOLNOTFOUND Symbol not found.

0x711 1809 |0x98110711 |ADSERR_DEVICE_SYMBOLVERSIONINVALID |Invalid symbol version. This can occur due to an
online change. Create a new handle.

0x712 |1810 |0x98110712 |ADSERR_DEVICE_INVALIDSTATE Device (server) is in invalid state.
0x713 1811 |0x98110713 |ADSERR_DEVICE_TRANSMODENOTSUPP AdsTransMode not supported.
0x714 |1812 |0x98110714 |ADSERR_DEVICE_NOTIFYHNDINVALID Notification handle is invalid.
0x715 |1813 |0x98110715 |ADSERR_DEVICE_CLIENTUNKNOWN Notification client not registered.
0x716 |1814 |0x98110716 |ADSERR_DEVICE_NOMOREHDLS No further handle available.
0x717 1815 |0x98110717 |ADSERR_DEVICE_INVALIDWATCHSIZE Notification size too large.
0x718 1816 |0x98110718 |ADSERR_DEVICE_NOTINIT Device not initialized.

0x719 |1817 |0x98110719 |ADSERR_DEVICE_TIMEOUT Device has a timeout.

0x71A |1818 |0x9811071A |ADSERR_DEVICE_NOINTERFACE Interface query failed.

0x71B |1819 |0x9811071B |ADSERR_DEVICE_INVALIDINTERFACE Wrong interface requested.
0x71C (1820 |0x9811071C |ADSERR_DEVICE_INVALIDCLSID Class ID is invalid.

0x71D 1821 |0x9811071D |ADSERR_DEVICE_INVALIDOBJID Object ID is invalid.

0x71E |1822 |0x9811071E |ADSERR_DEVICE_PENDING Request pending.

0x71F (1823 |0x9811071F |ADSERR_DEVICE_ABORTED Request is aborted.

0x720 (1824 |0x98110720 |ADSERR_DEVICE_WARNING Signal warning.

0x721 (1825 |0x98110721 |ADSERR_DEVICE_INVALIDARRAYIDX Invalid array index.

0x722 |1826 |0x98110722 |ADSERR_DEVICE_SYMBOLNOTACTIVE Symbol not active.

0x723 1827 |0x98110723 |ADSERR_DEVICE_ACCESSDENIED Access denied.

0x724 (1828 |0x98110724 |ADSERR_DEVICE_LICENSENOTFOUND Missing license.

0x725 (1829 |0x98110725 |ADSERR_DEVICE_LICENSEEXPIRED License expired.

0x726 (1830 |0x98110726 |ADSERR_DEVICE_LICENSEEXCEEDED License exceeded.

0x727 |1831 |0x98110727 |ADSERR_DEVICE_LICENSEINVALID Invalid license.

0x728 1832 |0x98110728 |ADSERR_DEVICE_LICENSESYSTEMID License problem: System ID is invalid.

0x729 |1833 |0x98110729 |ADSERR_DEVICE_LICENSENOTIMELIMIT License not limited in time.
0x72A |1834 |0x9811072A |ADSERR_DEVICE_LICENSEFUTUREISSUE Licensing problem: time in the future.
0x72B (1835 |0x9811072B |ADSERR_DEVICE_LICENSETIMETOLONG License period too long.

0x72C |1836 |0x9811072C |ADSERR_DEVICE_EXCEPTION Exception at system startup.
0x72D (1837 |0x9811072D |ADSERR_DEVICE_LICENSEDUPLICATED License file read twice.

0x72E |1838 |0x9811072E |ADSERR_DEVICE_SIGNATUREINVALID Invalid signature.

Ox72F |1839 |0x9811072F |ADSERR_DEVICE_CERTIFICATEINVALID Invalid certificate.

0x730 |1840 |0x98110730 |ADSERR_DEVICE_LICENSEOEMNOTFOUND |Public key not known from OEM.
0x731 |1841 |0x98110731 |ADSERR_DEVICE_LICENSERESTRICTED License not valid for this system ID.
0x732 (1842 |0x98110732 |ADSERR_DEVICE_LICENSEDEMODENIED Demo license prohibited.

0x733 (1843 |0x98110733 |ADSERR_DEVICE_INVALIDFNCID Invalid function ID.

0x734 (1844 |0x98110734 |ADSERR_DEVICE_OUTOFRANGE Outside the valid range.

0x735 |1845 |0x98110735 |ADSERR_DEVICE_INVALIDALIGNMENT Invalid alignment.

0x736 |1846 |0x98110736 |ADSERR_DEVICE_LICENSEPLATFORM Invalid platform level.

TS6100 Version: 1.0.0 87

Appendix BEGKHOFF
Hex Dec HRESULT Name Description

0x737 |1847 |0x98110737 |ADSERR_DEVICE_FORWARD_PL Context — forward to passive level.

0x738 |1848 |0x98110738 |ADSERR_DEVICE_FORWARD_ DL Context — forward to dispatch level.

0x739 1849 |0x98110739 |ADSERR_DEVICE_FORWARD_RT Context — forward to real time.

0x740 (1856 |0x98110740 |ADSERR_CLIENT_ERROR Client error.

0x741 |1857 |0x98110741 |ADSERR_CLIENT_INVALIDPARM Service contains an invalid parameter.

0x742 |1858 |0x98110742 |ADSERR_CLIENT_LISTEMPTY Polling list is empty.

0x743 |1859 |0x98110743 |ADSERR_CLIENT_VARUSED Var connection already in use.

0x744 1860 |0x98110744 |ADSERR_CLIENT_DUPLINVOKEID The called ID is already in use.

0x745 |1861 |0x98110745 |ADSERR_CLIENT_SYNCTIMEOUT Timeout has occurred — the remote terminal is not
responding in the specified ADS timeout. The route
setting of the remote terminal may be configured
incorrectly.

0x746 (1862 |0x98110746 |ADSERR_CLIENT_W32ERROR Error in Win32 subsystem.

0x747 |1863 |0x98110747 |ADSERR_CLIENT_TIMEOUTINVALID Invalid client timeout value.

0x748 |1864 |0x98110748 |ADSERR_CLIENT_PORTNOTOPEN Port not open.

0x749 |1865 |0x98110749 |ADSERR_CLIENT_NOAMSADDR No AMS address.

0x750 |1872 |0x98110750 |ADSERR_CLIENT_SYNCINTERNAL Internal error in Ads sync.

0x751 |1873 |0x98110751 |ADSERR_CLIENT_ADDHASH Hash table overflow.

0x752 (1874 |0x98110752 |ADSERR_CLIENT_REMOVEHASH Key not found in the table.

0x753 |1875 |0x98110753 |ADSERR_CLIENT_NOMORESYM No symbols in the cache.

0x754 |1876 |0x98110754 |ADSERR_CLIENT_SYNCRESINVALID Invalid response received.

0x755 |1877 |0x98110755 |ADSERR_CLIENT_SYNCPORTLOCKED Sync Port is locked.

0x756 |1878 |0x98110756 |ADSERR_CLIENT_REQUESTCANCELLED The request was cancelled.

RTime error codes

Hex Dec HRESULT Name Description

0x1000 4096 |0x98111000 |RTERR_INTERNAL Internal error in the real-time system.

0x1001 |4097 |0x98111001 |RTERR_BADTIMERPERIODS Timer value is not valid.

0x1002 4098 |0x98111002 |RTERR_INVALIDTASKPTR Task pointer has the invalid value 0 (zero).

0x1003 4099 |0x98111003 |RTERR_INVALIDSTACKPTR Stack pointer has the invalid value 0 (zero).

0x1004 [4100 |0x98111004 |RTERR_PRIOEXISTS The request task priority is already assigned.

0x1005 |4101 |0x98111005 |RTERR_NOMORETCB No free TCB (Task Control Block) available. The
maximum number of TCBs is 64.

0x1006 (4102 |0x98111006 |RTERR_NOMORESEMAS No free semaphores available. The maximum number of
semaphores is 64.

0x1007 4103 |0x98111007 |RTERR_NOMOREQUEUES No free space available in the queue. The maximum
number of positions in the queue is 64.

0x100D [4109 |0x9811100D |RTERR_EXTIRQALREADYDEF An external synchronization interrupt is already applied.

0x100E 4110 |0x9811100E |RTERR_EXTIRQNOTDEF No external sync interrupt applied.

0x100F 4111 |0x9811100F |RTERR_EXTIRQINSTALLFAILED Application of the external synchronization interrupt has
failed.

0x1010 4112 |0x98111010 |RTERR_IRQLNOTLESSOREQUAL Call of a service function in the wrong context

0x1017 |4119 |0x98111017 |RTERR_VMXNOTSUPPORTED Intel VT-x extension is not supported.

0x1018 4120 |0x98111018 |RTERR_VMXDISABLED Intel VT-x extension is not enabled in the BIOS.

0x1019 4121 |0x98111019 |RTERR_VMXCONTROLSMISSING Missing function in Intel VT-x extension.

0x101A |4122 |0x9811101A |RTERR_VMXENABLEFAILS Activation of Intel VT-x fails.

Specific positive HRESULT Return Codes:

HRESULT Name Description

0x0000_0000 S OK No error.

0x0000_0001 S _FALSE No error.
Example: successful processing, but with a negative or
incomplete result.

0x0000_0203 S_PENDING No error.
Example: successful processing, but no result is available
yet.

0x0000_0256 S_WATCHDOG_TIMEOUT No error.
Example: successful processing, but a timeout occurred.

TCP Winsock error codes

88

Version: 1.0.0

TS6100

BEGKHOFF Appendix

Hex Dec Name Description

0x274C 10060 WSAETIMEDOUT A connection timeout has occurred - error while establishing the
connection, because the remote terminal did not respond properly after a
certain period of time, or the established connection could not be
maintained because the connected host did not respond.

0x274D 10061 WSAECONNREFUSED Connection refused - no connection could be established because the
target computer has explicitly rejected it. This error usually results from an
attempt to connect to a service that is inactive on the external host, that is,
a service for which no server application is running.

0x2751 10065 WSAEHOSTUNREACH No route to host - a socket operation referred to an unavailable host.

More Winsock error codes: Win32 error codes

7.2.2 Client 1/0

The OPC UA Client modules that belong to a virtual OPC UA device offer different status variables as well as
control variables. These variables are explained below.

® Reading the status codes

Please note that the status code of the state machine is listed here in hexadecimal notation. If the
code is displayed as a decimal number in TwinCAT, it must be converted for interpretation.

4 /0
4 *f'g Devices
4 OFC Mevice 1 (OPC UA Virtual)
*B \mage

[Inputs
B Outputs
4 OPC Client #1
P Inputs
4 1 Status
#1 Connected
ReadBusy
#] KeepAlives
#1 StmbState
4 [Outputs
4 M Control
- ResetStm
B Execute

Fig. 1: OPCUACIientModulesStatusCodes

TS6100 Version: 1.0.0 89

Appendix BECKHOFF
Variable Schema 0 |1- State machine state |2- Keep alive 3- Connection state
count if using (&read busy)
subscriptions
0x0123 - |0 = Initialize (init 0 = false(&off
%! Status (init) (&off)
1 = Connect 1 = true(&off)
2 = Resolve namespace 2 = false(&on)
3 = Get node handles 3 = true(&on)
4 = Continuous read/write
5 = Triggered read/write
6 = Awaiting data change
notifications (subscriptions
)
7 = Disconnect
8 = Reset
E 0x0123 - - - 0 = Standard (default)
» Control 1 = Reset state
machine
2 = Execute (in
triggered read mode)
Variable Data type Description
BIT 1 TRUE | 0= FALSE.
“#! Connected
- BIT 1 TRUE | 0= FALSE. This function
ReadBusy is only active when reading and
writing via trigger variables.
= . BIT4 Shows the number of KeepAlive
KeepAlives messages counted. Only active
when reading and writing using
subscriptions.
BYTE Can be read in the table above.
! StmState
BIT The client is reset when this bit is
E- ResetStm setto 1.
BIT 1 TRUE | 0= FALSE. Reading/

E- Execute

writing takes place if this bit is set
to 1 during reading and writing via
trigger variables.

If this bit remains set, there is no
difference to cyclic reading/
writing.

7.2.3 Client PLCopen

The function blocks of the TwinCAT OPC UA Client have their own error codes, which indicate the
occurrence of an error and use an ErrorlD to display further information about the problem that has occurred.

TwinCAT ADS error messages (ADS Return Codes [P_85]) with the HighWord 0x0000 and custom error
messages from the client or the PLC library with the HighWord 0xE4DD can occur.

Possible TwinCAT ADS errors include the following:

Hex Name

Description

0x 0000 0705

DEVICE_INVALIDSIZE

Parameter size not correct

0x 0000 0706

DEVICE_INVALIDDATA

Invalid parameter values

0x 0000 070A

DEVICE_NOMEMORY

Not enough memory

90

Version: 1.0.0

TS6100

BEGKHOFF Appendix

This error code list shows the possible custom error values:

TS6100 Version: 1.0.0 91

Appendix BEGKHOFF
Hex Name Description
0x E4DD 0001 |UAC_E_FAIL UA service call failed

Ox E4DD 0100

UAC_E_CONNECTED

Server already connected

Ox E4DD 0101

UAC_E_CONNECT

General error when establishing a connection

Ox E4DD 0102

UAC_E_UASECURITY

UA security could not be set up

Ox E4DD 0103

UAC_E_ITEMEXISTS

Element ID already exists

Ox E4DD 0104

UAC_E_ITEMNOTFOUND

Element does not exist

Ox E4DD 0105

UAC_E_ITEMTYPE

Invalid or unsupported item type

Ox E4DD 0106

UAC_E_CONVERSION

Variable types cannot be converted

Ox E4DD 0107

UAC_E_SUSPENDED

Device hangs. Please try again later...

Ox E4DD 0108

UAC_E_TYPE_NOT_SUPPORTED

Conversion variable type is not supported.

0Ox E4DD 0109

UAC_E_NSNAME_NOTFOUND

No namespace with the specified name found.

Ox E4DD 0110

UAC_E_CONNECT_NOTFOUND

Connection failed: Target host could not be
found.

Ox E4DD 0111

UAC_E_TIMEOUT

Timeout: i.e. target host does not respond

Ox E4DD 0112

UAC_E_INVALIDHDL

Session handle invalid

Ox E4DD 0113

UAC_E_INVALIDNODEID

UA node ID unknown

Ox E4DD 0114

UAC_E_INVAL_IDENTIFIER_TYPE

Identifier type of UaNodeld invalid

Ox E4DD 0115

UAC_E_IDENTIFIER_NOTSUPP

Identifier type UaNodeld is not supported

Ox E4DD 0116

UAC_E_INVAL_NODE_HDL

Invalid node handle

Ox E4DD 0117

UAC_E_UAREADFAILED

UA read failed for unknown reasons

Ox E4DD 0118

UAC_E_UAWRITEFAILED

UA write failed for unknown reasons

Ox E4DD 0119

UAC_E_INVAL_NODEMETHOD_HDL

Invalid method handle

Ox E4DD 011A

UAC_E_CALL_FAILED

Call failed, cause unknown

Ox E4DD 011B

UAC_E_CALLDECODE_FAILED

Successful call, decoding return value failed

Ox E4DD 011C

UAC_E_NOTMAPPEDTYPE

Unassigned data type in return value

Ox E4DD 011D

UAC_E_CALL_FAILED_BADINTERNAL

Call failed with UA_BadInternal

Ox E4DD 011E

UAC_E_METHODIDINVALID

Unknown MethodID (returned on call, even if
provided by GetMethodHdl)

Ox E4DD 011F

UAC_E_TOOMUCHDIM

Method call has returned parameters with more
than 3 dimensions; not supported.

RE

0x E4DD 0120 |UAC_E_CALL FAILED_INVALIDARG |Call failed with
OpcUa_BadlnvalidArgument
0x E4DD 0121 |UAC_E_CALL_FAILED_TYPEMISMATC |Call failed with
H UAC_E CALL FAILED_TYPEMISMATCH
0x E4DD 0122 |UAC_E_CALL_FAILED_OUTOFRANGE |Call failed with
UAC _E CALL FAILED_OUTOFRANGE
Ox E4DD 0123 |UAC_E_CALL_FAILED_BADSTRUCTU |Call failed with

OpcUa_BadStructureMissing

Ox E4DD 0124

UAC_E_CALL_TYPEMISMATCH_OUTP
ARAM

Call successful, but type of output information
provided does not match

Ox E4DD 0125

UAC_E_NONVALIDTYPEINFO

Node has insufficient type information

Ox E4DD 0126

UAC_E_INVALIDATTRIBID

Access to invalid node attribute

Ox E4DD 0128

UAC_E_NOTSUPPORTED

The command is not supported by the
connected UaServer, e.g. when calling
UA_HistoryUpdate.

Ox E4DE 0100

UAC_E_INVALID_ARRAY_LENGTH

An invalid array length not matching
DataValueCount was assigned to
UA_HistoryUpdate.

Ox E4DE 0101

UAC_E_INVALID_DATASIZE

A data value with an invalid data type size was
assigned to UA_HistoryUpdate. All assigned
DataValues must be of the same data type.

92

Version: 1.0.0

TS6100

BEGKHOFF Appendix

Hex Name Description

0x E4DE 0102 |UAC_E_SUBERROR A lower-level error was output for at least one
of the transferred data values. See
ValueErrorIDs at UA_HistoryUpdate.

7.3 Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Download finder

Our download finder contains all the files that we offer you for downloading. You will find application reports,
technical documentation, technical drawings, configuration files and much more.

The downloads are available in various formats.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on our internet
page: www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:

* support

+ design, programming and commissioning of complex automation systems

+ and extensive training program for Beckhoff system components

Hotline: +49 5246 963-157
e-mail: support@beckhoff.com
Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:
* on-site service
* repair service
 spare parts service
* hotline service

Hotline: +49 5246 963-460
e-mail: service@beckhoff.com
Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20
33415 Verl
Germany

TS6100 Version: 1.0.0 93

https://www.beckhoff.com/en-gb/support/download-finder/index-2.html
https://www.beckhoff.com/support
https://www.beckhoff.com/

94

Appendix

BECKHOFF

Phone:
e-mail:
web:

+49 5246 963-0
info@beckhoff.com
www.beckhoff.com

Version: 1.0.0

TS6100

https://www.beckhoff.com/

More Information:
www.beckhoff.com/ts6100

Beckhoff Automation GmbH & Co. KG
Hilshorstweg 20

33415 Verl

Germany

Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

mailto:info@beckhoff.de?subject=TS6100
https://www.beckhoff.com
https://www.beckhoff.com/ts6100

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security

	2 Overview
	3 Installation
	3.1 System Requirements
	3.2 Installation
	3.3 Licensing

	4 Technical introduction
	4.1 Quick start
	4.2 Software architecture
	4.3 Supported functions
	4.4 Application directories
	4.5 Reading variables
	4.6 Writing variables
	4.7 Method calls
	4.8 Timestamp and StatusCode
	4.9 Structures
	4.10 Code generation
	4.11 PLCopen function blocks

	5 PLC API
	5.1 Tc2_OpcUa
	5.1.1 Data types
	5.1.1.1 ST_OpcUAServerInfo
	5.1.1.2 E_OpcUAServerOption
	5.1.1.3 E_OpcUAServerStatus

	5.1.2 Function blocks
	5.1.2.1 FB_OpcUAServer
	5.1.2.2 FB_OpcUAServerGetStatus

	5.2 Tc3_PLCopen_OpcUa
	5.2.1 Data types
	5.2.1.1 E_UAAttributeID
	5.2.1.2 E_UABrowseDirection
	5.2.1.3 E_UABrowseResultMask
	5.2.1.4 E_UAConnectionStatus
	5.2.1.5 E_UADataType
	5.2.1.6 E_UAIdentifierType
	5.2.1.7 E_UANodeClassMask
	5.2.1.8 E_UASecurityMsgMode
	5.2.1.9 E_UASecurityPolicy
	5.2.1.10 E_UAServerState
	5.2.1.11 E_UATransportProfile
	5.2.1.12 E_UAUserIdentityTokenType
	5.2.1.13 ST_UABrowseDescription
	5.2.1.14 ST_UAExpandedNodeID
	5.2.1.15 ST_UASessionConnectInfo
	5.2.1.16 ST_UAIndexRange
	5.2.1.17 ST_UALocalizedText
	5.2.1.18 ST_UAMethodArgInfo
	5.2.1.19 ST_UANodeID
	5.2.1.20 ST_UANodeAdditionalInfo
	5.2.1.21 ST_UAReferenceDescription
	5.2.1.22 ST_UAUserIdentityTokenType
	5.2.1.23 UAHADataValue
	5.2.1.24 UAHAUpdateStatusCode

	5.2.2 Function blocks
	5.2.2.1 UA_Browse
	5.2.2.2 UA_Connect
	5.2.2.3 UA_ConnectGetStatus
	5.2.2.4 UA_Disconnect
	5.2.2.5 UA_GetNamespaceIndex
	5.2.2.6 UA_HistoryUpdate
	5.2.2.7 UA_MethodCall
	5.2.2.8 UA_MethodGetHandle
	5.2.2.9 UA_MethodReleaseHandle
	5.2.2.10 UA_NodeGetHandle
	5.2.2.11 UA_NodeGetHandleList
	5.2.2.12 UA_NodeReleaseHandle
	5.2.2.13 UA_NodeReleaseHandleList
	5.2.2.14 UA_Read
	5.2.2.15 UA_ReadList
	5.2.2.16 UA_Write

	6 Samples
	7 Appendix
	7.1 Error diagnosis
	7.2 Status codes
	7.2.1 ADS Return Codes
	7.2.2 Client I/O
	7.2.3 Client PLCopen

	7.3 Support and Service

		documentation@beckhoff.com
	2024-04-04T12:04:18+0200
	Beckhoff Automation, Verl
	Documentation Publishing

