
Manual | EN

TS6100-0030
TwinCAT 2 | OPC UA Server CE

2023-11-20 | Version: 1.9

Inhaltsverzeichnis

TS6100-0030 3Version: 1.9

Inhaltsverzeichnis
1 Foreword.. 5

1.1 Notes on the documentation ... 5
1.2 For your safety .. 5
1.3 Notes on information security.. 7

2 Overview .. 8
2.1 Scenarios .. 8
2.2 Application examples .. 11

2.2.1 Post-processing in the Cloud ... 11

3 Installation ... 17
3.1 Setup overview.. 17
3.2 System requirements .. 17
3.3 Installation (TC3) ... 19
3.4 Installation (TC2) ... 22
3.5 Installation Windows CE (TC3) ... 25
3.6 Installation Windows CE (TC2) ... 27
3.7 Licensing (TC3) ... 32
3.8 Licensing (TC2) ... 34

4 Technical introduction.. 35
4.1 Server.. 35

4.1.1 Overview .. 35
4.1.2 Quick start .. 35
4.1.3 Initialization .. 37
4.1.4 Recommended steps ... 42
4.1.5 Optimizations ... 44
4.1.6 Data Access ... 49
4.1.7 Historical Access.. 76
4.1.8 Alarms and Conditions ... 82
4.1.9 Method Call .. 87
4.1.10 File transfer .. 93
4.1.11 Global Discovery Service ... 95
4.1.12 TwinCAT EventLogger ... 99
4.1.13 Security .. 104
4.1.14 Miscellaneous .. 110

4.2 Configurator .. 115
4.2.1 Visual Studio .. 116
4.2.2 Standalone ... 144

4.3 Client I/O ... 158
4.3.1 Overview .. 158
4.3.2 Quick start .. 160
4.3.3 Supported data types ... 163
4.3.4 Adding nodes of a Server... 164
4.3.5 Node attributes... 165
4.3.6 Method call... 166

Inhaltsverzeichnis

TS6100-00304 Version: 1.9

4.3.7 StructuredTypes... 169
4.3.8 Data recording.. 171
4.3.9 Writing variables... 173
4.3.10 Security .. 175

4.4 Client PLCopen ... 177
4.4.1 Overview .. 177
4.4.2 Supported data types ... 177
4.4.3 Best practice .. 178
4.4.4 Security .. 192

4.5 Gateway .. 194
4.5.1 Overview .. 194
4.5.2 Quick start .. 195
4.5.3 Licensing .. 197
4.5.4 Scenarios ... 197
4.5.5 Configurator ... 199
4.5.6 Migrating from Tx6120 ... 204
4.5.7 Security .. 206

4.6 Sample Client .. 208
4.6.1 Overview .. 208
4.6.2 Establishing a secure connection to OPC UA Server .. 209
4.6.3 Browsing the UA namespace... 212
4.6.4 Using the Watchlist .. 213

5 PLC API .. 215
5.1 Tc2_OpcUa ... 215

5.1.1 Data types .. 215
5.1.2 Function blocks .. 216

5.2 Tc3_PLCopen_OpcUa .. 218
5.2.1 Data types .. 218
5.2.2 Function blocks .. 232

6 Samples ... 254

7 Appendix.. 255
7.1 Error diagnosis .. 255

7.1.1 Server... 256
7.1.2 Client I/O .. 258
7.1.3 Client PLCopen .. 258
7.1.4 Gateway ... 258

7.2 Status codes ... 258
7.2.1 ADS Return Codes... 258
7.2.2 Client I/O .. 263
7.2.3 Client PLCopen .. 264

7.3 Support and Service.. 267

Foreword

TS6100-0030 5Version: 1.9

1 Foreword

1.1 Notes on the documentation
This description is intended exclusively for trained specialists in control and automation technology who are
familiar with the applicable national standards.
For installation and commissioning of the components, it is absolutely necessary to observe the
documentation and the following notes and explanations.
The qualified personnel is obliged to always use the currently valid documentation.

The responsible staff must ensure that the application or use of the products described satisfies all
requirements for safety, including all the relevant laws, regulations, guidelines, and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without notice.
No claims to modify products that have already been supplied may be made on the basis of the data,
diagrams, and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered and licensed trademarks of
Beckhoff Automation GmbH.
If third parties make use of designations or trademarks used in this publication for their own purposes, this
could infringe upon the rights of the owners of the said designations.

Patents

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
and similar applications and registrations in several other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The distribution and reproduction of this document as well as the use and communication of its contents
without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event that a patent, utility
model, or design are registered.

1.2 For your safety
Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

Foreword

TS6100-00306 Version: 1.9

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

 DANGER
Hazard with high risk of death or serious injury.

 WARNING
Hazard with medium risk of death or serious injury.

 CAUTION
There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

NOTICE
The environment, equipment, or data may be damaged.

Information on handling the product

This information includes, for example:
recommendations for action, assistance or further information on the product.

Foreword

TS6100-0030 7Version: 1.9

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Overview

TS6100-00308 Version: 1.9

2 Overview
OPC Unified Architecture (OPC UA) is the next generation of the familiar OPC standard. This is a globally
standardized communication protocol via which machine data can be exchanged irrespective of the
manufacturer and platform. OPC UA already integrates common security standards directly in the protocol.
Another major advantage of OPC UA over the conventional OPC standard is its independence from the
COM/DCOM system.

Detailed information on OPC UA can be found on the webpages of the OPC Foundation.

Components

The following software components have been integrated for Win32/64 and Windows CE-based systems:

Software component Description
OPC UA Server [} 35] Provides an OPC UA Server interface so that UA

clients can access the TwinCAT runtime.
OPC UA Client [} 177] Provides OPC UA Client functionality to enable

communication with other OPC UA Servers based on
PLCopen-standardized function blocks and an easy-
to-configure I/O device.

The following software components have been integrated for Win32/64-based systems:

Software component (Windows only) Description
OPC UA Configurator Graphical user interface for configuring the TwinCAT

OPC UA Server
OPC UA Sample Client [} 208] Graphical sample implementation of an

OPC UA Client in order to carry out a first connection
test with the TwinCAT OPC UA Server.

OPC UA Gateway [} 194] Wrapper technology that provides both an OPC COM
DA Server interface and OPC UA Server aggregation
capabilities.

2.1 Scenarios
In the following, some scenarios will be illustrated in accordance with which the components can be
implemented and used, depending on the application case and infrastructure:

• OPC UA Server: Integrated in Industrial PC or Embedded PC [} 9]

• OPC UA Server: Runs on a central computer with connection to remote TwinCAT runtime(s). [} 9]

• OPC UA Server: Access to BC Controller [} 10]

https://opcfoundation.org/

Overview

TS6100-0030 9Version: 1.9

OPC UA Server: Integrated in Industrial PC or Embedded PC

Recommended scenario
This scenario describes how the TwinCAT OPC UA Server should be used under normal
circumstances.

One of the biggest advantages of the TwinCAT OPC UA Server is that it can be integrated into even the
smallest embedded platform, e.g. the CX8000 series. Thanks to this integration, general handling is very
simple and convenient. OPC UA Clients, e.g. HMI or MES/ERP systems, can connect to the OPC UA Server
and read or write symbol information from the TwinCAT runtime.

The following software components and configurations run on the central server:

• Third party OPC UA Client, which may be an HMI, MES or ERP system, for example.

The following software components and configurations run on the Industrial PC or Embedded PC:

• The OPC UA Server automatically establishes a connection with the first local TwinCAT PLC runtime.
• TwinCAT runtime

This scenario has the following advantages:

• Network usage is optimized because it is based on OPC UA communication technologies, such as
OPC UA registrations.

• Memory usage is decentralized. Each device is only responsible for its own memory requirements.
• OPC UA features security mechanisms that are directly integrated in the protocol. This is very useful if

one of the Industrial PCs or Embedded PCs is connected via the internet, for example.

OPC UA Server: Runs on a central computer with connection to remote TwinCAT runtime(s)

This scenario describes the conventional implementation of OPC Servers. Servers using the old OPC A
technology were often implemented on a central server instead of the Industrial PC on which TwinCAT
runtime was executed, in order to avoid DCOM configurations. (Remember: in contrast to OPC UA, OPC DA
is based on COM/DCOM technologies)

Overview

TS6100-003010 Version: 1.9

The following software components and configurations run on the central server:

• TwinCAT 3 ADS (or TwinCAT 2 CP) for the required ADS connectivity
• OPC UA Server with data access devices configured for remote TwinCAT runtimes
• ADS routes to remote TwinCAT runtimes
• Symbol files from any remote TwinCAT runtime
• OPC UA Client, which can be an HMI, MES or ERP system, for example.

The following software components and configurations run on the Industrial PC or Embedded PC:

• TwinCAT runtime
• ADS route to the central server

The more remote TwinCAT runtimes are connected to the central OPC UA Server, the higher the network
usage will be.

The OPC UA Server uses advanced ADS recording techniques to query the symbol values of the TwinCAT
runtime. The more symbols there are, the more cyclical queries are in progress. As a result, optimized
OPC UA communication only takes place locally on the central server (between OPC UA Client and
OPC UA Server).

This scenario has the following disadvantages compared to scenario 1:

• Network usage can be very high depending on the number of devices and symbols present.
• The memory requirement on the central server is very high because the OPC UA Server has to import

symbol information from every TwinCAT runtime.
• No security between the central server and TwinCAT runtime based on data encryption - ADS was

designed for high performance.
• The need to exchange symbol files between TwinCAT runtime and central server after each PLC

program modification.

OPC UA Server: Access to BC Controller

Although small BC controllers are not able to run their own OPC UA Server, they may nevertheless have
access to the PLC runtime executed on a remote BC Controller, such as a BC9191, and publish their symbol
values via OPC UA. In this scenario the OPC UA Server must run together with a TwinCAT 3 ADS (or
TwinCAT 2 CP) on another computer, and the scenario must be configured in the same way as scenario 2.

Overview

TS6100-0030 11Version: 1.9

2.2 Application examples

2.2.1 Post-processing in the Cloud
The overall concept of providing a generic, standardized and callable interface in the cloud that accepts
incoming data for further analysis is based on an endpoint in the cloud, either a Windows-based virtual
machine or a real hardware running a Windows operating system, in addition to the decentralized clients that
call this service. In this documentation, this device is generally referred to as OPC UA Server (in the cloud).

Data logger

The documentation shows how computing resources in the Cloud can be accessed and how local TwinCAT
PLC devices can be connected in order to use these resources. As an initial example, this use case can be
applied to a typical data storage scenario in which decentralized TwinCAT PLC devices send data to the
cloud, in which the incoming data is stored in an SQL database via the TwinCAT Database Server. Although
the general scenario also involves sending data back and forth (i.e. sending parameters to the cloud,
performing calculations in the cloud, and then returning the computed results), this specific scenario does not
require the return of results from the cloud.

Overview

TS6100-003012 Version: 1.9

System requirements: OPC UA Server (the cloud)

The cloud must be able to host one of the following operating system variants. Note that using virtualization
technology requires a more costly solution for 64-bit operating systems.

Device is a virtual machine
• 32-bit Windows operating system
• 64-bit Windows operating system with CPU core isolation (two cores required as a minimum)

Device is a dedicated hardware
• 32-bit Windows operating system
• 64-bit Windows operating system

In addition, the following software components must be installed on the device:

• TwinCAT 3 XAR (Runtime only) or XAE (Runtime and Engineering)
• TwinCAT 3 Function TF6100 OPC UA

Note that when installing a complete TwinCAT 3 XAE, additional configuration settings such as handling
licenses or the option of debugging the device directly in the cloud may be useful. The following software
components must be installed to store data in a central database received from a client:

• TwinCAT 3 Function TF6420 Database

System requirements: Decentralized OPC UA Client

The decentralized OPC UA Client is based on a TwinCAT 3 PLC runtime and can therefore be hosted on
any hardware configuration that supports the operation of a TwinCAT 3 PLC. In addition,
TwinCAT 3 Function TF6100 OPC UA must be installed on the client device in order to be able to use the
TwinCAT OPC UA Client to execute UA methods on the server in the cloud.

Technical description

The implementation of an OPC UA Server in the cloud is very application-specific. Beckhoff provides a
general architecture description, which is independent of the individual use case. As an application example,
this article frequently refers a data aggregation scenario in which process data is transferred from
decentralized clients via OPC UA to a central server, where the data is collected in a central database. The
advantage of OPC UA in this case is not only the standardized interface (and therefore to use this concept
for any type of OPC UA Client), but also the ability to secure the communication channel by using the
integrated security mechanism of OPC UA.

Overview

TS6100-0030 13Version: 1.9

The TwinCAT OPC UA Server is used to disclose the methods defined in IEC61131-3 PLC to the OPC UA
namespace. These methods can be called by any TwinCAT OPC UA Client (based on the PLCopen function
blocks) or by third party OPC UA Clients.

Decentralized OPC UA Client

The main purpose of the OPC UA Client is to call methods on the remote server. The client is most probably
a TwinCAT-3-embedded device that fulfils the decentralized part of the application. For the data aggregation
example, this would mean querying process data and sending it to the server by calling a method.

Interface description (to the cloud)

As an interface to a centralized cloud system, there are only two methods provided by the server:

• int Send(data): This method forwards the data using an OPC UA method call and returns a JobID.
• int QueryState(jobID): Using the previously retrieved JobID, the client can cyclically query the current

state of the job. This could be omitted if the server in the cloud can handle all situations, or if the client
cannot help out in case of problems.

Communication between clients and the cloud can be secured by OPC UA's built-in security concepts, e.g.
by using client and server certificates to encrypt data communication.

The cloud

The OPC UA Server in the cloud is based on TwinCAT 3 PLC methods that are disclosed to the
OPC UA namespace. The PLC project contains the following three components:

• MethodCall Provider: This component provides the above-mentioned send method, which collects
data, creates a JobID and places the data in the queue as different jobs. There may also be a
QueryState method to allow OPC UA Clients to query the current job status.

• Queue: The queue stores a list of jobs to be executed. Each job in the queue contains the following
information: {ID, State, Data}. New elements (jobs) are added by the MethodCall provider and can be
deleted by it. The entire queue can be based on a hash table within the PLC program.

• Aggregator: The application that processes the jobs. It cyclically looks in the queue to see whether
there are any jobs to be processed. If this is the case, it takes over the job (sets the status to
"processed") and starts processing the job, e.g. connecting to a database via the function blocks of the
TwinCAT Database Server. Note that there can be more than one aggregator to enable parallel
processing of the queue.

Overview

TS6100-003014 Version: 1.9

Sample

The following sample illustrates the scenario by executing simple jobs: Jobs can be submitted to the server
by an OPC UA Client. In this sample, the job data consists of a definable time interval that is recorded by the
aggregator to complete the job. The sample consists of the following PLC components on the
OPC UA Server:

• ST_JobEntry: Represents a job in the queue. In terms of the data, the job only consists of a name and
a duration. A duration defines the length of time a job takes.

• E_JobState: Represents the state of a job. The sample implementation defines the following values:
QUEUED, PROCESSING, READY, FAILED and INVALID.

• LongTerm: Represents the MethodCall server (consisting of the methods Calc_Request and
Calc_Response) and the aggregator that processes the job (which is implemented in the function
block)

• FB_SpecialHashTableCtrl: Represents the queue in the form of a hash table, as reflected by PLC
samples from the Beckhoff Information System. Here, different methods for handling the queue are
provided (Add, Count, GetFirst, GetNext, Lookup, Remove, Reset).

Using the sample

UA Expert could be used as a sample client to call the methods provided by the OPC UA Server in the cloud.
By calling the Calc_Request method, the client receives a JobID (or 0 for displaying an error):

The client can query the JobState by calling the method Calc_Response with the JobID. In addition, the
previously set duration and the job name are returned for subsequent reference.

Overview

TS6100-0030 15Version: 1.9

Installation

The following chapter describes the installation and configuration of each software component required on
the server in the cloud.

Runtime only

If the server does not host the engineering environment of TwinCAT 3, the TwinCAT 3 XAR installation must
be used. Note that in this case the entire handling for proper function involves several steps, and future
maintenance may be more difficult because the XAR installation lacks the programming and debugging
environment. In this scenario, the user must ensure that maintenance of the ADS routes between the actual
engineering computer (on which the PLC program for the server is developed) and the device that hosts the
server in the cloud must allow not only downloading and debugging of the PLC program, but also activation
of licenses for the TwinCAT 3 runtime. Note that you must open the firewall ports to enable ADS traffic. See
the ADS documentation for more information. The TC3 License Request Generator tool was developed for
easier handling of TwinCAT 3 runtime licenses. It can be downloaded via the Beckhoff FTP server and
enables the creation of License Request Files and the import of License Response Files:

https://download.beckhoff.com/download/Software/TwinCAT/Unsupported_Utilities/TC3-LicenseGen/

Runtime and Engineering

This is the recommended setup scenario. The server in the cloud hosts a TwinCAT 3 runtime and the
corresponding engineering components to enable debugging and easier handling of the runtime system. In
this case it is necessary to install TwinCAT 3 XAE on the system.

Additional software

After successful installation of TwinCAT XAE or XAR, the following software components must be installed
and configured on the device:

TF6100 OPC UA

The TF6100 function installs an OPC UA Server (and Client) on the device. The server is required to provide
the OPC UA Clients with the PLC methods. When the PLC program is downloaded into the runtime, the
OPC UA Server automatically imports the first PLC runtime into its namespace. All variables and methods of
the PLC marked as available via OPC UA are imported into the OPC UA namespace and become available
to clients. Refer to the TF6100 documentation for more information.

TF6420 Database

https://download.beckhoff.com/download/Software/TwinCAT/Unsupported_Utilities/TC3-LicenseGen/

Overview

TS6100-003016 Version: 1.9

If the server is to store the data received from the clients in a database, the TF6420 function must be used. It
provides generic function blocks for TwinCAT 3 PLCs for accessing the database, e.g. to insert values into a
database table. Install the TF6420 setup and consult the TF6420 documentation for more information on
using the corresponding function blocks.

Licensing

All TwinCAT 3 software products require a license to be available on the server. The license can be either a
7-day trial or an unlimited license. Licenses can be activated using the TwinCAT 3 XAE License Manager. If
a TwinCAT 3 XAR installation is used on the server, use the TC3 License Generator.

Installation

TS6100-0030 17Version: 1.9

3 Installation

3.1 Setup overview
For better componentization and faster release cycles, the product is shipped in multiple setups. Each
product component has its own setup. The following table provides an overview of this.

Setup name Description
TF6100-OPC-UA-Server Contains the TwinCAT OPC UA Server and

SampleClient.
TF6100-OPC-UA-Client Contains the TwinCAT OPC UA Client.
TF6100-OPC-UA-Configurator Includes the TwinCAT OPC UA Configurator as

Visual Studio Extension and standalone application.
TF6100-OPC-UA-Gateway Contains the TwinCAT OPC UA Gateway.

Update installation
An update installation always uninstalls the previous installation. Please make sure that you have
backed up your configuration files beforehand.

CE-ARMV4I-LF
For the TwinCAT OPC UA Server a CAB installation file for Windows CE is delivered, which is
provided with the suffix CE-ARMV4I-LF. This is a limited server variant for hardware platforms with
few main memory. In this variant certain OPC UA features (e.g. Historical Access and Alarms &
Conditions) are disabled to keep the memory load as low as possible.

3.2 System requirements
OPC UA Server

Technical data Description
Operating system Windows 7, 10

Windows CE 6/7
Windows Embedded 7
Windows Server

Target platforms PC architecture (x86, x64, ARM)
.NET Framework 4.6.1 (only needed for the SysTray icon)
TwinCAT Version TwinCAT 2, TwinCAT 3
TwinCAT installation level TwinCAT 2 CP, PLC, NC-PTP

TwinCAT 3 XAE, XAR, ADS
Required TwinCAT license TS6100 TwinCAT OPC UA (for TwinCAT 2)

TF6100 TC3 OPC UA (for TwinCAT 3)

Installation

TS6100-003018 Version: 1.9

OPC UA Client

Technical data Description
Operating system Windows 7, 10

Windows CE 6/7
Windows Embedded 7
Windows Server

Target platforms PC architecture (x86, x64, ARM)
.NET Framework ---
TwinCAT version TwinCAT 2, TwinCAT 3
Minimum TwinCAT installation level TwinCAT 2 PLC, NC-PTP

TwinCAT 3 XAE, XAR
Required TwinCAT license TS6100 TwinCAT OPC UA (for TwinCAT 2)

TF6100 TC3 OPC UA (for TwinCAT 3)

OPC UA I/O Client

Technical data Description
Operating system Windows 7, 10

Windows CE 7
Windows Embedded 7
Windows Server

Target platforms PC architecture (x86, x64, ARM)
.NET Framework 4.6 (only for namespace browser)
TwinCAT version TwinCAT 3.1 Build 4022.4
Minimum TwinCAT installation level TwinCAT 3 XAE, XAR
Required TwinCAT license TF6100 TC3 OPC UA

OPC UA Gateway

Technical data Description
Operating system Windows 10

Windows Embedded 7
Windows Server

Target platforms PC architecture (x86, x64, ARM)
.NET Framework ---
TwinCAT version ---
Minimum TwinCAT installation level ---
Required TwinCAT license ---

Installation

TS6100-0030 19Version: 1.9

OPC UA Configurator Visual Studio

OPC UA Configurator Description
Operating system Windows 10

Windows Embedded 7
Windows Server

Target platforms PC architecture (x86, x64)
Visual Studio dependency Installing .NET Targeting Package 4 using the Visual Studio

Installer
Supported Visual Studio versions 2017, 2019
.NET Framework 4.6.1
Minimum TwinCAT installation level TwinCAT 3 XAE
Required TwinCAT license ---

OPC UA Configurator Standalone

OPC UA Configurator Description
Operating system Windows 10

Windows Embedded 7
Windows Server

Target platforms PC architecture (x86, x64)
.NET Framework 4.6.1
Minimum TwinCAT installation level TwinCAT 2 CP, PLC, NC-PTP

TwinCAT 3 XAE, XAR, ADS
Required TwinCAT license ---

OPC UA Sample Client

OPC UA Sample Client Description
Operating system Windows 10

Windows Embedded 7
Windows Server

Target platforms PC architecture (x86, x64)
.NET Framework 4.6.1
TwinCAT version ---
Minimum TwinCAT installation level ---
Required TwinCAT license ---

3.3 Installation (TC3)
The following section describes how to install the TwinCAT 3 function TF6100 OPC UA for Windows-based
operating systems.

ü The TwinCAT 3 function setup file was downloaded from the Beckhoff website.
1. Run the setup file as administrator. To do this, select the command Run As Admin in the context menu

of the file.
ð The installation dialog opens.

Installation

TS6100-003020 Version: 1.9

2. Accept the end user licensing agreement and click Next.

3. Enter your user data.

Installation

TS6100-0030 21Version: 1.9

4. If you want to install the full version of the TwinCAT 3 function, select Complete as installation type. If
you want to install the TwinCAT 3 function components separately, select Custom.

5. Select Next, then Install to start the installation.

ð A dialog box informs you that the TwinCAT system must be stopped to proceed with the installation.

Installation

TS6100-003022 Version: 1.9

6. Confirm the dialog with Yes.

7. Select Finish to exit the setup.

ð The TwinCAT 3 function has been successfully installed and can be licensed (see Licensing (TC3) [} 32]

3.4 Installation (TC2)
The following section describes how to install the TwinCAT 2 Supplement TwinCAT OPC UA for Windows-
based operating systems.

• Download and install the setup file [} 22]

• After the installation [} 25]

Download and install the setup file

Like many other TwinCAT add-on products, OPC UA is available as a 30-day demo version or full version for
download from the Beckhoff website www.beckhoff.com.

ü The setup file for the TwinCAT 2 Supplement has been downloaded from the Beckhoff homepage.
1. Run the downloaded setup file TcOpcUaSvr.exe as an administrator. To do this, select the command

Run As Admin in the context menu of the file.
ð The installation dialog opens.

2. Select an installation language.

https://www.beckhoff.com

Installation

TS6100-0030 23Version: 1.9

3. Click Next and accept the license agreement.

Installation

TS6100-003024 Version: 1.9

4. Enter your information. All fields are mandatory. If you want to install a 30-day demo, please enter
"DEMO" as license key.

Installation

TS6100-0030 25Version: 1.9

5. Click Install to start the installation.

6. Restart the computer to complete the installation.

After the installation

The TwinCAT add-on OPC UA is automatically configured during installation, and no further settings are
required for using this product. Further steps may include:

• Establish an initial connection to the installed UA server and test its configuration with the
OPC UA Sample Client. (See Sample Client [} 208])

• Personalize the UA server setup using the OPC UA Configurator. (See Configurator [} 115])
• Also, make sure your firewall opens TCP port 4840 because the OPC UC Server requires this port.

3.5 Installation Windows CE (TC3)
The following section describes how to install the TwinCAT 3 function TF6100 OPC UA on a Beckhoff
Embedded PC with Windows CE.

• Download and install the setup file [} 26]

• Transfer the CAB file to the Windows CE device [} 26]

• Run the CAB file on the Windows CE device [} 26]

If an older version of TF6100 is already installed on the Windows CE device, it can be updated:

• Software upgrade [} 27]

Installation

TS6100-003026 Version: 1.9

Download and install the setup file

The executable file for Windows CE is part of the TF6100 OPC UA setup. This is made available on the
Beckhoff website www.beckhoff.com and automatically contains all versions for Windows XP, Windows 7
and Windows CE (x86 and ARM).

Download the setup and install the function as described in the section Installation.

After the installation, the installation folder contains three directories (one directory per hardware platform)

• CE-ARM: ARM-based embedded PCs running Windows CE, e.g. CX8090, CX9020
• CE-X86: X86-based embedded PCs running Windows CE, e.g. CX50xx, CX20x0
• Win32: embedded PCs running Windows XP, Windows 7 or Windows Embedded Standard

The CE-ARM and CE-X86 directories contain the CAB files of the TwinCAT 3 function for Windows CE in
relation to the respective hardware platform of the Windows CE device.

Example: installation folder "TF6310"

Transfer the CAB file to the Windows CE device

Transfer the corresponding executable file to the Windows CE device.

There are various options for transferring the executable file:

• via network shares
• via the integrated FTP server
• via ActiveSync
• via CF/SD cards

Further information can be found in the Beckhoff Information System in the "Operating Systems"
documentation (Embedded PC > Operating Systems > CE).

Run the CAB file on the Windows CE device

After transferring the CAB file to the Windows CE device, double-click the file there. Confirm the installation
dialog with OK. Then restart the Windows CE device.

After restarting the device, the files (Client and Server) are automatically loaded in the background and are
available.

The software is installed in the following directory on the Windows CE device:
\Hard Disk\TwinCAT\Functions\TF6310-TCP-IP

http://www.beckhoff.com
https://infosys.beckhoff.com/content/1031/sw_os/2018319627.html?id=3834872477266425954

Installation

TS6100-0030 27Version: 1.9

Software upgrade

If an older TF6100 version is already installed on the Windows CE device, carry out the following steps on
the Windows CE device to upgrade to a new version:

1. Open the CE Explorer by clicking Start > Run and entering "Explorer".
2. Navigate to \Hard Disk\TwinCAT\Functions\Tf6100-OPC-UA\Server or (in a second step) \Hard

Disk\TwinCAT\Functions\Tf6100-OPC-UA\Client.
3. Rename the fileTcOpcUaServer.exe or TcOpcUaClient.exe.
4. Restart the Windows CE device.
5. Transfer the new CAB file to the Windows CE device.
6. Run the CAB file on the Windows CE device and install the new version.
7. Delete the old (re-named) files.
8. Restart the Windows CE device.
ð The new version is active after the restart.

3.6 Installation Windows CE (TC2)
The following section describes how to install the TwinCAT 2 Supplement on a Beckhoff Embedded PC with
Windows CE, e.g. CX1000, CX1020, CX9000, CX9001, CX9010, CX8090, CP62xx or CP69xx.

• Download and install the setup file [} 27]

• Transfer the setup file to a Windows CE device [} 30]

• Run the setup file on the Windows CE device [} 30]

Installation on small embedded platforms (CX9001, CX9010)
Very small embedded devices may require some additional manual steps to install the CAB file.
These steps may include, for example, the deleting of unnecessary files from the memories of the
devices so that there is sufficient space to install all the files of the application.

Download and install the setup file

Just like many other TwinCAT supplementary products, OPC UA for CE is available as a download on the
Beckhoff homepage. To obtain the installation files for Windows CE, you must first install the downloaded
setup file on a host computer. This can be any Windows CE-based system.

1. Double-click the downloaded file TcOpcUaSvrCE.exe.
2. Select an installation language.

Installation

TS6100-003028 Version: 1.9

3. Click Next and accept the license agreement.

Installation

TS6100-0030 29Version: 1.9

4. Enter your information. All fields are mandatory. Note that OPC UA for CE is not currently available as a
demo version. Therefore, you will need a valid license key to continue with the installation.

Installation

TS6100-003030 Version: 1.9

5. Select Full as the installation type and click on Continue

6. Click Install to start the installation.
ð After installation you will find the setup files for Windows CE in the directory ...\TwinCAT\CE. This

directory contains setup files for the following CE platforms:
• TwinCAT OPC UA Client CE\I586: OPC UA Client (PLC library) for x86-based CPUs (such as CX10xx,

CP62xx, C69xx,...)
• TwinCAT OPC UA Client CE\ARMV4I: OPC UA Client (PLC library) for ARM-based CPUs (such as

CX9001, CX9010, CP6608, ...)
• TwinCAT OPC UA Server CE\I586: OPC UA Server for x86-based CPUs (such as CX10xx, CP62xx,

C69xx, ...)
• TwinCAT OPC UA Server CE\ARMV4I: OPC UA Server for ARM-based CPUs (such as CX9001,

CX9010, CP6608, ...)

Transfer the setup file to the Windows CE device

Transfer the corresponding executable file to the Windows CE device. There are various options for
transferring the setup file:

• from a shared folder
• via the integrated FTP server
• via ActiveSync
• via a CF card

Further information can be found in the Beckhoff Information System in the "Operating Systems"
documentation (Embedded PC > Operating Systems > CE).

Run the setup file on the Windows CE device

Execute the transferred setup file TcOpcUaSvrCe.xxxx.CAB on the CE device:

https://infosys.beckhoff.com/content/1031/sw_os/2018319627.html?id=4880775199055840320

Installation

TS6100-0030 31Version: 1.9

1. Navigate to the directory to which you have transferred the setup file.

2. Double-click the CAB file. If a message dialog box appears that says this program is not compatible with
the current operating system, make sure you are using the correct CAB file (ARM, I586) for your IPC/
Embedded PC.

3. If you are sure that the CAB file matches the Embedded PC/IPC, confirm this message dialog with Yes.

4. Select \Hard Disk\System\ as destination directory

5. Click OK to start the installation.

ð After installation, the setup file is automatically deleted.

Once you have installed the OPC UA Server, this component will be available after restarting your Windows
CE device.

Installation

TS6100-003032 Version: 1.9

3.7 Licensing (TC3)
The TwinCAT 3 function can be activated as a full version or as a 7-day test version. Both license types can
be activated via the TwinCAT 3 development environment (XAE).

The licensing of a TwinCAT 3 function is described below. The description is divided into the following
sections:

• Licensing a 7-day trial version [} 32]

• Licensing a full version [} 34]

Further information on TwinCAT 3 licensing can be found in the "Licensing" documentation in the Beckhoff
Information System (TwinCAT 3 > Licensing).

Licensing the 7-day test version of a TwinCAT 3 Function

A 7-day test version cannot be enabled for a TwinCAT 3 license dongle.

1. Start the TwinCAT 3 development environment (XAE).
2. Open an existing TwinCAT 3 project or create a new project.
3. If you want to activate the license for a remote device, set the desired target system. To do this, select

the target system from the Choose Target System drop-down list in the toolbar.
ð The licensing settings always refer to the selected target system. When the project is activated on

the target system, the corresponding TwinCAT 3 licenses are automatically copied to this system.
4. In the Solution Explorer, double-click License in the SYSTEM subtree.

ð The TwinCAT 3 license manager opens.

https://infosys.beckhoff.com/content/1033/tc3_licensing/index.html?id=4971678236866464095
https://infosys.beckhoff.com/content/1033/tc3_licensing/3511048971.html

Installation

TS6100-0030 33Version: 1.9

5. Open the Manage Licenses tab. In the Add License column, check the check box for the license you
want to add to your project (e.g. "TF4100 TC3 Controller Toolbox").

6. Open the Order Information (Runtime) tab.
ð In the tabular overview of licenses, the previously selected license is displayed with the status

“missing”.
7. Click 7-Day Trial License... to activate the 7-day trial license.

ð A dialog box opens, prompting you to enter the security code displayed in the dialog.

8. Enter the code exactly as it is displayed and confirm the entry.
9. Confirm the subsequent dialog, which indicates the successful activation.

ð In the tabular overview of licenses, the license status now indicates the expiry date of the license.

Installation

TS6100-003034 Version: 1.9

10. Restart the TwinCAT system.
ð The 7-day trial version is enabled.

Licensing the full version of a TwinCAT 3 Function

A description of the procedure to license a full version can be found in the Beckhoff Information System in
the documentation "TwinCAT 3 Licensing".

3.8 Licensing (TC2)
The licensing of the TwinCAT OPC UA for TwinCAT 2 takes place during the installation [} 22] by entering a
license key.

https://infosys.beckhoff.com/content/1033/tc3_licensing/117093592658046731.html?id=5546616718344501207

Technical introduction

TS6100-0030 35Version: 1.9

4 Technical introduction

4.1 Server

4.1.1 Overview
The TwinCAT OPC UA Server provides a standardized communication interface for accessing symbol
values from the TwinCAT runtime. This facilitates integration of third-party software for reading or writing
variable values. This part of the documentation describes the various configuration options available for the
TwinCAT OPC UA Server.

We recommend following our QuickStart [} 35] guide. Afterwards, please also refer to our article
Recommended steps [} 42] and Optimizations [} 44].

4.1.2 Quick start
After successful installation, execute the following steps to make PLC variables available via the
TwinCAT OPC UA Server.

• Step 1: initialize OPC UA Server
• Step 2: configure PLC variables for the OPC UA access
• Step 3: configure the download of the symbol file
• Step 4: activate the license for the server
• Step 5: activate the project
• Step 6: establish a connection to the OPC UA Server

Delivery state
This quick-start procedure assumes that the TwinCAT OPC UA Server is in the delivery state. The
server is automatically configured to access the first (local) PLC runtime.

Step 1: initialize OPC UA Server

Initialize the TwinCAT OPC UA Server as described in the corresponding documentation article for
initialization [} 37].

Step 2: configure PLC variables for the OPC UA access

Open an existing PLC project and insert the following comment before the selected variables. Alternatively
you can create a new PLC project.

TwinCAT 3 (TMC import):
{attribute 'OPC.UA.DA' := '1'}
bVariable : BOOL;

TwinCAT 2 (TPY import):
bVariable : BOOL; (*~ (OPC:1:some description) *)

Step 3: configure the download of the symbol file

By default, the TwinCAT OPC UA Server establishes a connection with the first PLC runtime on the local
system and uses the corresponding symbol file to build the namespace.

To make the symbol file available, activate the download of the symbol file in the settings of the PLC project.

Technical introduction

TS6100-003036 Version: 1.9

Step 4: activate the license for the server

Check whether a license exists. In TwinCAT 3 you can enter a TF6100 license in the TwinCAT license
management (see Licensing (TC3) [} 32]). A 7-day trial license is sufficient for a basic introduction.

Step 5: activate the project

Activate the TwinCAT project and restart TwinCAT. This will also restart the TwinCAT OPC UA Server
(please refer to the note below). Then log into the PLC runtime and start the PLC program.

NOTICE
Note on the Windows CE platform
Please note that the TwinCAT OPC UA Server under Windows CE is not restarted with a TwinCAT restart.
Here you have to either restart the CE device or call the Restart() method from the configuration
namespace [} 110] to restart the server so that it reads the TMC file and provides the PLC variables.

Step 6: establish a connection to the OPC UA Server

To establish a connection from an OPC UA Client, the client must establish a connection with the URL of the
OPC UA Server, e.g. opc.tcp://CX-12345:4840 or opc.tcp://192.168.1.1:4840.

Default port and end points
Please also note our information on the default port and end points [} 105] used by the server.

To connect to the TwinCAT OPC UA Server you can use the OPC UA Sample Client provided, which can be
called up via the Windows start menu.

For more advanced testing we recommend using the free UA Expert software from Unified Automation.

After successful connection to the server you will find the released PLC variables under the object PLC1.

Technical introduction

TS6100-0030 37Version: 1.9

4.1.3 Initialization
Starting with setup version 4.4.0, the TwinCAT OPC UA Server requires an initialization phase, which is
based on the TOFU principle (Trust On First Use). This means that the server must be actively initialized by
the user so that it can be used for its various functions (Data Access, Historical Access, etc.).

By default, the server allows clients to establish an unauthenticated connection ("Anonymous"). The one-
time TOFU initialization now requires the configuration of an operating system user that an OPC UA Client
must subsequently use to successfully log on to the server.

For this purpose, the server provides only a special initialization namespace in the uninitialized state. This
namespace contains an object "Initialization" with a method "TrustOnFirstUse".

The method defines the following input/output parameters:

Technical introduction

TS6100-003038 Version: 1.9

Parameter Description
[in] Username User name for the operating system user to be created. If the user

already exists, the server attempts to perform a test login with the
specified password and, if successful, transfers the existing user to its
security configuration.

[in] Password Password for the operating system user.
The password is not stored in the server configuration, but is only
available in the user database of the operating system. Please note
that the type of password may depend on any security settings of
the operating system (keyword "complex passwords").

[out] AddStatus Indicates whether the creation of the operating system user was
successful or whether the user already exists.

[out] LogonResult Indicates whether the server was able to login to the operating system
with the specified user name/password combination. This is a good way
to check if you have entered the wrong password if the user already
exists.

[out] OPC UA Statuscode The regular OPC UA Status Code when calling a method. If the method
has been called successfully on OPC UA level, this status code returns
GOOD, otherwise BAD.

The server is initialized by calling this method. The method tries to create a user specified by the user in the
lower-level operating system of the server. If this is successful, the user is automatically added to the
security configuration (TcUaSecurityConfig.xml) of the server and defined as server administrator. After an
automatic restart of the server at the end of the method call, an OPC UA Client can then login to the server
with this user.

If a specified user already exists in the operating system, this is indicated by an output parameter
(AddStatus). In this case, the server attempts to log on to the operating system with the specified password.
If this login process is successful, the user is entered in the server's security configuration and the
initialization is successfully completed by an automatic restart of the server. If the login to the operating
system fails (e.g. because the wrong password was entered), this is indicated by an output parameter
(LogonResult) and the initialization is not continued. This prevents you from accidentally trying to initialize
the server with a wrong user name/password combination and thus "locking yourself out".

Expiration of a user password
When the OPC UA Server creates an operating system user, it is not explicitly enabled for this user
that the password does not expire. Here the settings of the operating system are adopted, where
the maximum password age is defined in the password policies. If the maximum password age is
set to 0, passwords do not expire, otherwise after the number of days specified in the operating
system.

The following diagram illustrates this process once again in a highly simplified form:

Technical introduction

TS6100-0030 39Version: 1.9

After restarting the server, an OPC UA Client must use the operating system user used for initialization for
authentication when establishing a connection.

The following screenshots show the entire process using the OPC UA Client "UA Expert" as an example. In
this example, we assume that the user does not yet exist in the operating system and is therefore created by
the server.

Technical introduction

TS6100-003040 Version: 1.9

Step 1: OPC UA Client connects to the server for the first time

The server has been installed and UA Expert connects to the server for the first time. Anonymous access
can still be used for this connection.

After the connection has been established, the initialization object together with the TrustOnFirstUse method
can be found in the server's address space.

Step 2: OPC UA Client starts TrustOnFirstUse

The TrustOnFirstUse method can be called via any OPC UA Client, e.g. the UA Expert. However, Beckhoff's
own configuration tools also allow the use of this initialization interface. The TwinCAT OPC UA Configurator
(standalone or Visual Studio integrated) automatically detects an uninitialized server when a connection is
established and enables initialization via a corresponding configuration interface:

Technical introduction

TS6100-0030 41Version: 1.9

The following steps show the same process as it can be done manually e.g. in the UA Expert software:

In UA Expert, you now call the TrustOnFirstUse method to create a user and configure the server for that
user. "MyOpcUaServerUser" was used as the user name in this example. The password must meet the
complexity requirements of the operating system, otherwise the initialization will fail. The following
screenshot shows the successful call of the method.

The AddStatus parameter indicates that the user was successfully created in the operating system's user
database. The LogonResult parameter indicates that an initial test authentication of the server with the
specified user information was successful.

The server restarts automatically after this successful method call.

Step 3: OPC UA Client logs on to the initialized server

Please note that the UA Expert cannot automatically reconnect to the server after the method call, because
the anonymous access has been disabled and from now on the login must be done using the specified user
name.

Technical introduction

TS6100-003042 Version: 1.9

After the connection has been established, the regular namespaces and objects can now be found in the
server's address space and the project planning for the application can begin.

Authorizations of the TOFU user
The user configured by the TOFU mechanism has full access to the server, which may not be
desirable. We therefore recommend creating an explicit user for pure data access in the next step.
This is described in more detail in the article Recommended steps [} 42].

4.1.4 Recommended steps
After the initial commissioning, we recommend that you pay attention to the following points to further
configure the server and ensure a stable and secure operating environment.

Use secure IdentityToken

The one-time initialization [} 37] of the server disables the "Anonymous" IdentityToken. For security reasons,
we recommend leaving this disabled and only allowing access to the server for authenticated client
applications, e.g. via the user name/password authentication configured by default during initialization.

Creation of a user for pure data access

The aforementioned initialization of the server configures a user for access to the server and then disables
anonymous access to the server. However, the configured user has full access to all objects in the server
namespace. In most application scenarios, this is not desired and the administrator user should be
separated from the application user.

Technical introduction

TS6100-0030 43Version: 1.9

We therefore recommend configuring an additional, dedicated user who is given the necessary
authorizations to access variables on a Data Access device, but who is not allowed to access the
configuration namespace [} 110]. This setting can be made via the configurator [} 115] by adding a new
user who is assigned to the "Users" group.

The newly configured user then has all the necessary authorizations to access TwinCAT variables, to read
the type system, but not to influence the configuration of the server.

Please note that if you use the authentication provider "OS", you must also create the user in the operating
system.

Leave insecure endpoints disabled

Endpoints [} 105] classified as unsafe are not offered by the TwinCAT OPC UA Server by default. A
configuration switch in TcUaServerConfig.xml can be used to make unsafe endpoints available in the server
again, but we strongly do not recommend this.

Alternatively, you can also manually adjust the corresponding entry in the configuration file
TcUaServerConfig.xml:

Technical introduction

TS6100-003044 Version: 1.9

<AllowDepcrecatedSecurityPolicies>true</AllowDeprecatedSecurityPolicies>

You can then add the insecure endpoints back to the server configuration, for example via the context menu
in the configurator in the "Security Settings" area:

The None/None endpoint is already disabled when the server is delivered. For security reasons, we
recommend that you also leave this endpoint disabled and only allow access to the server via a secure
endpoint. However, if required, the None/None endpoint can also be added back to the server configuration
using the method described above.

Disable 'AutomaticallyTrustAllClientCertificates'

By default, the server is configured to automatically trust all client certificates. For security reasons, we
recommend disabling this setting. This setting can be made via the configurator [} 115]:

Alternatively, you can also manually adjust the corresponding entry in the configuration file
TcUaServerConfig.xml:
<AutomaticallyTrustAllClientCertificates>false</AutomaticallyTrustAllClientCertificates>

After disabling this setting, a trust relationship [} 108] must be established between the client and server by
having the applications trust each other's certificates.

4.1.5 Optimizations
There are many different ways to optimize the communication connection between OPC UA Client and
server or PLC.

The screenshots and performance values shown here represent examples under laboratory
conditions, which were run on different hardware devices. Therefore, they cannot be transferred 1:1
to customer projects and only serve to illustrate certain facts.

The following article provides further information on the following topics:

Technical introduction

TS6100-0030 45Version: 1.9

• SamplingInterval vs. PublishingInterval
• StructuredTypes
• StructuredTypes and their member variables

SamplingInterval vs. PublishingInterval

When creating a subscription, an OPC UA Client uses various parameters for the subscription and the so-
called MonitoredItems contained in it to receive notifications about variable changes. The following table
explains two of these parameters, which will then be described in more detail.

Parameter Description
PublishingInterval The PublishingInterval specifies the rate at which an

OPC UA Client is informed about value changes by
the server. The PublishingInterval is described in
detail in Part 4 of the OPC UA specification.

SamplingInterval The SamplingInterval specifies the rate at which the
OPC UA Server should sample its underlying data
source for value changes, in the case of the TwinCAT
OPC UA Server via the ADS connection. The
SamplingInterval is described in detail in Part 4 of the
OPC UA specification.

The following figure illustrates the relationship between these two parameters once again. It is assumed here
that the TwinCAT OPC UA Server has been installed on the PLC controller and that the OPC UA Client
accesses the server from an external system.

As can be seen in the figure, the situation can arise that the OPC UA Client does not notice certain value
changes in the PLC, e.g. if they happen "too fast" in the PLC or the sampling rate is not high enough or a
variable value returns to the original value (as can be seen above). Via another parameter, the so-called
QueueSize, several value changes between the PublishingIntervals can be recorded and transferred to the
OPC UA Client. In the above example, a QueueSize of 1 was selected, i.e. the "Last Known Value" is always
transferred to the client. In the following figure, on the other hand, a QueueSize of 2 was selected, i.e. the
last two known value changes are transmitted to the client.

Technical introduction

TS6100-003046 Version: 1.9

With the first PublishResponse it can be seen that only one value change is transmitted to the client,
because also only one value change has taken place in the PLC. With the second PublishResponse it can
be seen that two value changes have occurred in the PLC and both are also transmitted to the client.

The parameters described above are settings that the client usually controls and requests from the server.
And it is exactly here that many optimizations can be made, because both parameters have a strong
influence on how much CPU time the OPC UA Client and server need, since a corresponding amount of
information has to be processed or requested.

Depending on the application scenario used, the two parameters should be set appropriately. For example, if
the OPC UA Client is a visualization, then fast PublishingIntervals and SamplingRates make only limited
sense, since the human eye cannot process information faster than ~200 ms anyway. The use of the
QueueSize should also be chosen sensibly depending on the situation. If the OPC UA Client does not
process any values from the queue anyway, a QueueSize of 1 is sufficient and makes sense, since
correspondingly less information has to be transferred and this further optimizes the system.

In the following example an OPC UA Client has created a subscription with 10,000 variables on the TwinCAT
OPC UA Server. 500 ms was selected as the PublishingInterval and 250 ms as the SamplingInterval. The
CPU load of the TwinCAT OPC UA Server was at an average value of about 6.9%, see the following
screenshot of the Windows Performance Monitor.

Technical introduction

TS6100-0030 47Version: 1.9

Then the PublishingInterval was set to 200 ms and the SamplingInterval to 100 ms. This increased the CPU
load of the TwinCAT OPC UA Server to an average value of approx. 19%.

StructuredTypes

With the help of OPC UA StructuredTypes the TwinCAT OPC UA Server can make IEC61131 data structures
[} 57] available in its address space for clients. However, a data structure can also be provided as a non-
StructuredType, i.e. the root element is a FolderType (without value) and access can then be made to the
individual member variables. In ADS communication with the PLC, both variants behave fundamentally
differently.

When an OPC UA Client accesses individual member variables of a non-StructuredType, it may well happen
that the ADS communication is divided among several ADS read/write requests, depending on the number of
variables. This in turn can result in the ADS Read/Write Requests being processed by the PLC in different
PLC cycles. The data consistency of the respective data structure can therefore not be guaranteed.

When an OPC UA Client accesses a StructuredType, on the other hand, it is ensured that the
StructuredType is processed by the PLC in a single ADS Read/Write Request, thus ensuring data
consistency.

When using StructuredTypes for large PLC data structures, it should be noted that the resulting ADS Read/
Write Request or Response can be correspondingly large and require a correspondingly large amount of
memory in the TwinCAT ADS router. In addition, StructuredTypes have to be encoded or decoded
accordingly by the OPC UA Server, which requires additional CPU time. Especially in connection with the
parameters for SamplingInterval and PublishingInterval that can be set for a subscription, further
optimizations can be made here.

In the following sample an OPC UA Client has created a subscription with a StructuredType on the TwinCAT
OPC UA Server. The lower-level PLC data structure is structured as follows:
TYPE ST_TEST :
STRUCT
 stComplex : ST_Complex_1;
 strString5 : STRING[5];
 eEnum : E_Enum_1;
 strString3 : STRING[3];
 arrComplex : ARRAY[0..9999] OF ST_Complex_1;
 arrDint : ARRAY[0..9999] OF DINT;
END_STRUCT
END_TYPE

The structure ST_Complex_1 used as member variable is about 91 bytes. In total, therefore, this is a data
structure with a size of about 1 MB. 500 ms was selected as the PublishingInterval and 250 ms as the
SamplingInterval. The CPU load of the TwinCAT OPC UA Server after creating the subscription was at an
average value of about 54.6%, see the following screenshot of the Windows Performance Monitor.

Technical introduction

TS6100-003048 Version: 1.9

According to the selected SamplingInterval, an ADS Read Request is sent every 250 ms for the lower-level
ADS communication. In the corresponding response you can clearly see the size of the data structure of
approx. 1 MB, i.e. every 250 ms a 1 MB data packet is transported through the TwinCAT ADS router (and
must be processed accordingly by the server).

StructuredTypes and their member variables

By default, the member variables of a StructuredType are represented and made available as separate
nodes in the server's address space. This requires additional main memory, because the TwinCAT OPC UA
Server allocates main memory for each node. However, an OPC UA Client that works exclusively with the
StructuredType itself, i.e. "the root element", does not need these additional nodes. These can therefore be
explicitly hidden via the OPC.UA.DA:=2 attribute. Sample:
TYPE ST_Test :
STRUCT
 a : DINT;
 b : STRING;
 c : DINT;
END_STRUCT
END_TYPE

{attribute 'OPC.UA.DA' := '1'}
{attribute 'OPC.UA.DA.StructuredType' := '1'}
{attribute 'OPC.UA.DA.Description' := 'Complex (structured) type '}
stWithMember : ST_Test;

{attribute 'OPC.UA.DA' := '2'}
{attribute 'OPC.UA.DA.StructuredType' := '1'}
{attribute 'OPC.UA.DA.Description' := 'Complex (structured) type '}
stWithoutMember : ST_Test;

This declaration results in the address space shown below:

Technical introduction

TS6100-0030 49Version: 1.9

4.1.6 Data Access

4.1.6.1 PLC
This section describes how to configure the namespace of the OPC UA Server such that it contains variables
from a TwinCAT PLC runtime. The TwinCAT OPC UA Server can represent several namespaces, i.e.,
several PLC runtimes. In order for a PLC variable to be accessible via the respective namespace, it must be
explicitly enabled for this purpose in the PLC program.

Quick start
Note that the OPC UA Server always connects by default to the first local PLC runtime system,
therefore a configuration is not necessary in most cases (see also Quick start [} 35]). A separate
configuration is only necessary in a few cases, e.g., if additional runtimes are to be displayed in the
server.

This documentation article contains the following topics:

• General Information [} 49]

• Step 1: Selecting PLC variables to be publicly accessible via OPC UA [} 50]

• Step 2: Downloading the symbol description and activating it in the PLC project [} 53]

• [Optional] Step 3: Configuring the data access device in the OPC UA Server [} 54]

• [Optional] Step 4: Explicit hiding of variables [} 54]

General Information

Several parameters are available for configuring the server and accessing PLC variables, which can be set
via the TwinCAT OPC UA Configurator.

Technical introduction

TS6100-003050 Version: 1.9

Parameter Description Possible values
ADS Port Defines the ADS port under which the PLC runtime can be

reached. The ADS port can be read in the properties of the
PLC project.

800 (BC Controller)
801 (TwinCAT 2)
811 (TwinCAT 2)
…
851 (TwinCAT 3 -
standard)
852 (TwinCAT 3)
…

AutoCfg Defines the runtime type, e.g., PLC, C++, I/O. Some
AutoCfg options are available as filtered or unfiltered
variants. Filtered means the user can determine which
symbols are to be published via OPC UA (see below).
When using an unfiltered option, each symbol is made
available via OPC UA.

7 TwinCAT 2 (TPY)
8 TwinCAT 2 (TPY)
filtered
4040 TwinCAT 3
(TMC)
4041 TwinCAT 3
(TMC) filtered

AutoCfgSymFile Symbol file of the respective PLC runtime. By default, the
automatically generated symbol file of the first PLC runtime
of the local system is imported.

Path to the symbol file.
Points by default to the
symbol file (TMC) of
the first local PLC
runtime.

IoMode Defines the method for accessing symbols. This is
particularly important for accessing BC devices.

1 (access via handle -
default)
3 (Access to BC
Controller)

Array expansion By default, subelements of an array are not mapped as
separate nodes in the UA namespace. Instead, only the
array is mapped as a single element. UA Clients can
nevertheless access subelements via their IndexRange.
(Some older OPC UA Clients do not yet support this
option).
The flag was introduced so that access is nevertheless
possible for these clients. It ensures that every array
position is displayed as a separate node in the UA
namespace. This leads to higher memory requirement of
the OPC UA Server.

0 (disabled - default)
1 (enabled)

Disabled Disables the PLC runtime in the UA namespace, so that
the corresponding node is not displayed.
It is advisable to enable this parameter if certain PLC
runtimes are not yet available at the time of project
planning, for example because the corresponding devices
are not yet connected to the network.

0 (disabled - default)
1 (enabled)

The following section uses a sample to illustrate how the variables can be imported from a PLC program into
the server. It is assumed that the PLC runtime and the TwinCAT OPC UA Server in its standard configuration
(delivery state after installation) are on the same computer.

Step 1: Configuring PLC variables

The TwinCAT OPC UA Server automatically establishes a connection to the first PLC runtime on the local
system. The PLC symbols marked in the PLC program for OPC UA are taken into account when the server
is started. A comment at the appropriate position (instance, structure, variable) in the PLC program code is
used for identification (see the following samples).

Sample 1

Technical introduction

TS6100-0030 51Version: 1.9

In this sample, the PLC variables bMemFlag1, bMemFlag2, bMemAlarm2 and iReadOnly are enabled via
OPC UA. The PLC variable bMemAlarm1 should not be accessible via the OPC UA Server.

TwinCAT 3 (TMC import):
{attribute 'OPC.UA.DA' := '1'}
bMemFlag1 : BOOL;

{attribute 'OPC.UA.DA' := '1'}
bMemFlag2 : BOOL;

bMemAlarm1 : BOOL;

{attribute 'OPC.UA.DA' := '1'}
bMemAlarm2 : BOOL;

{attribute 'OPC.UA.DA' := '1'}
{attribute 'OPC.UA.DA.Access' := '1'}
iReadOnly : INT;

TwinCAT 2 (TPY import):
bMemFlag1 : BOOL; (*~ (OPC:1:some description) *)

bMemFlag2 : BOOL; (*~ (OPC:1:some description) *)

bMemAlarm1 : BOOL;

bMemAlarm2 : BOOL; (*~ (OPC:1:some description) *)

iReadOnly : INT; (*~ (OPC:1:some description)
 (OPC_PROP[0005]:1:read-only flag) *)

Due of the additional comment OPC.UA.DA.Access the access level for the variable iReadOnly is set to
"ReadOnly". The various options can be found in the complete list of PLC comments (see List of attributes
and comments).

TPY import for TwinCAT 3
The TPY import can also be used in TwinCAT 3 PLC projects for migration purposes, e.g. if you
convert a TwinCAT 2 project into a TwinCAT 3 project and do not want to make any changes to the
PLC comments. Please note, however, that some advanced functions are only available for the
newer import mechanism (TMC).

You may assign a description to a variable in the server, which is stored in the corresponding OPC UA
attribute ("Description"). This function is only available for TwinCAT 3.

TwinCAT 3 (TMC import):
{attribute 'OPC.UA.DA' := '1'}
bMemFlag1 : BOOL; (* Description for variable bMemFlag1 *)

The comment automatically becomes the description attribute of the node in the UA namespace.

Technical introduction

TS6100-003052 Version: 1.9

Sample 2:

In this sample, the two instances fbTest1 and fbTest2 of the function block FB_BLOCK1 should be available
via OPC UA. When an entire instance is released, all its symbols are also available via OPC UA. The PLC
program looks like the following:

TwinCAT 3 (with TMC import):
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '1'}
 fbTest1 : FB_BLOCK1;
 fbTest2 : FB_BLOCK1;
END_VAR

FUNCTION_BLOCK FB_BLOCK1
VAR_INPUT
 {attribute 'OPC.UA.DA' := '1'}
 ni1 : INT;
 ni2 : INT;
END_VAR
VAR_OUTPUT
 {attribute 'OPC.UA.DA' := '1'}
 no1 : INT;
 no2 : INT;
END_VAR
VAR
 {attribute 'OPC.UA.DA' := '1'}
 nx1 : INT;
 nx2 : INT;
END_VAR

TwinCAT 2 (with TPY import):
PROGRAM MAIN
VAR
 fbTest1 : FB_BLOCK1; (*~ (OPC:1:some description) *)
 fbTest2 : FB_BLOCK1;
END_VAR

FUNCTION_BLOCK FB_BLOCK1
VAR_INPUT
 ni1 : INT; (*~ (OPC:1:some description) *)
 ni2 : INT;
END_VAR
VAR_OUTPUT
 no1 : INT; (*~ (OPC:1:some description) *)
 no2 : INT;
END_VAR
VAR
 nx1 : INT; (*~ (OPC:1:some description) *)
 nx2 : INT;
END_VAR

Technical introduction

TS6100-0030 53Version: 1.9

The instance fbTest1 is enabled for OPC UA, whereby all contained symbols are automatically enabled for
OPC UA, i.e. fbTest.ni1, fbTest.ni2, etc. The instance fbTest2 is not marked for OPC UA, but the three
variables contained in it - ni1, no1 and nx1 - were marked in the function block. They are therefore available
in all instances via OPC UA.

Step 2: Activating the download of the symbol file

The symbol file contains information about all variables available in a PLC project. The TwinCAT OPC UA
Server needs this information to configure its namespace. By default, the current symbol information is
automatically generated and stored in a symbol file. This is located in the project folder of the corresponding
TwinCAT project. To ensure that the symbol file is transferred to the target runtime, enable the download of
the symbol file in the settings of the PLC project.

TwinCAT 3:

TwinCAT 2:

Technical introduction

TS6100-003054 Version: 1.9

[Optional] Step 3: Connecting further runtimes

By default, the TwinCAT OPC UA Server connects to the first PLC runtime on the local system. To make
more than one PLC runtime available on the server, or if the PLC runtime is located on another system,
corresponding settings are required in the TwinCAT OPC UA Configurator.

Configure all further necessary parameters as described in the section General information [} 49].

Connecting remote computers
To configure a runtime that is located on a remote Industrial PC or Embedded PC, enter the correct
parameters for AmsNetId and AdsPort and provide the corresponding symbol file of the PLC
program on this PC. Also, make sure that an ADS route to the remote system has been established.

[Optional] Step 4: Explicit hiding of symbols

In addition to the regular PLC attributes for activating a PLC symbol, you can explicitly exclude PLC symbols
from publication in the OPC UA namespace. There may be several reasons for this:

• You want to publish a data structure, but not all its subelements (Sample 1).
• You have enabled a data structure in the definition and want to hide an individual instance of this data

structure (Sample 2).

Sample 1:
{attribute 'OPC.UA.DA' := '1'}
TYPE ST_TEST :
STRUCT
 a : INT;
 {attribute 'OPC.UA.DA' := '0'}
 b : DINT;
END_STRUCT
END_TYPE

PROGRAM MAIN
VAR
 instance1 : ST_TEST;
 instance2 : ST_TEST;
END_VAR

Technical introduction

TS6100-0030 55Version: 1.9

In this case, the PLC attribute has been added to the structure definition, so that each instance of this
structure should be available on the OPC UA Server. Subelement b (and all its subelements, if b is another
data structure) will be excluded from publication on the OPC UA Server.

Sample 2:
{attribute 'OPC.UA.DA' := '1'}
TYPE ST_TEST :
STRUCT
 a : INT;
 b : DINT;
END_STRUCT
END_TYPE

PROGRAM MAIN
VAR
 instance1 : ST_TEST;
 {attribute 'OPC.UA.DA' := '0'}
 instance2 : ST_TEST;
END_VAR

Although the PLC attribute is added to the structure definition, which makes each instance of this structure
available on the OPC UA Server, instance2 receives the PLC attribute to disable this inheritance. This
means that only instance1 is available in the UA namespace, not instance2.

4.1.6.1.1 Arrays
By default arrays are regarded as individual nodes in the UA namespace. This means that if you define, for
example, an array dyn_BOOL[10] in the PLC (and have also enabled it for OPC UA), it will subsequently
appear in the UA namespace as follows:

The advantage of this approach is a considerable reduction in the complexity of the UA namespace and in
memory consumption, since not every position of an array needs to be made available as an individual node
in the namespace. However, modern UA Clients can continue to access the individual array positions via the
so-called "RangeOffset".

In order to support older UA Clients that don’t offer this feature, however, you can also make the positions of
an array available as individual nodes in the UA namespace. It is illustrated as follows:

This setting is available by activating the Legacy Array Handling option in the UA Configurator within the
respective namespace configuration.

Depending on the scope of the PLC project, the UA namespace can become significantly more complex,
which in turn is reflected in an increased memory utilization of the UA Server.

Changes to the settings listed above only become active after restarting the UA Server.

4.1.6.1.2 Enums
Enumerations in OPC UA always have the data type Int32. However, the IEC 61131-3 standard allows the
definition of larger data types than Int32. To ensure that these enumerations are handled properly, the
TwinCAT OPC UA Server offers the configuration option <ImportBigEnumsNumeric>, which can be enabled
in its Data Access configuration file.

Technical introduction

TS6100-003056 Version: 1.9

This option is set to FALSE by default. This means that a BadOutOfRange status code exception is triggered
if the enumeration value is outside the Int32 range.

If the option is set to TRUE, enumerations with data types greater than Int32 are treated as regular variables
with this particular data type.

Let's assume we have the following enumeration definitions in our PLC code:
TYPE E_Enum_Normal :
(
 enum_member_0 := 0,
 enum_member_1 := 1,
 enum_member_2 := 2
);
END_TYPE

TYPE E_Enum_NotSoBig :
(
 enum_member_0 := 0,
 enum_member_1 := 1,
 enum_member_2 := 2
) UINT;
END_TYPE

TYPE E_Enum_VeryBig :
(
 enum_member_0 := 0,
 enum_member_1 := 1,
 enum_member_2 := 2
) LINT;
END_TYPE

If the above configuration option is activated, instances of E_Enum_VeryBig are treated as regular variables
of data type Int64 in the server namespace, while instances of E_Enum_Normal and E_Enum_NotSoBig are
treated as OPC UA enumeration (with data type Int32):

4.1.6.1.3 Properties
The display of PLC properties in the server namespace has been supported since TwinCAT 3.1 Build 4024.
All you need to do is set two special PLC attributes on the Property so that the Property is imported into the
namespace and represented there as a UA Property. Sample:
{attribute 'OPC.UA.DA.Property' := '1'}
{attribute 'monitoring' := 'call'}
PROPERTY Property_1 : BOOL

The function block on which the Property is defined must contain the normal PLC attribute for enabling
symbols [} 49].

In the configuration file TcUaDaConfig.xml the handling of PLC properties can be defined globally. The
"ImportPlcProperties" flag is used for this purpose.

Value Description
false Displays all properties in the OPC UA namespace for

which both the OPC.UA.DA.Property and the
monitoring attribute have been set.

true Displays all properties in the OPC UA namespace
where the monitoring attribute has been set.

Technical introduction

TS6100-0030 57Version: 1.9

4.1.6.1.4 StructuredTypes
StructuredTypes allow you to read or write structures without interpreting each byte, because the UA Server
returns the information type of each element of the structure. Based on complex functions in modern
OPC UA SDKs, OPC UA Clients can search and interpret this structural information.

From version 2.2.x of the OPC UA Server, structures of the TwinCAT 3 runtime (TMC and TMI import only)
are generated as a StructuredType in the UA namespace.

Sample:

STRUCT ST_Communication:
TYPE ST_Communication :
STRUCT
 a : INT;
 b : INT;
 c : INT;
END_STRUCT
END_TYPE

Program MAIN:
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '1'}
 {attribute 'OPC.UA.DA.StructuredType' := '1'}
 stCommunication : ST_Communication;
END_VAR

Filtered mode
If filters are used to make symbols available via OPC UA, a STRUCT or function block must be fully
available in the UA namespace in order to be displayed as a StructuredType.

Pointers and references
If pointers and references are used in the structure, then they cannot be converted into a
StructuredType. The OPC UA Server then illustrates these structures as regular FolderTypes with
the corresponding member variables.

The instance stCommunication is then displayed in the UA namespace as a StructuredType, including all
member variables:

Technical introduction

TS6100-003058 Version: 1.9

Alternatively, the STRUCT definition can also be assigned the PLC attribute to make all instances of
STRUCT available as StructuredType. If the member variables are not to be displayed explicitly, they can be
hidden with the OPC.UA.DA:=2 attribute.
{attribute 'OPC.UA.DA.StructuredType' := '1'}
TYPE ST_Communication :
STRUCT
 a : INT;
 b : INT;
 c : INT;
END_STRUCT
END_TYPE

In order to deactivate StructuredType of a certain instance, use the following attribute:
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '1'}
 {attribute 'OPC.UA.DA.StructuredType' := '0'}
 stCommunication : ST_Communication;
END_VAR

Function block StructuredType

In addition, each function block of the TwinCAT 3 PLC also contains a child node, FunctionBlock, which
contains the entire function block as a StructuredType.

Sample:

Function block:
FUNCTION_BLOCK FB_FunctionBlock
VAR_INPUT
 Input1 : INT;
 Input2 : LREAL;
END_VAR
VAR_OUTPUT
 Output1 : LREAL;
END_VAR

Instance of the function block:

Technical introduction

TS6100-0030 59Version: 1.9

PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '1'}
 {attribute 'OPC.UA.DA.StructuredType' := '1'}
 fbFunctionBlock : FB_FunctionBlock;
END_VAR

Instance of the function block in the OPC UA namespace:

FunctionBlock node with StructuredType:

Alternatively, the function block can also receive a PLC attribute to make all instances of the function block
available as StructuredType.
{attribute 'OPC.UA.DA.StructuredType' := '1'}
FUNCTION_BLOCK FB_FunctionBlock
VAR_INPUT
 Input1 : INT;
 Input2 : LREAL;
END_VAR
VAR_OUTPUT
 Output1 : LREAL;
END_VAR

In order to deactivate StructuredType of a certain instance, use the following attribute:
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '1'}
 {attribute 'OPC.UA.DA.StructuredType' := '0'}
 fbFunctionBlock : FB_FunctionBlock;
END_VAR

Maximum size of the structure
The maximum size of a structure is 16 kB by default. Each STRUCT constantly exchanges data
with the basic ADS device, i.e. a large ADS message is sent with each read/write command of a
StructuredType. To prevent the ADS router from being flooded with large messages, the maximum
size is limited. You can change this default in the file TcUaDaConfig.xml. To do this, the key
<MaxStructureSize> must be added in the file, and a new value for the maximum size of a structure
must be set in bytes. If a structure exceeds <MaxStructureSize>, it is imported as FolderType,
where each structure element is available as a single node.

4.1.6.1.5 AnalogItemTypes
AnalogItemTypes are part of the OPC UA specification and allow meta information such as units to be
attached to a variable. You can define these items of meta information in the form of PLC attributes in the
TwinCAT 3 PLC.

Technical introduction

TS6100-003060 Version: 1.9

The following parameters can be set:

• EngineeringUnits: Units defined by the OPC UA specification
• EURange: Maximum value range of the variables
• InstrumentRange: Normal value range of the variables
• WriteBehavior: Behavior if the value range is exceeded during a write operation.

The following sample shows how the fillLevel variable is configured as an AnalogItemType. The following
parameters are hereby set:

• Unit: 20529 ("Percent", defined in the OPC UA specification)
• Max. value range: 0 to 100
• Normal value range: 10 to 90
• Write behavior: 1 (Clamping)

{attribute 'OPC.UA.DA' := '1'}
{attribute 'OPC.UA.DA.AnalogItemType' := '1'}
{attribute 'OPC.UA.DA.AnalogItemType.EngineeringUnits' := '20529'}
{attribute 'OPC.UA.DA.AnalogItemType.EURange' := '0:100'}
{attribute 'OPC.UA.DA.AnalogItemType.InstrumentRange' := '10:90'}
{attribute 'OPC.UA.DA.AnalogItemType.WriteBehavior' := '1'}
fillLevel : UINT;

EngineeringUnits can be configured using the IDs specified in OPC UA (Part 8 of the OPC UA specification).
The IDs are based on the widely used and accepted "Codes for Units of Measurement (Recommendation
N.20)" published by the "United Nations Center for Trade Facilitation and Electronic Business".
CommonCode, which specifies the three-digit alphanumeric ID, is converted by OPC UA according to
specification into an Int32 value and referenced (extract from OPC UA specification v1.02, pseudo-code):
Int32 unitId = 0;
Int32 c;
for (i=0; i<=3;i++)
{
 c = CommonCode[i];
 if (c == 0)
 break; // end of Common Code
 unitId = unitId << 8; // shift left
 unitId = unitId | c; // OR operation
}

Write behavior

When writing an AnalogItemType variable, you can define how the OPC UA Server should handle the new
value in relation to the value range. The following options are available:

• 0: All values are allowed and are accepted during a write operation.
• 1: The value to be written is truncated according to the value range.
• 2: The value to be written is rejected if it exceeds the value range.

4.1.6.1.6 Pointers and references

Pointer

Pointer variables (e.g. POINTER TO) are generally not represented by the server in the namespace. If a
pointer variable is located in a structure and this structure has been configured as Structured Data Type
[} 57], the structure will not be displayed as Structured Data Type but as FolderType.

References

Reference variables (REFERENCE TO) are represented as single variables by the server in the namespace
and can be read without restrictions. If a reference is inside a structure, this structure can no longer be made
available as StructuredTypes [} 57] in the server, but only as FolderType. However, access to the individual
reference variables within the structure works.

Technical introduction

TS6100-0030 61Version: 1.9

4.1.6.1.7 Type system
One of the biggest advantages of OPC UA is the meta-model, which can be used to provide base types as
well as to extend the type system with custom models. The same mechanism is used to represent real
objects (nodes) so that OPC UA Clients can determine an object type.

The OPC UA Server publishes type information from the IEC61131 world in its namespace. This includes not
only base types such as BOOL, INT, DINT, or REAL, but also extended type information such as the current
class (function block) or structure that represents an object.

Type information

Type information is part of the UA namespace. The OPC UA Server extends the basic type information as
follows:

• Local type information that is only valid for one runtime is stored in the same namespace as the
runtime symbols.

• Global type information that can be valid for different runtimes is stored in a separate global
namespace.

The type system is also virtually available and can be viewed in the Types area of the OPC UA Server:

Every non-standard data type is entered in the BeckhoffCtrlTypes area.

Basic principles

Assuming the TwinCAT 3 PLC consists of a PLC program with different STRUCTs. Each STRUCT is
represented as a node in a UA namespace, with each element of the structure as a subordinate node.

In this sample the STRUCT stSampleStruct consists of three subordinate elements: one variable nValue1 of
the type INT, one variable bValue2 of the type BOOL and a further STRUCT stSubStruct, which contains
only one subordinate element (variable nValue of the type INT).

Technical introduction

TS6100-003062 Version: 1.9

The structure itself is a regular variable in the UA namespace and has the data type ByteString. The clients
can therefore simply be connected to the root element (the structure itself), and its values can be read/
written by interpreting the ByteString. To simplify the interpretation of each subordinate element, the type
system contains more information about the structure itself, primarily in the instance reference:

In addition, the type system contains more information about ST_SampleStruct:

And in the references of ST_SampleStruct:

Overall, the type system can offer very useful information if a Client wants to interpret the structure further.

Technical introduction

TS6100-0030 63Version: 1.9

Object-orientated extensions

Assuming the TwinCAT 3 PLC runtime contains a PLC program whose structure can be visualized as
follows:

The two function blocks Scanner and Drive are derived from the base class Device by using object-oriented
extensions of IEC61131-3. The MAIN program now contains the following declarations:
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA':='1'}
 Scanner1 : Scanner;
 {attribute 'OPC.UA.DA':='1'}
 Scanner2 : Scanner;
 {attribute 'OPC.UA.DA':='1'}
 DriveX : Drive;
END_VAR

All three objects are of type Device, but also of their special data type. The OPC UA Server imports the
objects as follows:

The basic data type can now be determined in the reference of each object, e.g. object Scanner1:

Technical introduction

TS6100-003064 Version: 1.9

According to the basic IEC61131 program, the object Scanner1 is of the data type Scanner and also shows
which variables are contained and what type the variable is: input, output or internal (local) variable. The
diagram above shows that not only the variables of the actual function block are displayed here, but also the
derived variables of the base class. The entire IEC61131-3 inheritance chain is represented in the UA
namespace.

4.1.6.1.8 StatusCode
The OPC UA Server enables a PLC application to change the OPC UA StatusCode.

Perform the following steps to configure and affect the StatusCode of a variable:

• Creating a PLC structure [} 64]

• Overwriting StatusCode [} 65]

Creating a PLC structure

So that the data consistency is guaranteed, the concept of changing the OPC UA StatusCode is based on
StructuredTypes (see StructuredTypes [} 57]). Each variable whose UA StatusCode is to be affected must
be included in a STRUCT.

Create a new STRUCT and add a PLC attribute before the STRUCT definition. The STRUCT contains the
variable itself and a variable of the data type DINT, which represents the StatusCode and to which reference
is made in the attribute in front of the STRUCT definition.
{attribute 'OPC.UA.DA.STATUS' := 'quality'}
TYPE ST_StatusCodeOverride :
STRUCT
 value : REAL;
 quality: DINT;
END_STRUCT
END_TYPE

Now create an instance of this STRUCT, for example in the MAIN program, and add the regular PLC
attribute so that this instance becomes available via OPC UA.
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '1'}
 {attribute 'OPC.UA.DA.StructuredType' := '1'}
 stStatusCodeOverride : ST_StatusCodeOverride;
END_VAR

This instance is now available inside the OPC UA namespace as a StructuredType.

Technical introduction

TS6100-0030 65Version: 1.9

Overwriting StatusCode

To overwrite the UA StatusCode for the STRUCT, simply edit the value of the variable "quality". If you set
this, for example, to "-2147155968", the StatusCode of the STRUCT changes to "BadCommunicationError".

The value must be determined according to the definition in the OPC UA specification.

The following table lists only some of the available StatusCodes and their corresponding decimal
representation. Consult the official OPC UA specification for a more comprehensive list of the StatusCodes.

StatusCode Hex Decimal
BadUnexpectedError 0x80010000 -2147418112
BadInternalError 0x80020000 -2147352576
BadCommunicationError 0x80050000 -2147155968
BadTimeout 0x800A0000 -2146828288
BadServiceNotSupported 0x800B0000 -2146762752

UA StatusCodes
When calculating the decimal representation of other UA StatusCodes on the basis of their
hexadecimal representation, make sure that your computer is set to DWORD, e.g. the Windows
computer ("Programmer" view).

4.1.6.1.9 List of attributes and comments
The runtime variables for various OPC UA functions (e.g. data access or historical access) are configured
directly in the PLC program or in the TMC code editor (if using TwinCAT 3 C++). The advantage is that PLC
developers can decide directly in the program with which they are familiar whether and how a variable is to
be enabled for OPC UA. You activate a variable by inserting a comment and the corresponding OPC UA tag
in front of the variable, e.g.:

TwinCAT 3 PLC (TMC):

Technical introduction

TS6100-003066 Version: 1.9

{attribute 'OPC.UA.DA' := '1'}
bVariable : BOOL;

TwinCAT 2 PLC (TPY):
bVariable : BOOL; (*~ (OPC:1:available)*)

You can find a detailed description of the use of attributes and comments in the sections concerning the
corresponding runtime components:

• PLC
• C++
• I/O
• Matlab/Simulink

The following table shows an overview of all definable tags and their meaning. The subsections of the
corresponding function contain a detailed description of the functional principle.

TwinCAT 3 (TMC):

Technical introduction

TS6100-0030 67Version: 1.9

OPC UA function PLC tag C++ TMC code editor
(Optional features)

Meaning

Data Access (DA) {attribute 'OPC.UA.DA' :=
'0'}

Name: OPC.UA.DA
Value: 0

Locks a variable for
OPC UA, whereupon it is no
longer visible in the UA
namespace.

Data Access (DA) {attribute 'OPC.UA.DA' :=
'1'}

Name: OPC.UA.DA
Value: 1

Enables a variable for
OPC UA, whereupon it
becomes visible in the UA
namespace. This tag must
always be set if you want to
use a variable for UA.

Data Access (DA) {attribute
'OPC.UA.DA.Access' := 'x'}

Name: OPC.UA.DA.Access
Value: see right column

Sets read/write access for a
variable, depending on
parameter "x".
0 = none
1 = read-only
2 = write access only
3 = read and write access
(default if no tag is used)

Data Access (DA) {attribute
'OPC.UA.DA.Alias' := '1'}

Name: OPC.UA.DA.Alias
Value: see right column

Specifies x as node name in
the UA namespace, so-
called alias mapping.

Data Access (DA) {attribute
'OPC.UA.DA.Description' :=
'x'}

Name:
OPC.UA.DA.Description
Value: see right column

Sets a text for the OPC UA
attribute "Description".

Data Access (DA) {attribute
'OPC.UA.DA.StructuredTyp
e' := '0'}

Name:
OPC.UA.DA.StructuredTyp
e
Value: 0

Disables StructuredType for
a STRUCT or a function
block

Data Access (DA) {attribute
'OPC.UA.DA.StructuredTyp
e' := '1'}

Name:
OPC.UA.DA.StructuredTyp
e
Value: 1

Enables StructuredType for
a STRUCT or a function
block

Data Access {attribute
'OPC.UA.DA.Status' :=
'quality'}

Name: OPC.UA.DA.Status
Value: quality

Manually define the
StatusCode of a symbol in
the UA namespace. Only
for data structures. The
value "quality" specifies
which DINT subelement of
the data structure
determines the
StatusCode . See
corresponding article in the
documentation for more
information.

Historical Access
(HA) [} 76]

{attribute 'OPC.UA.HA' :=
'1'}

Name: OPC.UA.HA
Value: 1

Enables a variable for
Historical Access. Must be
used with {attribute
'OPC.UA.DA' := '1'}.

Technical introduction

TS6100-003068 Version: 1.9

OPC UA function PLC tag C++ TMC code editor
(Optional features)

Meaning

Historical Access
(HA) [} 76]

{attribute
'OPC.UA.HA.Storage' := 'x'}

Name: OPC.UA.HA.Storage
Value: see right column

Defines the storage location
for Historical Access,
depending on parameter "x"
1 = RAM
2 = File
3 = SQL Compact
Database
4 = SQL Server Database

Historical Access
(HA) [} 76]

{attribute
'OPC.UA.HA.Sampling' :=
'x'}

Name:
OPC.UA.HA.Sampling
Value: see right column

Determines the sampling
rate at which the variable
values are to be stored, in
[ms] depending on the
parameter "x"

Historical Access
(HA) [} 76]

{attribute
'OPC.UA.HA.Buffer' := 'x'}

Name: OPC.UA.HA.Buffer
Value: see right column

Defines the maximum
number of values that
remain in the data memory,
depending on the
parameter "x".

TwinCAT 2 (TPY):

OPC UA function PLC tag Meaning
Data Access (DA) (*~ (OPC:0:not available) *) Locks a variable for OPC UA, whereupon

it is no longer visible in the UA
namespace.

Data Access (DA) (*~ (OPC:1:available) *) Enables a variable for OPC UA,
whereupon it becomes visible in the UA
namespace. This tag must always be set
if you want to use a variable for UA.

Data Access (DA) (*~ (OPC_PROP[0005]:1:read-only) *) Sets the write protection for a variable.
Must be used together with (*~ (OPC: 1:
available) *).

Data Access (DA) (*~ (OPC_UA_PROP[5100] : x: Alias
name) *)

Specifies x as node name in the UA
namespace, so-called alias mapping.

Historical Access (HA)
[} 76]

(*~ (OPC_UA_PROP[5000]:x:Storage
media) *)

Enables a variable for "Historical
Access". Must be used together with (*~
(OPC: 1: available) *). x defines the
storage medium for storing the data
values:
1 = RAM
2 = File
3 = SQL Compact Database
4 = SQL Server Database

Historical Access (HA)
[} 76]

(*~ (OPC_UA_PROP[5000]
[1]:x:SamplingRate) *)

Determines the sampling rate at which
the variable values are to be stored, in
[ms] depending on the parameter "x"

Historical Access (HA)
[} 76]

(*~ (OPC_UA_PROP[5000][2]:x:Buffer) *) Defines the maximum number of values
that remain in the data memory,
depending on the parameter "x".

Technical introduction

TS6100-0030 69Version: 1.9

4.1.6.2 C++
This section describes how to configure the namespace of the TwinCAT OPC UA Server in order to obtain
access to the symbols of a TwinCAT 3 C++ module. For this you can either use the OPC UA Configurator or
carry out the configuration directly in the file ServerConfig.xml of the OPC UA Server.

This section contains the following topics:

• Step 1: Project-related settings [} 69]

• Step 2: Configuring the UA Server [} 70]

Step 1: Project-related settings

To configure certain symbols contained in an instance of a C++ module in such a way that they are
accessible via OPC UA, the following settings are necessary in the corresponding C++ module instance in
TwinCAT XAE.

1. The OPC UA Server requires the TMI symbol file, which is not passed to the target runtime by default.
Enable the transfer by setting the following options:

ð The generated TMI file is named after the Object ID, e.g. "Obj_01010020.tmi" and stored in the
TwinCAT boot directory, e.g. C:\TwinCAT\3.1\Boot\Tmi.

Technical introduction

TS6100-003070 Version: 1.9

2. Select which symbols are to be made accessible to the corresponding variables by checking the Create
symbol checkbox in the TMC code generator. Then execute the TMC CodeGenerator.

Step 2: Configuring the UA Server

You can configure and parameterize the access to TwinCAT 3 C++ modules simply with the help of the
OPC UA Configurator. To do this, add a new device of the type "CPP TwinCAT 3 (TMI) filtered" in the Data
Access area. The SymbolFile field must point to the TMI file created for the C++ module instance. This TMI
file is located in the TwinCAT boot directory, e.g. C:\TwinCAT\3.1\Boot\Tmi, and is named after the ObjectID
of the TwinCAT 3 C++ module instance.

The configurable parameters describe the following functions:

Technical introduction

TS6100-0030 71Version: 1.9

Parameter Description Possible values
ADS Port Defines the ADS port under which the C++ module

instance is accessible. The ADS port can be read in the
properties of the C++ task.

351
352
…

AutoCfg First defines the type of the target runtime used for
communication, e.g. PLC, C++, I/O. A further distinction
can then be made within these categories.
Each AutoCfg option is available as an unfiltered or filtered
option. Filtered means the user can determine which C++
symbols are made publicly accessible via OPC UA. When
using an unfiltered option, each C++ symbol is published
to OPC UA.

4020 CPP TwinCAT 3
(TMI)
4021 CPP TwinCAT 3
(TMI) filtered

AutoCfgSymFile Symbol file (TMI) of the corresponding C++ module
instance.

Path to the symbol file.
(TMI)

IoMode Defines the method for accessing symbols. 1 (access via handle -
default)

ArraySubItemLegacy
Support

By default, subelements of an array are not mapped as
separate nodes in the UA namespace. Instead, only the
array is mapped as a single element. Nonetheless,
UA Clients can access subelements via their
"IndexRange". (Some older OPC UA Clients do not yet
support this option).
The flag was introduced so that access is nevertheless
possible for these clients. It ensures that every array
position is displayed as a separate node in the UA
namespace. This leads to higher memory requirement of
the OPC UA Server.

0 (disabled - default)
1 (enabled)

Disabled Disables the C++ module instance in the UA namespace,
so that the corresponding node is not displayed.
It is advisable to enable this parameter if certain C++
runtimes are not yet available at the time of project
planning, for example because the corresponding devices
are not yet connected to the network.

0 (disabled - default)
1 (enabled)

4.1.6.2.1 Arrays
By default arrays are regarded as individual nodes in the UA namespace. This means that if you define, for
example, an array dyn_BOOL[10] in the PLC (and have also enabled it for OPC UA), it will subsequently
appear in the UA namespace as follows:

The advantage of this approach is a considerable reduction in the complexity of the UA namespace and in
memory consumption, since not every position of an array needs to be made available as an individual node
in the namespace. However, modern UA Clients can continue to access the individual array positions via the
so-called "RangeOffset".

In order to support older UA Clients that don’t offer this feature, however, you can also make the positions of
an array available as individual nodes in the UA namespace. It is illustrated as follows:

Technical introduction

TS6100-003072 Version: 1.9

This setting is available by activating the Legacy Array Handling option in the UA Configurator within the
respective namespace configuration.

Depending on the scope of the PLC project, the UA namespace can become significantly more complex,
which in turn is reflected in an increased memory utilization of the UA Server.

Changes to the settings listed above only become active after restarting the UA Server.

4.1.6.3 Matlab/Simulink
This section describes how to use TwinCAT 3 TMI files for TcCOM modules to construct the namespace of
the OPC UA Server.

This section contains the following topics:

• General Information [} 72]

• Generating and importing a TMI file for TcCom modules [} 72]

• Filtered or unfiltered mode [} 74]

General Information

If you use TwinCAT 3 C++ or the Matlab/Simulink integration, you can generate a symbol file (TMI file) for
the arising TcCom modules from the TwinCAT 3 XAE.

The OPC UA Server imports this TMI file and generates its namespace using the symbol information
contained in the file. The namespace can then consist of variables (= symbols) that are contained in the
respective TcCom module.

The import of TMI files is configured in the OPC UA Configurator.

Generating and importing a TMI file for TcCom modules

In order for a TMI file to be generated and for TwinCAT to automatically copy the TMI file to the target
system, enable the option Copy TMI to Target in the settings of the TcCOM module.

Technical introduction

TS6100-0030 73Version: 1.9

After activating the project, the boot directory of the target system contains the TMI file for the TcCOM
module. This file can then be imported into the OPC UA namespace with the help of the
OPC UA Configurator.

The configured OPC UA namespace then contains a representation of the Matlab/Simulink block diagram:

Technical introduction

TS6100-003074 Version: 1.9

Filtered or unfiltered mode

The TE1400 Target for Simulink product offers various setting options for selecting variables that are to be
released via OPC UA. These settings are described in the corresponding TE1400 product documentation.

4.1.6.4 I/O task
This section describes how you can make IO task variables accessible via the data access functions of the
TwinCAT OPC UA Server.

This section contains the following topics:

• General Information [} 75]

• Step 1: Configure a TwinCAT I/O task to enable symbol handling. [} 75]

• Step 2: Add the I/O task to the OPC UA namespace [} 76]

https://infosys.beckhoff.com/content/1033/te1400_tc3_target_matlab/13795261963.html?id=4779952113069292021

Technical introduction

TS6100-0030 75Version: 1.9

General Information

You can publish the variables of a task with process image via OPC UA.

The way in which the variables are displayed and how they are communicated with is determined by various
parameters. You can define these parameters with the help of the OPC UA Configurator or directly in the
configuration file ServerConfig.xml.

The following table provides an overview of all parameters that are important when accessing the I/O task.

Parameter Description Possible values
ADS Port Defines the ADS port under which the I/O task is

accessible. The ADS port can be read out in the properties
of the I/O task.

301
302
…

AutoCfg Initially defines the type of target runtime used for the
communication, e.g. PLC, C++, I/O. A finer distinction can
subsequently be made within these categories.
Each AutoCfg option is available as an unfiltered or filtered
option. Filtered means that users can determine which I/O
variables are made publicly available to the OPC UA via
comments. When using an unfiltered option, each task
variable is published to OPC UA.

107 I/O TwinCAT 2/3
108 I/O TwinCAT 2/3
filtered

AutoCfgSymFile Specifies the path of the CurrentConfig.xml file, which is
normally located in the folder C:\TwinCAT\3.1\Boot\.

Path of
CurrentConfig.xml

Disabled Disables the I/O task in the UA namespace, so that the
corresponding node is not displayed. It is advisable to
enable this parameter if certain runtimes are not yet
available at the time of project planning, for example,
because the corresponding devices are not yet connected
to the network.

0 (disabled - default)
1 (enabled)

The following steps describe how to import variables from an I/O task into the UA namespace. This requires
the OPC UA Server and the runtime to be on the same computer.

Step 1: Configure a TwinCAT I/O task to enable symbol handling.

Open the I/O task settings and enable the Create symbols option. At this point, note the ADS port of the I/O
task (in the example, this is 301).

TwinCAT 3:

Technical introduction

TS6100-003076 Version: 1.9

TwinCAT 2:

Step 2: Add the I/O task to the OPC UA namespace

Configure the OPC UA Server so that it offers access to the I/O task. Using the OPC UA Configurator, add a
new device of type "IO TwinCAT 2/3" and configure its settings for AdsNetId, AdsPort and SymbolFile (path
to the CurrentConfig.xml file).

After setting the corresponding properties, restart the OPC UA Server to enable these settings.

4.1.7 Historical Access
This section describes the steps necessary to configure the variables in the namespace of the
OPC UA Server for Historical Access (HA).

Historical Access is an OPC UA function, in which the variable values are either stored permanently on a
data storage device (file or database) or in the device RAM, so that they can be retrieved later by the client.
The way in which the OPC UA Server reads and stores the variable values can be configured.

The Historical Access configuration is available for variables from any runtime system (PLC, C++, ...). As a
prerequisite, the respective variable must first be enabled for OPC UA. For details on how to do this please
refer to the respective document under "Data Access".

Technical introduction

TS6100-0030 77Version: 1.9

Requirements and recommendations

The following prerequisites apply to the use of Historical Access:

• The runtime system whose symbols are to be stored for Historical Access must be configured for Data
Access (and the respective variables must be enabled).

• In order to use an SQL Compact database as a storage medium, SQL Compact Runtime 3.5 SP2 must
be installed on the computer on which the OPC UA Server is running.

• SQL Compact databases are also supported under Windows CE.
• SQL Server databases are not supported under Windows CE.
• The following MS SQL Server versions are supported: 2017, 2019
• The following recommendations apply when using the respective memory type:

Main memory: number of entries < 5000
File system: number of entries < 10000
Database: number of entries >= 10000

The following memory types are supported:

Technical introduction

TS6100-003078 Version: 1.9

Memory type TF6100 Server Setup
version

Operating systems Description

Main memory 4.x and 5.x Windows, Windows CE,
TwinCAT/BSD

Saves the values in the RAM
of the device on which the
OPC UA Server is running. No
further parameters are
required. After restarting the
device, the stored values are
no longer available. The
storage medium is therefore
not persistent. The above
requirements and
recommendations apply.

File system 4.x Windows, Windows CE Saves the values in several
files, the location of which can
be specified. Each symbol
configured for this storage
medium is assigned its own file
in this directory. In addition,
there is a backup copy of the
file for each symbol, which is
created when the buffer size is
reached. The contents of the
data file are then saved as a
backup copy, and a new file is
created. The above
requirements and
recommendations apply.

SQL Compact
database

4.x Windows, Windows CE Saves the values to an SQL
Compact database, the
location of which can be
specified. The above
requirements and
recommendations apply.

MS SQL Server
database

4.x Windows Saves the values in an SQL
Server database that is
referenced with various
parameters. The above
requirements and
recommendations apply.

TwinCAT Analytics 5.x Windows, TwinCAT/BSD Saves the values in a file
format that corresponds to the
TwinCAT Analytics storage
format. The data can therefore
be used further with the
TwinCAT Analytics Toolchain.
This format has replaced the
old file-based storage format
since TF6100 version 5.x (see
above).

The individual memory types are configured as HistoryAdapters in the server. This is done via the TwinCAT
OPC UA Server configurator. Each HistoryAdapter (except for "Volatile" -> RAM) can be used repeatedly,
e.g., if the historical values for individual variables are to be stored in different data memories. In the
HistoryNodes area, the individual nodes are configured, assigned to a data memory and assigned a
SamplingRate and a maximum size for the ring buffer to be used in the data memory.

The attribute HistoryWriteable="true" ensures that the data memory for this node can be filled with
values via a HistoryUpdate() call. Such a call is provided, for example, by the TwinCAT OPC UA Client via
the function block UA_HistoryUpdate. If you configure a node with this attribute, then the server doesn't
normally "sample" the values itself, but receives them from other clients. In such a configuration the
SamplingRate is therefore usually 0.

Technical introduction

TS6100-0030 79Version: 1.9

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

4.1.7.1 Display historical data

Displaying Historical Access values in an OPC UA Client

The following step-by-step instructions describe how to configure the UA Expert software in order to access
historical data.

1. Start the UA Expert software and connect to the OPC UA Server.

Technical introduction

TS6100-003080 Version: 1.9

2. Add a new History Trend View.

3. Browse the PLC1 namespace and use drag & drop to add the PLC variables _HistoryDB,
_HistoryDBcompact, _HistoryFast and _HistorySlowPersist.

Technical introduction

TS6100-0030 81Version: 1.9

ð You can now use the Start Time and End Time controls to specify the desired time period for which the
symbol values are to be displayed, or you can start a Cyclic Update for these variables if necessary.

Display Historical Access values in the TwinCAT Target Browser

If you use the TwinCAT Analytics storage format in your Historical Access configuration, you can also get the
stored values via the TwinCAT Analytics Toolchain, for example the TwinCAT Target Browser. To do this,
add the directory that you have defined in your configuration for saving the historical values in the
TcAnalytics File tab of the TwinCAT Target Browser. The saved values are then displayed as records in the
usual TwinCAT Analytics form and can be processed further.

Technical introduction

TS6100-003082 Version: 1.9

4.1.8 Alarms and Conditions
The steps required to configure OPC UA Alarms and Conditions (A&C) on the OPC UA Server are described
in this section. The basic concept is independent of TwinCAT runtime, which means the configuration steps
for PLC, C++, TcCOM runtime or only I/O task are the same.

OPC UA Alarms and Conditions (Part 9 of the OPC UA specification) describes a model for monitoring
process values and outputting alarms and events when a runtime symbol changes its state.

Requirements

The following requirements apply to the use of OPC UA Alarms and Conditions:

• The runtime symbol to be monitored must be available in the namespace.
• The OPC UA Client must support Alarms and Conditions. In this section UA Expert (from Unified

Automation) is used as the reference UA Client.

General Information

Execute the following steps once to release a symbol for Alarms and Conditions:

• Step 1: Activating runtime symbol for data access [} 82] (so that the symbol is generally accessible
via OPC UA.)

• Step 2: Activating A&C for a symbol [} 82]

• Step 3: Transferring your own user data with an event [} 83]

• Step 4: Triggering an event using the FireEvent method [} 85]

• Step 5: Configuring multilingual alarm texts [} 86]

• Step 6: Registering A&C with a reference OPC UA Client [} 86]

These steps are explained in more detail below. At the end of this section you will find information about
receiving configured alarms via A&C with the UA Expert Reference Client.

Supported alarm types

The implementation of OPC UA Alarms and Conditions currently supports the following alarm types:

• LimitAlarmType: Define different limits for a symbol. If a limit is reached, the UA Server issues an
alarm.

• OffNormalAlarmType: Define a value that is "normal". If the current value deviates from the "normal"
value, the UA Server issues an alarm.

Step 1: Activating runtime symbol for data access

A variable must be available in the OPC UA Server in order for it to be configured for A&C. To do this in the
case of a PLC variable, provide it with an attribute (see PLC [} 49]).

Step 2: Activating A&C for a symbol

You can configure a runtime symbol for A&C with the OPC UA Server Configurator. The Configurator has a
simple graphical user interface for editing the XML file on which it is based. The configurator is available in
two versions, depending on the setup version: Standalone or integrated in Visual Studio [} 127].

The following program extract shows a sample of this XML file to better understand the general behavior and
structure of the A&C implementation.
<TcUaAcConfig>
 <ConditionController Name="ConditionController1" >
 <Condition Name="Counter" Severity="200">
 <LimitAlarmType LowLowLimit="-10" LowLimit="0" HighLimit="10" HighHighLimit="20"
MessageNormal="100" MessageLowLow="10" MessageLow="11" MessageHigh="12" MessageHighHigh="13"/>
 <ItemToMonitor SamplingRate="100" NS="urn:[NodeName]:BeckhoffAutomation:Ua:PLC1"
NodeId="s=MAIN.nCounter1" />
 </Condition>
 <Condition Name="Switch" Severity="500">

Technical introduction

TS6100-0030 83Version: 1.9

 <OffNormalAlarmType Normal="0" MessageNormal="100" MessageOffNormal="20" />
 <ItemToMonitor SamplingRate="100" NS="urn:[NodeName]:BeckhoffAutomation:Ua:PLC1"
NodeId="s=MAIN.bSwitch" />
 </Condition>
 <Condition Name="Struct" Severity="300">
 <LimitAlarmType LowLowLimit="-10" LowLimit="0" HighLimit="10" HighHighLimit="20"
MessageNormal="100" MessageLowLow="10" MessageLow="11" MessageHigh="12" MessageHighHigh="13"/>
 <ItemToMonitor SamplingRate="100" NS="urn:[NodeName]:BeckhoffAutomation:Ua:PLC1"
NodeId="s=MAIN.stStruct" />
 </Condition>
 </ConditionController>
 <ConditionController Name="ConditionController2" >
 <Condition Name="Counter2" Severity="200">
 <LimitAlarmType LowLowLimit="-10" LowLimit="0" HighLimit="10" HighHighLimit="20"
MessageNormal="100" MessageLowLow="10" MessageLow="11" MessageHigh="12" MessageHighHigh="13"/>
 <ItemToMonitor SamplingRate="100" NS="urn:[NodeName]:BeckhoffAutomation:Ua:PLC1"
NodeId="s=MAIN.nCounter2" />
 </Condition>
 </ConditionController>
</TcUaAcConfig>

A "condition" defines the runtime symbol to be monitored and the alarm limits and texts. Each condition is
organized in a so-called "ConditionController", the object that the OPC UA Clients subsequently subscribe to.

When creating a condition, you must specify the NamespaceName (NS) and NodeID for referring to the
UA node to be monitored. The standalone configurator provides a simple browsing mechanism for selecting
a node. The configurator integrated in Visual Studio uses the target browser (Extension - OPC UA). In XML,
the placeholder [NodeName] in NamespaceName can be used to switch the XML file between different
hardware systems. NamespaceName always contains the host name of the IPC or Embedded PC on which
the OPC UA Server is running. If [NodeName] is selected, this tag will be replaced by the host name of the
current IPC or Embedded PC on which the UA Server is running.

SamplingRate determines how often the UA Server should request a value from the node to determine
whether one of the alarm limits has been reached.

The alarm texts are identified by an ID. The ID uniquely identifies an alarm text from the resource file (see
Step 5: Configuring multilingual alarm texts [} 86]).

Step 3: Transferring own user data with an alarm

Alarms can contain fields with their own user data, which complement the data output with the alarm. These
user data fields can be created and filled out in the runtime application. To do this, create a STRUCT and
name its first element "value". In case of an alarm, all the following elements are then sent in an additional
user data field.

Sample PLC application:
TYPE ST_CustomStruct :
STRUCT
 value : INT;
 data : ST_SomeStruct;
END_STRUCT
END_TYPE

TYPE ST_SomeStruct :
STRUCT
 Data1 : INT;
 Data2 : REAL;
 Data3 : LREAL;
END_STRUCT
END_TYPE

The instance of ST_CustomStruct is then enabled for data access via the regular mechanism, e.g. in
TwinCAT 3: To do this the STRUCT must be activated as a StructuredType [} 57].
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA' := '1'}
 {attribute 'OPC.UA.DA.StructuredType' := '1'}
 stCustomStruct : ST_CustomStruct;
END_VAR

Technical introduction

TS6100-003084 Version: 1.9

When logging on to a ConditionController, the OPC UA Clients must subscribe to special
AlarmConditionTypes, i.e. "BkUaLimitAlarmType" and "BkUaOffNormalAlarmType", so that they can receive
the special user data fields when an alarm is received.

The OPC UA Client then receives the user data in the fields BkUaEventData and BkUaEventValue of the
incoming alarm. In the above sample, these are the value of the PLC variables and the user data
represented by the PLC structure ST_SomeStruct.

Technical introduction

TS6100-0030 85Version: 1.9

Step 4: Triggering an event using the FireEvent method

Each ConditionController includes a FireEvent method with which the OPC UA Clients can trigger a general
event with user-defined EventFields.

If the method is executed, an event is output on the OPC UA Server. Other OPC UA Clients can receive
these events when they subscribe to the corresponding ConditionController.

The user-defined EventFields are appended to the event as "UserEventData". This data can be received by
OPC UA Clients that are logged on to the SimpleEventType "UserEventType".

Technical introduction

TS6100-003086 Version: 1.9

Step 5: Configuring multilingual alarm texts

The A&C implementation in the OPC UA Server supports the use of multilingual alarm texts. The alarm text
that is used depends on the language with which the UA Client connects to the Server.

Alarm texts are configured in XML files. There is a separate file for each language. These files are located in
the res (Resource) folder on the OPC UA Server. With the configurator you can simply add or remove alarm
texts without having to directly edit the XML files. Each alarm text has its own ID, which occurs only once in
the file.

Sample:
<TcOpcUaSvrRes Lang="en">
 <Text ID="0">Text not available</Text>
 <Text ID="1">Some alarm text</Text>
 <Text ID="2">Value is High range</Text>
 <Text ID="3">Value is HighHigh range</Text>
 <Text ID="4">Value is OffNormal</Text>
 ...
</TcOpcUaSvrRes>

Step 6: Registering A&C with a reference OPC UA Client

An OPC UA Client must log on to a ConditionController so that it can receive events for conditions that are
configured for this particular ConditionController. The UA Expert provides functions for subscribing to and
receiving UA events.

After you have started the UA Expert and established a connection with the OPC UA Server, add a new
document view, Event View, to your working area.

Technical introduction

TS6100-0030 87Version: 1.9

You can subscribe to a ConditionController by dragging the corresponding object in Event View. The events
for this ConditionController are displayed in the Event Window.

It may be necessary to subscribe to special alarm and/or event types in order to receive all fields of an
incoming event or alarm.

4.1.9 Method Call
RPC methods can be called via the TwinCAT OPC UA Server in the PLC [} 90] or in C++ [} 91]. The
handling of an RPC method call via OPC UA is performed in the same way on OPC UA level for both
options:

• If an RPC method has been executed successfully, the server returns the status code "Good" as
feedback for the OPC UA method call.

• If the RPC method was not called, the server returns an error message in the "Bad_XYZ" format,
depending on the error that occurred.

• If the RPC method was called successfully but the response could not be read in the server, the status
code "OpcUa_GoodPostActionFailed" is returned from the server.

4.1.9.1 Job methods
The concept of job methods has a fundamental difference compared to regular method calls: the OPC UA
methods are no longer mapped 1:1 to a PLC method, but instead to a function block with a specific
signature. This also allows method calls to be realized that take longer than one cycle from the perspective
of a PLC application.

The PLC-side structure of such a job method is defined as follows. There is a function block that is defined
as a job method via a PLC attribute. The function block then contains various PLC methods that are
accessed by the TwinCAT OPC UA Server in the form of a handshake mechanism in order to be able to
provide them as OPC UA methods.

Technical introduction

TS6100-003088 Version: 1.9

Method Description
Start Is called by the server as soon as an OPC UA Client calls the OPC UA

method. Contains the input parameters of the OPC UA method call as
VAR_INPUT.
The HRESULT return value of the method can be used to directly return an
OPC UA Status Code in its decimal representation, e.g. "0" for the Status
Code "Good". The numerical value of a Status Code defined in the OPC UA
specification is used as the value. A definition of all available Status Codes
can be viewed here:

http://www.opcfoundation.org/UA/schemas/StatusCode.csv
Typically, this method returns the value "0" (Good). However, the PLC
developer can also decide to validate the input parameters, for example. In
the event of an error, the OPC UA method call could then fail, e.g. with the
return value "2158690304" (BadInvalidArguments).

CheckState Is called cyclically by the server to check whether the job is still being
processed or not. As long as the job is still being processed, this method
returns the value "Busy", otherwise "Done". Output parameters for the
OPC UA method are declared here as VAR_OUTPUT.
The HRESULT return value of the method can be used to directly return an
OPC UA Status Code in its decimal representation, e.g. "0" for the Status
Code "Good". The numerical value of a Status Code defined in the OPC UA
specification is used as the value. A definition of all available Status Codes
can be viewed here:

http://www.opcfoundation.org/UA/schemas/StatusCode.csv
If the job is processed successfully, this method typically returns the value
"0" (Status Code "Good"). However, the PLC developer can also decide that
the OPC UA method call should fail in the event of an error, e.g. with the
return value "2151415808" (BadOutOfRange) or the more general
"2147483648" (Bad).

Abort This method is called by the server if a job has to be aborted, for example if
the server is shut down or restarted. The PLC developer then has the
opportunity to clean up his PLC code accordingly.

Workflow

The handshake mechanism between server and PLC can be represented in simplified form as follows.

http://www.opcfoundation.org/UA/schemas/StatusCode.csv
http://www.opcfoundation.org/UA/schemas/StatusCode.csv

Technical introduction

TS6100-0030 89Version: 1.9

Sample

The following sample is also available in executable form at Samples [} 254]. This part of the documentation
is intended to explain the basic concepts of how the system works. The sample "simulates" a job method call
that takes about four seconds to be processed in the PLC. This was realized with the help of a timer, which
was declared and used in the function block part of the job. The State Machine of the function block delays
the completion of the job (the CheckState handshake method returns "busy") and the job is not completed
until the timer has expired (the CheckState handshake method returns "done").

In this sample, a function block called FB_Job was created for the OPC UA method with the name "MyJob",
which has the required signature mentioned above.

The function block declaration contains the OPC.UA.DA.JobMethod attribute and the name of the OPC UA
method to be used as its value.
{attribute 'OPC.UA.DA.JobMethod' := 'MyJob'}
FUNCTION_BLOCK FB_Job
VAR
END_VAR

The three methods Abort, CheckState and Start contain the attribute TcRpcEnable in their declaration (so
that the methods can also be called via ADS). Sample:

Technical introduction

TS6100-003090 Version: 1.9

{attribute 'TcRpcEnable' := '1'}
METHOD Start : HRESULT

{attribute 'TcRpcEnable' := '1'}
METHOD Abort : HRESULT

{attribute 'TcRpcEnable' := '1'}
METHOD CheckState : HRESULT

The input parameters of the OPC UA method are declared as VAR_INPUT in the PLC method Start().
Comments after the variables are used as a description of the respective OPC UA input parameter. Sample:
{attribute 'TcRpcEnable' := '1'}
METHOD Start : HRESULT
VAR_INPUT
 a : INT; // some description
 b : LREAL; // some description
 c : BOOL; // some description
 d : ST_Complex_1; // some description
END_VAR

The output parameters of the OPC UA method are declared as VAR_OUTPUT in the PLC method
CheckState(). Comments after the variables are used as a description of the respective OPC UA output
parameter. Sample:
{attribute 'TcRpcEnable' := '1'}
METHOD CheckState : HRESULT
VAR_OUTPUT
 a : INT; // some description
 b : LREAL; // some description
 c : BOOL; // some description
 d : ST_Complex_1; // some description
END_VAR

(In this sample, the values of the input parameters are applied 1:1 to the output parameters for illustrative
purposes. The input and output parameters are therefore identical.)

4.1.9.2 PLC
Method calls are a fundamental part of the OPC UA specification. With the introduction of these
functionalities into the PLC world, TwinCAT 3 offers the possibility of efficiently executing RPC calls in the
IEC61131 world and thus reduces the classic handshake patterns for communication between devices. The
OPC UA Server imports PLC methods such as OPC UA methods via its TMC import.

IEC61131 method
Although the PLC method appears to be a normal method in the UA namespace, it is still an
IEC61131 method that runs within the real-time context and therefore falls under the context of a
real-time task. The PLC developer must therefore take precautions so that the execution time of the
method matches the task cycle time.

Technical introduction

TS6100-0030 91Version: 1.9

Methods in IEC61131-3

Methods in the IEC61131 world are always configured below a function block. At high-level language level,
the function block can be regarded as the surrounding class of the method. You have to declare the method
itself with a special PLC attribute so that the TwinCAT system knows that the method is to be activated for a
remote method call.
{attribute 'TcRpcEnable':='1'}
METHOD M_Sum : INT
VAR_INPUT
 a : INT;
 b : INT;
END_VAR

Filtered or unfiltered mode

Depending on the import mode used, you also have to activate the surrounding function block for the OPC
UA access. This can be done by using the normal PLC attributes for OPC UA access.

Note that you only need to use the PLC attributes if the filtered mode is used to enable symbols from the
PLC to be accessed via OPC UA. This is the default setting of the OPC UA Server.

Sample:

The method M_Sum is located in the function block FB_Mathematics. The declaration of the function block
instance uses the PLC attribute that has enabled the function block and thus the method for OPC UA
access.
PROGRAM MAIN
VAR
 {attribute 'OPC.UA.DA':='1'}
 fbMathematics : FB_Mathematics;
END_VAR

Pointer variables as VAR_IN_OUT
Pointer variables defined as VAR_IN_OUT are not handled by the PLC or the TwinCAT OPC UA
Server. A corresponding Trace event is written to the server trace.
08:47:37.677Z|1|11A0* Error when importing method 'METH_PArray': VAR_IN_OUT pointer
variables are not allowed!

4.1.9.3 C++
Method calls are a fundamental part of the OPC UA specification. With the introduction of these
functionalities into the PLC world, TwinCAT 3 offers the possibility of efficient execution of RPC calls in the
C++ real-time context and thus reduces the classic handshake patterns for communication between devices.
The OPC UA Server imports C++ methods such as OPC UA methods via its TMI import.

Real-time method
Although the C++ method appears to be a normal method in the UA namespace, it is still a real-time
method that runs within the real-time context and therefore falls under the context of a real-time
task. The TwinCAT C++ developer must therefore take precautions so that the execution time of the
method matches the task cycle time.

Technical introduction

TS6100-003092 Version: 1.9

Methods in TwinCAT 3 C++

TwinCAT modules could implement interfaces with predefined methods (see TcCOM modules). The method
itself must be enabled for RPC calls during its definition (see TwinCAT Module Class Wizard documentation)
so that the OPC UA Server knows that it is ready for execution.

So that the return value of the method is available, the corresponding option Include Return Value must be
activated. Note that the interface under which the method was created must be implemented.

Technical introduction

TS6100-0030 93Version: 1.9

Filtered or unfiltered mode

Depending on the import mode used, you have to declare the method for the access via OPC UA. This can
be done by using the TMC Code editor and the usual OPC UA attributes as optional properties.

4.1.10 File transfer

4.1.10.1 Access to files and folders via OPC UA
From OPC UA specification version 1.02, OPC UA contains a specialized ObjectType for file transfer, which
is described in Appendix C of the specification. This special ObjectType called "FileType" describes the
information model for the data transmission. Files can be modeled as simple variables in OPC UA with
ByteStrings. FileType is a file with methods for accessing the file. The OPC UA specification provides further
information about FileType and the structure and handling of the underlying methods and properties for
accessing a file in the OPC UA namespace.

Beckhoff has implemented a generic way to load files and folders from a local hard disk into the OPC UA
namespace. Each file is represented by a FileType and allows read and write operations for this file. In
addition, each folder contains a CreateFile() method to create new files on the hard disk and a separate
FolderPath to specify the actual path to the folder on the OPC UA Server.

Technical introduction

TS6100-003094 Version: 1.9

FileTransfer in the OPC UA Server Device Manager
Only the OPC UA Server of the Beckhoff Device Manager (IPC diagnostics) has this function. The
TwinCAT OPC UA Server also provides some parts of this file transfer. However, the general
function that enables disclosure of all files and folders is only available in the OPC UA Server, which
is part of the device manager that is automatically available on every Beckhoff Industrial PC or
Embedded PC. See the Device manager documentation for more information.

Configuration

FileType objects are created in a separate namespace called "FileTransfer". An XML file (files.xml) is used to
configure this namespace and to select the files and folders available via OPC UA. The file must be located
in the same directory as the executable file of the OPC UA Server. The system must be restarted in order to
activate the configuration. The XML file contains information about the folder path and a search mask that
defines which files are published in the OPC UA namespace:
<Files>
 <FolderObject DisplayName="TwinCAT">
 <FolderObject DisplayName="3.1">
 <FolderObject DisplayName="Boot" Path="c:/TwinCAT/3.1/Boot" Search="*.*" >
 <FolderObject DisplayName="Plc" Path="c:/TwinCAT/3.1/Boot/Plc" Search="*.*" ></FolderObject>
 <FolderObject DisplayName="Tmi" Path="c:/TwinCAT/3.1/Boot/Tmi" Search="*.*" ></FolderObject>
 </FolderObject>
 </FolderObject>
 </FolderObject>
</Files>

Sample: Reading a file with UA Expert

General file handling is described in Appendix C of the OPC UA specification. Reading a file via UA can be
divided into the following steps:

• Calling the Open method of a file. This method returns a file handle that must be saved for later
access. The mode defines whether the file is read or written to (see File modes [} 95]).

http://infosys.beckhoff.com/content/1033/devicemanager/

Technical introduction

TS6100-0030 95Version: 1.9

• Determining the file size with the property "Size". In this way, the entire file can be read when the Read
method is called.

• Calling the Read method. Inserting the file handle and file size as inputs. Selecting the destination
folder in which the file contents are to be saved AFTER the method call.

• Calling the Close method to enable the file handle.

File modes

The following table shows all available file modes.

Field Bit Description
Read 1 The file is opened for reading. If this bit is not set, Read cannot be

executed.
Write 4 The file is opened for writing. If this bit is not set, Write cannot be

executed.
EraseExisting 6 The existing file contents are deleted, and an empty file is made

available.
Append 10 The file is opened and positioned at the end, otherwise it is moved to

the beginning. This position can be changed with SetPosition.

General behavior

The number of files opened in parallel is in principle unlimited and is subject only to any restrictions of the
underlying operating system. However, files are subject to a 60 seconds timeout. After this timeout, open
files are not automatically closed immediately. Instead, they are marked as "to close". If the corresponding
FileHandle is used for a read/write operation during this time, the timeout is reset and the FileHandle
remains valid. If an Open operation is performed on the same file during this time, the old FileHandle is
released. If an OPC UA Client disconnects from the server and still has files open, all FileHandles belonging
to this session will be closed automatically.

4.1.11 Global Discovery Service
The TwinCAT OPC UA Server allows integration of the server application into a Global Discovery Service
(GDS), so that it can issue certificates for the server and provide certificate revocation lists (CRL). Two
models are supported, push and pull, which are explained in more detail below:

Push

In this model, the server includes a standardized interface that a GDS client can use to connect to a Global
Discovery Service at the request of the server, register the server application there and request a server
certificate, including the current CRL. The certificate is then activated on the server.

As a prerequisite for using this functionality, the GDS client must authenticate itself on the server with a user
account that has administrator rights [} 134] (IsRoot = true).

Technical introduction

TS6100-003096 Version: 1.9

GDS Client
Any client that supports the push model can be used as a GDS Client. Various OPC UA toolkit
manufacturers offer corresponding software packages. Alternatively, the OPC Foundation also
provides a GDS Sample Client on Github.

GDS Server
In principle, any GDS can be used as a Global Discovery Service. Various OPC UA toolkit
manufacturers offer corresponding software packages. Alternatively, the OPC Foundation also
provides a GDS Sample Server on Github.

Pull

In this model, the server independently connects to the Global Discovery Service, registers there as a server
application and obtains a matching server certificate.

The TwinCAT OPC UA Server offers an option to activate and configure the GDS pull functions via its
configuration namespace.

Registration at the Global Discovery Service

In the first step, the TwinCAT OPC UA Server must be registered as an application at the GDS. This is done
using the Register() method. By registering with the GDS, a server certificate is automatically requested for
the server application. Depending on the implementation of the GDS application, such a certificate is issued
either automatically or after manual approval by an administrator. The variables RegistrationState and
CertificateState can be used to check whether the server has already been registered with a Global
Discovery Service and has received a certificate from it. The variable CrlState indicates the status of the
Certificate Revocation List and whether it could be obtained from the GDS.

https://github.com/OPCFoundation/UA-.NETStandard-Samples/tree/master/Samples/GDS
https://github.com/OPCFoundation/UA-.NETStandard-Samples/tree/master/Samples/GDS

Technical introduction

TS6100-0030 97Version: 1.9

The method expects the following input parameters:

Input parameter Meaning
GdsUrl The URL of the Global Discovery Service in the format opc.tcp://

hostnameOrIpAddress:port
GdsUser User name of a GDS user with the right to register new applications.
GdsPassword User password
SaveCredentials Saves the user password in a configuration file of the TwinCAT OPC UA

Server. For security reasons, this setting is not recommended, since it was
designed exclusively for Global Discovery Service, which require user name/
password authentication. However, this is usually only required once when
registering the application. The issued server certificate is then used for all
subsequent connections to the GDS.

Re-initialization of the server endpoints
After registering the server application with the Global Discovery Service and obtaining a server
certificate, the server reinitializes its endpoints once, causing connected clients to momentarily lose
connectivity.

After the server application has been registered with a Global Discovery Service, a new file named
"TcUaGdsClientConfig.xml" is created in the installation directory of the TwinCAT OPC UA Server. It
contains the connection information of the configured GDS and the registration information obtained from
there, plus timestamp information for the server application, e.g., when the certificate and CRL were last
updated.

De-registration at the Global Discovery Service

The Unregister() method can be used to de-register the TwinCAT OPC UA Server application at the GDS.
Successful execution of the method causes the server application to be de-registered at the GDS and the
contents of the file TcUaGdsClientConfig.xml to be deleted.

The method expects the following input parameters:

Technical introduction

TS6100-003098 Version: 1.9

Input parameter Meaning
ForceRemove If the connection to the Global Discovery Service is no longer available, the

connection to the GDS can be removed by setting this input parameter. The
TwinCAT OPC UA Server removes the GDS from its configuration.

The issued server certificate and the CRL remain valid after the TwinCAT OPC UA Server has been
decoupled from the GDS. If you want to delete them and run the server with a self-signed certificate, you
have to remove the corresponding files in the PKI directory of the server and restart the server. The server
then creates another self-signed certificate.

Updating the server certificate

An update of the server certificate can be requested from the GDS outside the regular update interval by
executing the method UpdateCertificate(). The method does not expect any further input parameters.

Setting the update intervals for server certificate and CRL

The update intervals for the server certificate and the certificate revocation list can be set by executing the
SetUpdateStrategy() method.

The method expects the following input parameters:

Technical introduction

TS6100-0030 99Version: 1.9

Input parameter Meaning
CrlUpdateInterval Sets the update interval for the certificate revocation list. (seconds)
CertificateCheckInterval Sets the update interval for the server certificate. (seconds)

4.1.12 TwinCAT EventLogger
The TwinCAT OPC UA Server enables integration of the TwinCAT EventLogger for sending alarms and
events. An alarm/event is converted by the TwinCAT EventLogger into an OPC UA alarm or event.

The integration of the TwinCAT EventLogger is not available for Windows CE. This means that
TwinCAT OPC UA Servers running on Windows CE devices do not show the EventLoggerDevices
folder. In this case it is only possible to integrate the TwinCAT EventLogger as a remote
eventlogger in a TwinCAT OPC UA Server on another operating system.

Configuration

To configure the server for a connection to the EventLogger, you have to create a new configuration file
named "TcUaEventLogConfig.xml" in the server directory. This file contains a list of TwinCAT EventLogger
devices, which are identified by their AMS NetID. The configuration has the following structure:
<TcUaEventLogConfig>
 <EventLoggerDevice Name="LocalEventLogger" AmsAddr="127.0.0.1.1.1"/>
 <EventLoggerDevice Name="RemoteEventLogger" AmsAddr="192.168.0.56.1.1"/>
</TcUaEventLogConfig>

The individual device entries are then displayed in the "EventLoggerDevices" folder in the server's
namespace.

An OPC UA Client can now subscribe to the corresponding object in order to receive events and/or alarms
from the respective TwinCAT EventLogger device.

In contrast to an event, an alarm is additionally displayed as a child element by the respective EventLogger
device.

Technical introduction

TS6100-0030100 Version: 1.9

OPC UA Alarm/Event Types

When subscribing to the object and receiving alarms or events, a client must take into account that specific
object types are used. The respective types are defined as follows.

TcEventLoggerEventType

The TcEventLoggerEventType is derived from the BaseEventType and extends it with TwinCAT
EventLogger-specific properties:

NodeID: i=4200
NamespaceName: urn:BeckhoffAutomation:Ua:Types:GlobalTypes

TcEventLoggerAlarmConditionType

The TcEventLoggerAlarmConditionType is derived from the AlarmConditionType and extends it with
TwinCAT EventLogger-specific properties:

NodeID: i=4000
NamespaceName: urn:BeckhoffAutomation:Ua:Types:GlobalTypes

Sample

The following sample is based on the standard code sample of the TwinCAT EventLogger, which can be
obtained from the Beckhoff Information System. This sample contains code snippets for the PLC, which can
be used to fire an event as well as an alarm.

Step 1: Configuration of the server

TwinCAT OPC UA Server and the PLC are now running locally on the same system in this sample.
Accordingly, the TcEventLogConfig.xml was also created:
<TcUaEventLogConfig>
 <EventLoggerDevice Name="LocalEventLogger" AmsAddr="127.0.0.1.1.1"/>
</TcUaEventLogConfig>

Step 2: Activating the TwinCAT EventLogger sample

Before activating the TwinCAT EventLogger sample, we first deactivated the automatic firing of an event or
alarm. In the present sample version this is done by initializing bSend and bAlmRaise with the value FALSE.
The project is then activated and executed in the local PLC runtime.

Step 3: Connecting an OPC UA Client to the Server

The UA Expert has now been selected as the OPC UA Client. After establishing a connection with the
server, you now add a new "Event View" document in UA Expert. Then drag and drop the configured
TwinCAT EventLogger device into the Event View.

Technical introduction

TS6100-0030 101Version: 1.9

In order to receive the TwinCAT EventLogger-specific properties, the UA Expert must filter the corresponding
Event or AlarmType. You can find the TcEventLoggerEventType or TcEventLoggerAlarmConditionType in
the type list of the Event View. Sample:

Technical introduction

TS6100-0030102 Version: 1.9

By clicking on the Apply button, these filters are applied.

Step 4: Firing an event

In the TwinCAT EventLogger Sample we now set the variable bSend to the value TRUE in order to fire an
event. The UA Expert receives this event automatically and displays it in the Event View together with the
TwinCAT EventLogger specific properties.

Technical introduction

TS6100-0030 103Version: 1.9

Step 5: Firing an alarm

In the TwinCAT EventLogger sample we now set the variable bAlmRaise to the value TRUE in order to fire
an alarm. The UA Expert receives this alarm automatically and displays it in the Event View together with the
TwinCAT EventLogger-specific properties. In addition, the alarm is displayed as a separate object in the
namespace below the EventLogger device.

Step 6: Acknowledging an alarm

In addition to receiving an alarm, it can also be acknowledged. The acknowledgement is also reported by the
server to the TwinCAT EventLogger. In UA Expert, an alarm can be acknowledged via the context menu in
the Event View.

Technical introduction

TS6100-0030104 Version: 1.9

Acknowledge and Confirm
Please note that only a Confirm is reported back to the TwinCAT EventLogger. The information
about an acknowledge remains in the server, since the TwinCAT EventLogger currently only
provides for the concept of a Confirm.

After a Confirm the corresponding variable eConfirmationState is set in the TwinCAT EventLogger instance
of type FB_TcAlarm.

4.1.13 Security

4.1.13.1 Overview
One of the reasons for the success of OPC UA as communication technology is the various integrated
security mechanisms. OPC UA-based data communication can be secured on two levels:

1. Transport layer
2. Application level

Endpoints

A server offers the client a list of different endpoints [} 105] to which the client can connect. An endpoint
describes, among other things, which security functions (e.g. Message Security mode, Security Policy and
available Identity Tokens) the communication connection via this endpoint should fulfill. For example, an
endpoint may require signing and encryption of data packets (transport layer), as well as additional
authentication of the client based on user name/password (application layer).

Transport layer

A communication connection based on OPC UA can be secured at the transport layer. This is done through
the use of client/server certificates and a mutual trust relationship between client and server application.
Here, the client must trust the server certificate and vice versa in order for a communication connection to be
established. This requires a mutual certificate exchange [} 108].

Application level

In addition to the transport layer, a communication connection can also be secured at the application layer.
For this purpose, various authentication mechanisms [} 106] are available, which are offered by the server
endpoint.

Also see about this
2 Access rights [} 109]

Technical introduction

TS6100-0030 105Version: 1.9

4.1.13.2 Endpoints
The TwinCAT OPC UA Server makes various end points available for OPC UA Clients via the default port
4840/tcp. The end points define the connection type between client and server and whether it should be
secured or unsecured.

Standard port
Note that the standard port 4840 may be used by other OPC UA Servers, such as the Local
Discovery Server (LDS) from the OPC Foundation, which is used by some vendors with OPC UA
software packages.

Safe end points
Please note that in order to use the secure end points, a trust relationship must be established
between server and client, which is usually done via their certificates. The configuration of such a
trust relationship on the server side is explained here [} 108].

Deprecated endpoints
A configuration switch (<AllowDeprecatedSecurityPolicies>) in TcUaServerConfig.xml can be used
to reactivate security policies that are obsolete and classified as unsafe. However, we recommend
leaving this configuration switch disabled for security reasons.

List of endpoints

The list provides an overview of the endpoints of the OPC UA Server. This includes endpoints that have
already been discontinued. The following screenshot shows the endpoints currently contained in the OPC
UA Server (version 3.2.0.62). The options are signing only or signing in combination with encryption.

From setup version 4.3.28 (server version 3.2.0.62) or higher, the unencrypted endpoint is disabled by
default for security and certification reasons.

The available endpoints are based on the safety of the security mechanisms. If security profiles are classified
as potentially unsafe over time, they are no longer used in the TwinCAT OPC UA Server by default and are
replaced by newer and more secure encryption algorithms.

Technical introduction

TS6100-0030106 Version: 1.9

Security profile Security mode Short description
None None This is the unencrypted endpoint,

which can be used to communicate
without security. Disabled by
default since version 4.3.28. Can
be reactivated if required by
configuring the server accordingly.

Basic128Rsa15 (obsolete) Sign / Sign & Encrypt This endpoint is considered
obsolete from a security
perspective and is disabled by
default. Can be re-enabled if
required by configuring the server
accordingly.

Basic256 (obsolete) Sign / Sign & Encrypt This endpoint is considered
obsolete from a security
perspective and is disabled by
default. Can be re-enabled if
required by configuring the server
accordingly.

Basic256Sha256 Sign / Sign & Encrypt Endpoint currently present in the
server for secure signing and
encryption.

Aes256_Sha256_RsaPss Sign / Sign & Encrypt Endpoint currently present in the
server for secure signing and
encryption.

Aes256_Sha256_RsaOaep Sign / Sign & Encrypt Endpoint currently present in the
server for secure signing and
encryption.

All endpoints in the list can be enabled or disabled via the server configuration. In the following figure, all
endpoints are enabled.

4.1.13.3 Authentication
An OPC UA client application can authenticate itself to the server via various IdentityTokens:

• Anonymous
• User name/Password
• User certificate

Delivery state
The server is delivered with the Anonymous IdentityToken enabled, but its use requires a one-time
initialization [} 37]. The Anonymous IdentityToken is then disabled and client applications must
authenticate to the server with a valid User IdentityToken.

Technical introduction

TS6100-0030 107Version: 1.9

Anonymous

This type of authentication allows any OPC UA client to connect to the server application. It is not necessary
to specify a user identity, which means that there are no options for defining access rights on the server. We
recommend deactivating this authentication type after commissioning the server. This can be done via the
TwinCAT OPC UA Configurator. In the following you will find an example screenshot from the OPC UA Client
application "UA Expert":

User name/Password

This type of authentication uses a user name/password combination to authenticate the client to the server
application. On the server, access rights can then be defined for the respective user identity. The user
identity can be defined on different levels:

• User identity is defined in the server
• User identity comes from the lower-level operating system (e.g. a local Windows user)
• User identity comes from the Active Directory (e.g. if the Industrial PC is part of a Windows domain)

Recommendation when using User IdentityTokens
If User IdentityTokens are to be used to authenticate client applications, we recommend using
operating system users.

In the following you will find an example screenshot from the OPC UA Client application "UA Expert":

User certificate

This type of authentication uses a certificate to authenticate to the server application. The handling of user
certificates on the server side is identical to the use of certificates on the transport layer, i.e. the server must
trust the (user) certificate before the client can successfully authenticate itself to the server with the
certificate. A separate directory ("pkiuser") for the administration of user certificates is available in the server
for this purpose. In the following you will find an example screenshot from the OPC UA Client application "UA
Expert":

Technical introduction

TS6100-0030108 Version: 1.9

NOTICE
Authentication and server certificate
When using the unencrypted endpoint in combination with authentication, the TwinCAT OPC UA Client still
requires the public key from the OPC UA Server certificate in order to encrypt the password during
transmission. To this end the certificate must be trusted in the TwinCAT OPC UA Client (see Certificate
exchange [} 108]).

Also see about this
2 Access rights [} 109]

4.1.13.4 Certificate exchange

To secure the communication connection at transport layer via a secure endpoint [} 105], it is necessary to
establish a mutual trust between client and server.

By default, both the TwinCAT OPC UA Server and the TwinCAT OPC UA Client generate a machine-
specific, self-signed certificate for authentication of the respective application at the first start.

Set up a trust relationship on the server

To establish a trust relationship between any OPC UA Client and the TwinCAT OPC UA Server, you need
the public key of the client certificate. The server must trust this. This can be done via the file system, for
example. The server manages the trust settings for client certificates in the PKI subdirectory.

• Trusted certificates: %InstallDir%\Server\PKI\CA\trusted\certs
• Untrusted certificates: %InstallDir%\Server\PKI\CA\rejected\certs

Technical introduction

TS6100-0030 109Version: 1.9

By moving client certificates between these directories, the trust settings can be adjusted accordingly. The
public key of a client certificate is automatically stored in the above untrusted certificate directory the first
time the client attempts to connect to a secure endpoint. By subsequently moving the public key to the
trusted certificate directory, the client is trusted the next time it attempts to connect.

AutomaticallyTrustAllClientCertificates
If this option is enabled in TcUaServerConfig.xml, the server automatically trusts all client
certificates. In this case, they will not be listed in any of the above directories.

Set up a trust relationship on the client

Depending on the OPC UA Client employed, different steps may need to be taken so that the OPC UA Client
trusts the OPC UA Server. Typically, for client applications with a graphical user interface, a warning
message is displayed the first time you connect to the server, whereby the server certificate can then be
classified as trustworthy.

The following instruction is therefore only valid for the TwinCAT OPC UA Client.

The public key of the OPC UA Server is located as a DER file in the following directory: %InstallDir%
\Server\PKI\CA\own\certs

In the case of the TwinCAT OPC UA Client, copy the file into the corresponding "Trusted" directory:
%InstallDir%\Client\PKI\CA\trusted\certs

4.1.13.5 Access rights

The TwinCAT OPC UA Server enables the configuration of access rights for specific authenticated user
identities [} 106]. These access rights can be configured for entire namespaces as well as for individual
nodes.

This allows you to fine-granulate the access to ADS devices (for example, to different PLC runtimes) as well
as variables. These security settings are available for all ADS devices that can be displayed in the server
namespace.

See also:

Configuration > Setup Version 4.x.x. > Configuring the security settings in the configurator [} 134].

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

Technical introduction

TS6100-0030110 Version: 1.9

4.1.14 Miscellaneous

4.1.14.1 Configuring firewalls
To make OPC UA communication also possible via a NAT device, e.g. an Internet router, this device must be
able to forward the UA port used to the TwinCAT OPC UA Server (so-called "port forwarding"). By default the
TwinCAT OPC UA Server is configured for UA communication via the TCP port 4840; however, you can
adapt this configuration yourself if necessary, either via the server configuration file or using the
OPC UA Configurator. The following figure illustrates the relationship between port forwarding and the
UA Server.

In this example, the OPC UA Client establishes a UA connection to the NAT device via TCP port 4840,
which then forwards this communication connection to the TwinCAT OPC UA Server via port forwarding. The
NAT device thus only needs to forward the UA port configured in the TwinCAT OPC UA Server to the target
device. The port used by the UA Server can either be viewed in the server configuration file or conveniently
through the UA Configurator (in delivery state this is always TCP port 4840). For the appropriate
configuration of your NAT device for port forwarding please refer to its documentation.

4.1.14.2 Namespace for configuration of the server
From server version 2.1.x the TwinCAT OPC UA Server provides a configuration namespace that contains
the following functionalities:

• Management of the server configuration files
• Management of the certificates

Technical introduction

TS6100-0030 111Version: 1.9

Management of the server configuration files

The server configuration files are published in the namespace as a regular OPC UA FileType and therefore
provide the methods and properties required to access the file.

Management of certificates

Each client certificate known to the server is published in the namespace as an OPC UA CertificateType.
Certificates are divided into "rejected" and "trusted" certificates, which is represented by a separate folder in
the namespace.

A certificate can be moved between the trust lists by calling the Move() method.

In addition, various properties provide additional information about the certificates themselves for easier
identification.

Using the configuration namespace

The configuration namespace is enabled by default for ease of use and is available to users. This enables
the TwinCAT OPC UA Configurator to connect to a server and apply the corresponding server configuration.

Technical introduction

TS6100-0030112 Version: 1.9

We recommend that you only make the namespace accessible to authenticated users once the server
configuration is complete. This means that an OPC UA Client must authenticate itself vis-à-vis the
OPC UA Server by providing a valid user name/password combination to access the namespace. Click here
[} 134] to find out how to do this.

4.1.14.3 DeviceState
Each namespace in the TwinCAT OPC UA Server contains a DeviceState object.

This object indicates the state of the lower-level ADS device by means of various properties.
typedef enum
{
 UADEV_NOTINIT = 0x0100,
 UADEV_STARTING = 0x0110,
 UADEV_CONNECTED = 0x0120,
 UADEV_SHUTDOWN = 0x0130,
 UADEV_ERROR = 0xF000
}UaDeviceState;

If the device is in an ERROR state, the ErrorCode Property returns the following values:
#define UA_DEVSTATE_INVALID_STATE 0x80EB0010
#define UA_DEVSTATE_CREATE_NS_FAILED 0x80EB0011
#define UA_DEVSTATE_LOAD_NS_FAILED 0x80EB0012
#define UA_DEVSTATE_INVALID_IO_SETTING 0x80EB0100

A corresponding readable error message is then displayed in the ErrorMessage Property.

4.1.14.4 ReverseConnect
The TwinCAT OPC UA Server supports the ReverseConnect function of OPC UA to establish a backward
communication connection from the server to the client. To activate this function, a list of client addresses
must be stored in the server. Then the server establishes an OPC UA TCP connection for each client in the
list.

Client compatibility
Please note that the OPC UA Client must also support this function and must be accessible via its
ReverseConnect URL.

Configuration in the server

A list of OPC UA Clients can be configured in the TcUaServerConfig.xml within the <UaEndpoint>.
<!-- List with Clients -->
<ReverseConnect>
 <Url>opc.tcp://172.17.1.1:48061</Url>
</ReverseConnect>

Technical introduction

TS6100-0030 113Version: 1.9

Example configuration in UA Client (UA Expert)

In UA Expert, you can enable ReverseConnect in the Advanced tab and configure the hostname or IP
address of the client PC, as well as the port to be opened by the client and the server certificate to establish
trust.

4.1.14.5 DI Components
Each PLC namespace on the server contains a number of nodes that can be used to specify static meta-
information about the PLC. This optional information can be specified in the TcUaDaConfig.xml for each
namespace.

The following table provides more information about these nodes. The concrete value assignments of the
individual nodes can be application-specific to a large extent, therefore only example values are used in the
delivery state of the server. The server itself makes these nodes available in its namespace, but does not
independently change their value assignments.

Technical introduction

TS6100-0030114 Version: 1.9

Node Description
DeviceManual Allows you to specify an address where the device

manual can be found, e.g. a path in the file system or
a web address.

DeviceRevision Contains the revision level of a hardware component
or the entire device.

HardwareRevision Contains the revision level of the hardware.
Manufacturer Contains the name of the device manufacturer,

usually as FQDN (Fully Qualified Domain Name), e.g.
beckhoff.com.

Model Includes the name of the "product" (if applicable).
RevisionCounter May include a counter of how many times the

configuration of the device has been updated.
SerialNumber Unique serial number of the device, as assigned by

the device manufacturer.
SoftwareRevision Contains the version or revision level of the software

component, the firmware of a hardware component
or even the firmware of the device.

4.1.14.6 ServerState
The ServerState variable in the server namespace indicates the current state of the server. The following
table gives an overview of the possible variable values.

Variable value Description
Running The server has been successfully booted.
Failed A problem was found in one of the server configuration files, e.g. an

invalid configuration in TcUaSecurityConfig.xml.
NoConfiguration The server has not yet been initialized [} 37].
Suspended The server has not yet been completely booted, i.e. not all functions

may be available yet.

Technical introduction

TS6100-0030 115Version: 1.9

4.1.14.7 Logging
You can activate a log file in the server for extended diagnostics, in which various information is then
recorded on the basis of different log levels. This log file is usually only required for diagnostic purposes.

Logging is usually enabled/disabled via the Visual Studio Configurator [} 142] or Standalone Configurator
[} 157].

The default path for the log files created is:
Windows: %ProgramData%\Beckhoff\TF6100-OPC-UA-Server\logs
TwinCAT/BSD: /var/log/TF6100-OPC-UA-Server

4.2 Configurator
The TwinCAT OPC UA Configurator offers a graphical front end for editing the TwinCAT OPC UA Server
configuration files. It comes in two variants:

• as Visual Studio [} 116] project template

• as Standalone [} 144] application

Both variants are part of the TwinCAT OPC UA Configurator setup and enable online configuration of the
TwinCAT OPC UA Server by connecting to the server via OPC UA and editing its configuration files. This
relationship is illustrated once again in the following diagram.

Technical introduction

TS6100-0030116 Version: 1.9

The basis for configuration via OPC UA is the so-called configuration namespace [} 110] of the TwinCAT
OPC UA Server. Here the configuration files of the server are provided as OPC UA objects.

4.2.1 Visual Studio

4.2.1.1 Overview
The TF6100 setup (version 4.x.x and higher) contains the latest version of the OPC UA Server Configurator.
This was integrated in Microsoft Visual Studio as a separate project type to provide an integrated and
consistent engineering concept. You can configure all the different facets of the TwinCAT OPC UA Server
and in doing so also use source control mechanisms such as Team Foundation Server or
Subversion Integrations.

Technical introduction

TS6100-0030 117Version: 1.9

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

4.2.1.2 Creating a new project
The project package of the OPC UA Configurator integrates itself in the so-called connectivity package. You
can select this when creating a new Visual Studio project.

Project template "TwinCAT Connectivity Project":

Project template "TwinCAT OPC-UA Server Project":

Technical introduction

TS6100-0030118 Version: 1.9

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

4.2.1.3 Connecting to a server
The OPC UA Configurator enables the complete parameterization of the Server via OPC UA. Similar to the
TwinCAT XAE system, you can select an OPC UA Server to connect to via the toolbar.

To do this, first add the appropriate toolbar to your Visual Studio interface.

Technical introduction

TS6100-0030 119Version: 1.9

You can then add one or more server connections via the entry Edit Serverlist in the DropDownBox of the
toolbar.

Technical introduction

TS6100-0030120 Version: 1.9

In the dialog Endpoint configuration you make all settings for the connection with the server, especially the
server URL, the selection of an endpoint offered by the server and optionally also the IdentityToken (e.g.
username/password) with which the configurator should connect to the server.

The server connection is then added to the server list under an automatically generated configuration name
and can then be selected in the drop-down list of the toolbar.

By clicking on the Connect button, a connection to the server can now be established and the server
configured.

Online configuration
All settings that you make in your project are carried out for the connected TwinCAT OPC UA
Server.

Initialization of the server
If the server is still in the (uninitialized) delivery state, you will receive a corresponding note for
server initialization. This process is described in more detail in the article on performing the server
initialization [} 120].

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

Also see about this
2 Namespace for configuration of the server [} 110]

4.2.1.4 Performing the server initialization
The TwinCAT OPC UA Server is delivered in an uninitialized mode, which is based on the so-called TOFU
(Trust-On-First-Use) principle. Detailed information about this server feature and the corresponding
background information can be found here [} 37]. The TwinCAT OPC UA Configurator enables the
initialization of the server during the first connection establishment. A corresponding warning message
indicates the uninitialized server and enables an appropriate initialization.

Technical introduction

TS6100-0030 121Version: 1.9

Also see about this
2 Initialization [} 37]

4.2.1.5 Adding ADS devices
The OPC UA Server can "talk" to one of more ADS devices. To establish a connection, a route to the
respective ADS device is required. In the OPC UA Configurator, ADS devices are created, configured and
thus announced to the OPC UA Server in the Data Access facet.

New ADS devices are added to the configuration via the context menu command Add new Device Type.

When the command is executed, a dialog box opens in which connection parameters can be configured for
this device, e.g. AMS Net ID, ADS port or the symbol file.

Technical introduction

TS6100-0030122 Version: 1.9

You can subsequently modify the connection parameters if necessary via the Properties window in Visual
Studio.

Selecting the symbol file

Symbol files that are present on the selected target device can be imported directly. These symbol files can
be stored either in the TwinCAT boot directory or in the symbol directory of the OPC UA Server. You can
select the files via the corresponding dialog during the symbol file configuration.

Technical introduction

TS6100-0030 123Version: 1.9

The TwinCAT OPC UA File Explorer can be connected to either the local TwinCAT directory or the remote
boot directory. The latter can be read in via the configuration namespace of the server (see Namespace for
configuration of the server [} 110]).

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

Technical introduction

TS6100-0030124 Version: 1.9

4.2.1.6 Reading and writing the configuration
Via the configurator you can initiate the download/upload of complete server configurations as well as
loading every single facet (data access, historical access, etc.) individually to the target device and opening it
there. The functions necessary for this are integrated both in the toolbar and in the context menu of the
respective facet.

Opening a configuration from the target device

You can open the configuration of the selected target device via the corresponding button in the toolbar.

See also: Connecting to a server [} 118]

Activating the configuration on a target device

You can download the currently opened configuration to the selected target device using the corresponding
button in the toolbar.

See also: Connecting to a server [} 118]

Opening a partial configuration

You can open the partial configuration of the selected target device using the command Read
Configuration from Target in the context menu of a certain facet of the configuration.

See also: Connecting to a server [} 118]

Downloading a partial configuration

You can download the partial configuration to the selected target device using the command Write
Configuration to Target in the context menu of a certain facet of the configuration.

Technical introduction

TS6100-0030 125Version: 1.9

See also: Connecting to a server [} 118]

4.2.1.7 Importing and exporting configuration files
The context menu commands enable the import/export of configuration files of the OPC UA Server.

Importing a partial configuration

You can import the partial configuration (e.g. historical access) from an XML configuration file using the
command Import UA Configuration in the context menu of a certain facet of the configuration.

Technical introduction

TS6100-0030126 Version: 1.9

Exporting a partial configuration

You can export the partial configuration (e.g. historical access) to an XML configuration file using the
command Export UA Configuration in the context menu of a certain facet of the configuration.

4.2.1.8 Configuring historical access
To configure Historical Access, you must first set up the History Adapters. These are the different locations
for storing historical data, such as RAM, file, SQL Server.

History adapters are added to the configuration using the context menu command Add new History
Adapter.

Depending on the adapter type you have to specify further parameters, e.g. the desired file storage path or
the access data for the SQL Server.

Technical introduction

TS6100-0030 127Version: 1.9

After you have created a history adapter you can add the desired variables to the adapter. These variables
must already exist on the selected OPC UA Server when the engineering is implemented. You can use the
integrated OPC UA Target Browser to select the variables and then add the variables from the target
browser to the history adapter by drag & drop.

Additional parameters can be specified in the properties window of the newly added variable, e.g. the
desired SamplingRate or the size of the ring buffer to be used in the History Adapter.

See also: Connecting to a server [} 118]

4.2.1.9 Configuring Alarms and Conditions
In order to configure Alarms and Conditions (A&C) you must first set up the Condition Controllers. These are
container units that group together alarms.

Technical introduction

TS6100-0030128 Version: 1.9

Condition Controllers are added to the configuration using the context menu command Add New Condition
Controller.

After you have created a Condition Controller, you can add the desired variables to the controller and
monitor them in the sense of alarms and conditions. A condition is created for each variable, which specifies
the parameters for monitoring. These variables must already exist on the selected OPC UA Server when the
engineering is implemented. You can use the integrated OPC UA Target Browser to select the variables
and then add the variables from the target browser to the Condition Controller by drag & drop.

In the dialog window which then opens you can define the condition type and further parameters for the
monitoring, e.g. SamplingRate and Severity.

Technical introduction

TS6100-0030 129Version: 1.9

Depending on the selected condition type you can specify additional parameters in the properties window of
the condition. The threshold values for the respective condition type are displayed as individual entries in the
tree view of the configuration. Here too, you can configure the corresponding parameters in the properties
window.

Subsequently you have to define the alarm texts that are to be sent to the OPC UA Client when a condition
is triggered. The section Configuring alarm texts [} 131] describes how alarm texts are created. You can
drag and drop the alarm texts onto the respective threshold value of a condition.

Technical introduction

TS6100-0030130 Version: 1.9

Alarm type OffNormal

An OffNormal alarm type is used to define which state of a Boolean variable is evaluated as normal. An
alarm is triggered if the variable value deviates from this. The PLC must be used for working with value
ranges (e.g., integer or double variables). Depending on the value, a corresponding TRUE or FALSE state is
then passed to the OPC UA Server.

State Value range
Normal TRUE or FALSE, depending on the user's decision.
OffNormal TRUE or FALSE, depending on the configuration of

the normal state. Cannot be configured by the user.

The first step is to configure the normal state as described above. The user then defines an alarm text for the
respective state (OffNormal and Normal) via Resources. This can be done either by drag & drop or by
selecting from the Resource ID dropdown list.

Alarm type Limit

With an alarm type Limit you define different threshold values upon whose reaching an alarm is to be sent.
The following table describes the different threshold values using an example configuration.

State Example threshold values Associated value range (INT)
HighHigh 5000 5000-32767
High 2000 2000-4999
Normal - 1000-1999
Low 1000 500-999
LowLow 500 -32768-499

In the first step, the various threshold values are configured as described above. The user then defines an
alarm text for the respective state (HighHigh, High, Normal, Low, LowLow) via Resources. This can be done
either by drag & drop or by selecting from the Resource ID dropdown list.

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

See also: Connecting to a server [} 118]

Technical introduction

TS6100-0030 131Version: 1.9

4.2.1.10 Configuring alarm texts
The OPC UA Configurator enables the (multilingual) management of alarm texts that are used, for example,
with Alarms and Conditions [} 127]. The configuration of the alarm texts takes place in the Resources facet.
Each alarm text is identified by a unique ID. Multiple language texts can then be assigned to this ID.

You can create so-called "resource items" using the context menu command Add new Resource Item.

You add new language items to a resource item using the command Add new Language Item in the
resource item's context menu.

Technical introduction

TS6100-0030132 Version: 1.9

You can further parameterize a language item, e.g. the language text and the assigned language, in the
properties window. When you define the language the associated LocaleID is automatically set. The
LocaleID is requested by the OPC UA Client to indicate in which language it expects alarm texts.

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

4.2.1.11 Configuring endpoints
The endpoints of the OPC UA Server indicate which security mechanisms are to be used during the
connection establishment of a client. These range from "unencrypted" to "encrypted and signed", based on
different key strengths.

Technical introduction

TS6100-0030 133Version: 1.9

The endpoints can be activated and deactivated using the configurator. It may be useful to deactivate the
unencrypted endpoint so that all clients can only connect themselves with valid certificates that are classified
as trustworthy.

The endpoints are configured directly at the level of the OPC UA Server project. By double-clicking on the
project you can make the corresponding settings on the UA Endpoints tab. The settings become effective
after an activation of the configuration and a subsequent restart of the server (see Reading and writing the
configuration [} 124] and Restarting the server [} 142]).

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

4.2.1.12 Trust relationship for certificates
The Configurator facilitates management of the client certificates on the server. In the project settings you
can classify the certificates as trustworthy or refuse them on the UA Endpoints tab in the Client certificates
area.

After an OPC UA Client has attempted to connect to a secure server endpoint for the first time, the client
certificate is deposited on the server and declared "rejected". The server administrator can subsequently
enable the certificate. A subsequent connection attempt of the client with a secured endpoint will then be
successful.

Technical introduction

TS6100-0030134 Version: 1.9

4.2.1.13 Configuring security settings
The OPC UA Server enables the configuration of permissions at namespace and node level. This allows you
to fine-granulate the access to ADS devices (for example, to different PLC runtimes) as well as variables.
These security settings are available for all ADS devices that can be displayed in the server namespace.

Configuration

The permissions are configured on the basis of an XML-based configuration file (TcUaSecurityConfig.xml),
which is located in the same directory as the server. The configuration file consists of the three areas
"Users", "Groups" and "AccessInfos".

Technical introduction

TS6100-0030 135Version: 1.9

Users

In the "Users" area you can configure user accounts that are to be accepted by the OPC UA Server as
logins. There are three different authentication methods:

OS (recommended
authentication method)

The mechanisms of the operating system are used to validate user name and
password. The user account is subject completely to the control of the
operating system and/or domain.

Server (not recommended) User name and password are known only to the OPC UA Server. Both pieces
of information are stored in plain text in the XML file.

None Only the user name of the server is evaluated, the password is ignored.

Users can be configured with a tag <DefaultAccess> that specifies the standard access of the user to a
certain namespace.

Users can be members of one or more groups. You can specify this using the MemberOf attribute. In case
of memberships of several groups, separate the groups by a semicolon.

Groups

In order to enable a simpler configuration with several user accounts, you can combine the users into
groups.

Groups can also be configured with a tag <DefaultAccess>.

You can nest groups using the MemberOf attribute. In case of memberships of several groups, separate the
groups by a semicolon.

Technical introduction

TS6100-0030136 Version: 1.9

AccessInfos

If a fine-granular setting of permissions at the node level is to be implemented, then AccessInfos can be
configured additionally, which specify the access permissions on nodes. Access rights can be passed on to
subelements. Although AccessInfos allow the most fine-grained configuration of permissions, such a
configuration can quickly become confusing. Therefore, check whether configuring access rights at the
namespace level (see above) is not sufficient.

The AccessInfo for a node contains the following settings:

NS Configures the NamespaceName in which the node is localized
Id Configures the identifier of the node, including the IdentifierType (e.g. s = String)
Depth Inheritance depth of permissions (-1 for infinite)
User/Group User or group that is to be given access to this node, including the AccessLevels

AccessInfos can be configured by dragging & dropping variables from the Target Browser. The configurable
permissions are cumulative.

Sample configuration

Let's take the following simple control program. The variables are already published in the OPC UA
namespace of the server. The OPC UA Server is initially in the delivery state.

Technical introduction

TS6100-0030 137Version: 1.9

Access restrictions

Access to the server is to be restricted for clients as follows:

• Anonymous access is to be deactivated.
• There is to be a user - "Administrator" - who has full access to the complete server.
• There is to be a user - "User1" - who only has read access to MAIN.Instance1. The user should not

come from the operating system here, but should only be used internally in the server.
• There is to be a user - "User2" - who only has read access to MAIN.Instance2. The user should not

come from the operating system here, but should only be used internally in the server.
• General access permissions are to be configured for all users via a group called "Users".

Settings

The configuration of the OPC UA Server is set as follows:

Technical introduction

TS6100-0030138 Version: 1.9

Settings for the user "Administrator":

Settings for the user "User1":

Settings for the user "User2":

Technical introduction

TS6100-0030 139Version: 1.9

Settings for AccessInfos "MAIN.Instance1":

Settings for AccessInfos "MAIN.Instance2":

Technical introduction

TS6100-0030140 Version: 1.9

Settings for the group "Users":

The user group is equipped both with basic access to required server and type system namespaces and with
read and browse permissions to the PLC1 namespace.

Result

Following activation of the configuration, the namespace of the server for "User1" looks like the following
after establishment of a connection:

Technical introduction

TS6100-0030 141Version: 1.9

The user has only read rights to the node "Instance1", which is clear from the attribute UserAccessLevel:

The user "Administrator", conversely, has full access rights to all elements of the namespace:

Technical introduction

TS6100-0030142 Version: 1.9

4.2.1.14 Restarting the server
The OPC UA Configurator enables the triggering of a restart of the OPC UA Server. This can be done locally
or remotely and refers to the selected target device.

Loss of connection
A restart of the OPC UA Server always leads to a loss of the connection of all connected clients.

The restart is triggered via the toolbar.

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

See also: Connecting to a server [} 118]

4.2.1.15 Logging
For an advanced diagnostics you can activate the logging function of the OPC UA Server.

Writing the log file
Activating the logging function on the server causes a log file to be written on the file system. Make
sure that there is sufficient storage space available and set the logging parameters accordingly
(number of log files, size per log file).

Technical introduction

TS6100-0030 143Version: 1.9

Performance and timing behavior
Activation of the logging function will change the timing behavior of the OPC UA Server. As a result
there may be losses of speed, depending on the platform and project.

The logging function is activated using the Activate button on the Online Panel tab in the project
configurator.You can activate the function locally or remotely depending on the selected target device. The
logging function remains active until it is deactivated again via the configurator or until the OPC UA Server is
restarted.

Trace Level

In general, the higher the trace level, the more detailed (and more) data is written, but the more load is also
placed on the server application, which changes the timing behavior accordingly. Please therefore only
activate logging in the event of diagnostics and in consultation with Beckhoff Support.

Activate App Trace

In most cases it is sufficient to create a so-called "AppTrace". This logs information from the server
application. To activate the AppTrace, please enter the number of TraceFiles and the number of entries per
TraceFile in the corresponding text fields. Then select a trace level and click the button to activate the
AppTrace. The values in the gray text boxes represent the current settings on the server.

Activate Stack Trace

In a few cases it is also necessary to create a so-called "StackTrace", whereby information from the OPC UA
stack is logged. To activate the StackTrace please enter the number of TraceFiles as well as the number of
entries per TraceFile into the corresponding text boxes. Then select a trace level and click on the button to
activate the StackTrace. The values in the gray text boxes represent the current settings on the server.

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

See also: Selecting a target device [} 118]

Technical introduction

TS6100-0030144 Version: 1.9

4.2.2 Standalone

4.2.2.1 Overview
The standalone configurator enables parameterization of the TwinCAT OPC UA Server independently of
Visual Studio. You can configure all the different features of the server.

4.2.2.2 Connecting to a server
The OPC UA Configurator enables the complete parameterization of the Server via OPC UA. Similar to the
TwinCAT XAE system, you can select an OPC UA Server to connect to via the toolbar.

Click on the Edit button to open the server list dialog. In this dialog you can add one or more server
connections.

Technical introduction

TS6100-0030 145Version: 1.9

By entering a ServerURL and pressing the Get Endpoints button, a server connection can be added to the
list. Any settings for the IdentityToken, e.g. whether the Configurator should connect as an anonymous user
or with a user name/password combination, must be set manually.

Confirming a configuration
Please always confirm changes to the entries with the ENTER key, as only then will they be
automatically saved in the background.

After configuring a server connection, the corresponding entry is available in the DropDownBox and the
connection can be established by clicking the Connect button.

4.2.2.3 Performing the server initialization
The TwinCAT OPC UA Server is delivered in an uninitialized mode, which is based on the so-called TOFU
(Trust-On-First-Use) principle. Detailed information about this server feature and the corresponding
background information can be found here [} 37]. The TwinCAT OPC UA Configurator enables the
initialization of the server during the first connection establishment. A corresponding warning message
indicates the uninitialized server and enables an appropriate initialization.

4.2.2.4 Adding ADS devices
ADS devices can be added to the TwinCAT OPC UA Server configuration via the Data Access tab. In the
associated DataGrid, you can create a new device via the context menu.

Technical introduction

TS6100-0030146 Version: 1.9

In the subsequent dialog, you can set the device-specific parameters.

Selecting an AMS NetID

To select an AMS NetID, either the ADS devices from the local system or the connected TwinCAT OPC UA
Server can be selected. An ADS device is a system that has an ADS route to the local system or server
system. By clicking on the button Local the local ADS routes are displayed. By clicking the Remote button
the ADS routes on the connected TwinCAT OPC UA Server are displayed.

Technical introduction

TS6100-0030 147Version: 1.9

Selecting a symbol file

The selection of a symbol file is always done from the local system. However, the symbol file can be
uploaded to the connected TwinCAT OPC UA Server via the Upload button. The symbol file is stored in the
subfolder "symbolfiles" of the TwinCAT OPC UA Server home directory and automatically referenced via a
placeholder in the configuration file.

4.2.2.5 Reading and writing the configuration
The configurator enables both reading/writing of the configuration files from the TwinCAT OPC UA Server
and loading/saving of the configuration files on the local system. These functionalities are available via the
menu as well as the toolbar.

Local loading/saving

These functions are available via the File menu. The buttons available here Open and Save enable the
configuration files to be loaded and saved. All configuration files are always loaded or saved.

Remote loading/saving

These functions are available from the server menu. The buttons Open from target and Activate from
target available here enable loading and saving of the configuration files from the connected TwinCAT OPC
UA Server. All configuration files are always loaded or saved.

4.2.2.6 Configuring historical access
Use the Historical Access tab to configure both the History Adapter and the History Nodes. A History
Adapter defines the type of data storage and a History Node the variable for which historical data should be
saved in the data storage.

You can use the context menu to create both History Adapter and History Nodes. If you are connected to
a TwinCAT OPC UA Server, you can also conveniently add the nodes to be configured via drag & drop from
the Target Browser to the History Nodes.

Technical introduction

TS6100-0030148 Version: 1.9

Subsequently, a History Node can be linked to the respective History Adapter via the AdapterID.

Double-click on the History Node to open the corresponding configuration dialog.

Technical introduction

TS6100-0030 149Version: 1.9

4.2.2.7 Configuring Alarms and Conditions
Use the Alarms & Conditions tab to configure both the Condition Controller and the Conditions. A
Condition Controller is a management unit for organizing the individual Conditions. A Condition on the
other hand reflects a variable which is to be monitored in the sense of Alarms & Conditions on the basis of
configurable threshold values.

You can use the context menu to create both Condition Controller and Conditions. If you are connected to
a TwinCAT OPC UA Server, you can also conveniently add the nodes to be configured to the Conditions via
drag & drop from the Target Browser.

A Condition is always added to the currently selected Condition Controller. When using Drag&Drop, the
configuration dialog of a Condition opens automatically.

Technical introduction

TS6100-0030150 Version: 1.9

The alarm texts to be configured when selecting the respective AlarmType can be selected via the
corresponding drop-down boxes. Please note that the alarm texts must already be available. Read the article
Configuring alarm texts [} 150] to learn more about this topic.

4.2.2.8 Configuring alarm texts
Within the Alarms & Conditions area, you can configure alarm texts via the Resources tab, which you can
then use for a Condition.

You can add a new alarm text file via the context menu. These files are grouped according to the language
for which the alarm texts are defined.

Technical introduction

TS6100-0030 151Version: 1.9

The Paste from clipboard button can be used to copy ID and text from an Excel spreadsheet by first
copying them to the clipboard (CTRL+C) and then importing them via the button.

Technical introduction

TS6100-0030152 Version: 1.9

After configuring the language files, you can use the alarm texts on a Condition.

Technical introduction

TS6100-0030 153Version: 1.9

Using the Detected languages fields, you can quickly check whether you have defined the selected
AlarmtextID for all languages, or whether a language may have been forgotten.

4.2.2.9 Configuring endpoints
The endpoints of the OPC UA Server indicate which security mechanisms are to be used during the
connection establishment of a client. These range from "unencrypted" to "encrypted and signed", based on
different key strengths.

The endpoints can be activated and deactivated using the configurator. It may be useful to deactivate the
unencrypted endpoint so that all clients can only connect themselves with valid certificates that are classified
as trustworthy.

The Server Settings tab allows you to configure the endpoints, as well as some additional parameters. The
context menu can be used to add or remove endpoints from the configuration.

Technical introduction

TS6100-0030154 Version: 1.9

4.2.2.10 Trust relationship for certificates
The trust relationships for client certificates on the TwinCAT OPC UA Server can be configured via the
Online Panel tab and the Certificates section there. By selecting a client certificate in the respective
TrustStore (Rejected/Accepted), certificate details can be displayed and moved between the TrustStores.

4.2.2.11 Configuring security settings
Security settings can be made on the server via the Security tab. These security settings may include the
following items:

• Users and groups
• Access rights for groups to namespaces
• Access rights for groups to individual nodes

Technical introduction

TS6100-0030 155Version: 1.9

Users and groups

To configure access rights, users and user groups must first be created. Some groups are already
predefined when the server is delivered. New users or groups can be added to the configuration via the
context menu.

A user can be either the anonymous user, an operating system user or a server user. In any case, we
recommend the configuration of operating system users.

A user group can have a so-called default access configured. These are access rights to a specific
namespace.

Access rights to namespaces

Access rights to certain namespaces can be defined at a user group. In the settings of the group there is a
corresponding configuration area, which can be edited via the context menu.

Technical introduction

TS6100-0030156 Version: 1.9

Access rights to individual nodes

The Node permissions tab can be used to define access rights to individual nodes and their child elements.
You can configure the nodes manually via the context menu or conveniently add them to the configuration by
dragging and dropping them from the Target Browser, provided you are connected to a server.

The user groups and access rights of the respective group can then be defined in the node configuration
dialog.

Technical introduction

TS6100-0030 157Version: 1.9

You can use the parameter Depth to set whether the permissions should be inherited by child elements. The
value "-1" indicates that all child elements should inherit the permissions.

4.2.2.12 Restarting the server
A TwinCAT OPC UA Server can be restarted via the Server menu. Usually you want to restart the server
that is just connected via OPC UA. Alternatively, you can trigger the restart via ADS if you have established
an ADS route to the server system.

4.2.2.13 Logging
For an advanced diagnostics you can activate the logging function of the OPC UA Server.

Writing the log file
Activating the logging function on the server causes a log file to be written on the file system. Make
sure that there is sufficient storage space available and set the logging parameters accordingly
(number of log files, size per log file).

Performance and timing behavior
Activation of the logging function will change the timing behavior of the OPC UA Server. As a result
there may be losses of speed, depending on the platform and project.

Technical introduction

TS6100-0030158 Version: 1.9

The server logging functions can be activated via the Online Panel tab and the Logging section there.

Trace Level

In general, the higher the trace level, the more detailed (and more) data is written, but the more load is also
placed on the server application, which changes the timing behavior accordingly. Please therefore only
activate logging in the event of diagnostics and in consultation with Beckhoff Support.

Activate App Trace

In most cases it is sufficient to create a so-called "AppTrace". This logs information from the server
application. To activate the AppTrace, please enter the number of TraceFiles and the number of entries per
TraceFile in the corresponding text fields. Then select a trace level and click the button to activate the
AppTrace. The values in the gray text boxes represent the current settings on the server.

Activate Stack Trace

In a few cases it is also necessary to create a so-called "StackTrace", whereby information from the OPC UA
stack is logged. To activate the StackTrace please enter the number of TraceFiles as well as the number of
entries per TraceFile into the corresponding text boxes. Then select a trace level and click on the button to
activate the StackTrace. The values in the gray text boxes represent the current settings on the server.

4.3 Client I/O

4.3.1 Overview

This function requires TwinCAT 3.1 Build 4022.4 or higher.

The TwinCAT OPC UA Client is also integrated as an I/O driver and is available as such in the TwinCAT I/O
configuration. This not only shortens the engineering time required to establish the OPC UA connection to a
remote server, it also enables the implementation of many application cases, such as the creation of protocol
bridges that are simple to configure.

Technical introduction

TS6100-0030 159Version: 1.9

First of all, add a virtual device container to the configuration and then an OPC UA Client object.

After you have created the OPC UA I/O Client object, you can configure its connection to an
OPC UA Target Server and add variables, methods and structures to the process image. The process of
data exchange with a target server is reduced to a simple method of mapping process variables.

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

Technical introduction

TS6100-0030160 Version: 1.9

4.3.2 Quick start
The following instructions enable you to make a quick start with the OPC UA I/O Client. In the instructions a
PLC project will be created that enables a variable via the OPC UA Server (for the simulation of a UA Server)
and reads the enabled variable in again via the OPC UA I/O Client. This can of course be divided between
two projects and two controllers.

Enabling variables for a server

For simulation, the OPC UA Server should be used in this quick start.

1. Create a new TwinCAT project and add a new PLC project to the project.
2. Create a new variable "nQuickStartOut" of data type INT in the PLC project. This should be the variable

that is enabled via the OPC UA Server.

3. Set the OPC UA attribute [} 49] for this variable in order to be able to enable the variable via the
OPC UA Server.

4. Activate the check box for the download of the TMC file.
5. Activate the configuration.
ð The variable is enabled for the server.

Configuring the I/O UA Client
1. In the same PLC project, create another variable "nQuickStartIn" of data type INT and define it as an

input variable (AT%I*). This should be the variable that the OPC UA Client I/O device links to the server
variable through mapping.

2. Compile the project so that the input variable is available in the PLC process image.
3. Add a new "Virtual OPC UA Device".
4. Add a new "OPC UA Client" to the device and open its settings.
5. Navigate to the Settings tab. Enter the server URL of the OPC UA Server. In this sample this is

"opc.tcp://localhost:4840".
6. Click Add Nodes.

Technical introduction

TS6100-0030 161Version: 1.9

7. Navigate to the shared variable "nQuickStartOut" on the OPC UA Server (located under PLC1 > MAIN)
and select it. The variable is now added to the process image of the "Virtual OPC UA Device".

8. Expand the newly added variable in the process image and double-click on Input > Value. Link the
variable to the variable "nQuickStartIn" from the PLC process image.

9. Activate the configuration.

Technical introduction

TS6100-0030162 Version: 1.9

ð You should now find the configuration shown below. The two process image variables nQuickStartIn
and nQuickStartOut are linked to each other.

Technical introduction

TS6100-0030 163Version: 1.9

10. After activating the configuration, log in to the PLC program.

You can also view the current value in the process image mapping.

11. You can use the settings on the OPC UA Client to modify parameters such as the sampling rate.

Requirements

Products Setup versions Target platform
TF6100 4.x.x IPC or CX (x86, x64, ARM)

4.3.3 Supported data types
The OPC UA Client enables direct access to an OPC UA Server from a real-time logic. For the reading and
writing of data, the data type of the OPC UA node must be assigned to the TwinCAT environment (mapping).
This assignment is described below.

Basic data types

The assignment of the basic data types is described in PLCopen OPC UA Information Model for IEC
61131-3.

Technical introduction

TS6100-0030164 Version: 1.9

OPC UA data type PLC data type
Boolean BOOL
SByte SINT
Byte USINT
Int16 INT
Int32 DINT
String STRING
USint BYTE
Float REAL
Double LREAL
UInt16 UINT
UInt32 UDINT
Int64 LINT
UInt64 ULINT
DateTime DT

You can use the mapping both on the OPC UA Client PLCopen function block and on the OPC UA I/O
Client.

Derived data types

OPC UA defines basic data types. Other data types are derived from these.

On the client side, access to all UA data types is only possible with PLC data types. Data types derived from
the basic data types are also supported from TcOpcUaClient version 2.1.0.36 or higher.

Currently supported non-base data types on the client side are:

• Counter (use UDINT in PLC)

In addition, the OPC UA I/O Client supports structured data types (StructuredTypes) if the structured data
type does not incorporate any non-supported data type (e.g. in a member variable). The following list
provides an overview of the data types that are not currently supported:

• ByteString
• NodeID
• LocalizedText (and thus AnalogItemTypes, DiscreteItemTypes)

4.3.4 Adding nodes of a Server
To add nodes of an OPC UA Target Server to the process image of the OPC UA I/O Client, you can use the
namespace browser that is integrated in the I/O Client.

Open the Settings tab of the client configuration and click on the Add Nodes button to open the namespace
browser.

The namespace browser dialog automatically establishes a connection with the Target Server by using the
specified connection parameters.

Technical introduction

TS6100-0030 165Version: 1.9

Within the namespace browser you can activate and deactivate the check boxes in order to add nodes to the
process image or remove them from it. Each selected node is shown in the process image as an input or
output variable.

The input variable reads data from the node and contains the last value received from the node. The output
variable writes data to the node if a value has been set.

4.3.5 Node attributes
If you double-click on a node in the process image, you will see the UA attributes with their current values as
they were at the time of opening the window.

Technical introduction

TS6100-0030166 Version: 1.9

Further variables that can be used for diagnostic purposes are added to the process image using the check
box Provide timestamp and status code variables.

4.3.6 Method call
The OPC UA I/O Client supports the call of server methods. You can add a method to the process image like
any other variable. The "input arguments" of the method are then available as output variables in the process
image, whereas the "output arguments" are added as input variables. Additional input and output variables,
e.g. bExecute, bBusy, bError, are added to the process image so that the method can be called.

Sample: Method on the server

Technical introduction

TS6100-0030 167Version: 1.9

Sample: Method after addition to the process image

You can then create a mapping between the input/output variables and the PLC variables.

Technical introduction

TS6100-0030168 Version: 1.9

Calling of a method

To call a method, set the output variable bExecute to TRUE. You can check whether the method call has
been completed and whether it was successful via the input variables nErrorID, bDone, bBusy and bError.

Technical introduction

TS6100-0030 169Version: 1.9

4.3.7 StructuredTypes
The OPC UA I/O Client supports read/write procedures with structured data types (StructuredTypes). You
can also add StructuredTypes to the process image like any other variable. When adding a StructuredType
to the process image, the type to be parsed is added to the TwinCAT type system so that, for example, it can
simply be used by a PLC application.

Example: StructuredType on the server

In this example the server contains a node of the structured data type "Person", which contains various
member variables (Name, Height, Weight, Gender).

Example: StructuredTypes in the process image

Technical introduction

TS6100-0030170 Version: 1.9

After you have added a node to the process image, the process image contains the node and also the
structural information of the type, e.g. whether individual member variables of the node should be read or
written.

StructuredTypes in the TwinCAT type system

The data type is added to the type system of TwinCAT. The "Value" tree items then have this data type.

You can also view the data type in the TwinCAT type system under SYSTEM > Type System.

To distinguish the data type from other data types you can add a prefix in the settings of the OPC UA Client.

Mapping a StructuredType

Since every StructuredType is added to the TwinCAT type system, the mapping of the variables is simple.
Create an input/output variable of this data type and subsequently a mapping.

Technical introduction

TS6100-0030 171Version: 1.9

4.3.8 Data recording
Data collection is configured on a per-device basis. The configuration can be opened by double-clicking on
the OPC UA Client device. The Process Data Configuration area shows various parameters for setting the
different modes of data collection from a server.

The OPC UA client device offers three different modes for data collection. In addition to cyclical reading of
data, this includes reading via a trigger variable and the use of subscriptions.

Technical introduction

TS6100-0030172 Version: 1.9

Cyclic read/write

One of the possible types of data collection is cyclic reading and writing. Time intervals are defined for both
reading and writing. You can also specify how many variables are to be read in one read command.

Writing variables in polling and subscription mode
When writing, please note that writing only takes place when the value changes. If no value change
has taken place in the configured variables at the end of a cycle, no new value is written.

Parameter Description
Read Cycle Time Specifies how fast variables are cyclically read.
Write Cycle Time Defines how often a write command is triggered on the OPC UA channel. If a

variable value changes several times within a specific cycle time, only the last
value is written to the OPC UA channel. If no configured value has changed in
the cycle time, no write command is triggered.

ReadList Read commands on the OPC UA channel are bundled to save bandwidth. This
parameter specifies how many variables are collected in a single read command
on the OPC UA channel. The labeling behind it indicates how many read
commands arise from the current configuration.

Array Single Write If a value in an array is changed, a write operation is only carried out for this
value on the OPC UA channel when activated. If not activated, the entire array is
always written.

Read and write via trigger variables

In addition, there is an option to trigger reading and writing via trigger variables. For each OPC UA Client
device there is a trigger variable (it can be found under Outputs/Control/Execute) that can be connected to a
variable from the PLC and set if required. This option is suitable, for example, if data is only to be read from
an OPC UA Server when a certain event occurs in the PLC. If the trigger variable remains permanently set,
the data collection type behaves in the same way as the cyclic configuration.

When writing, on the other hand, a value is written in each cycle if the trigger variable is set. No change in
value is considered here.

Reading and writing using subscriptions

The third and last way of data collection is to use subscriptions. The I/O client registers a subscription with
the connected OPC UA Server. The parameters described below can be specified for Publish Interval,
Lifetime Count and Keepalive Count.

Subscription mode is primarily intended for reading variables. If you write values in this mode, the same
behavior applies as for cyclical writing (see above).

Technical introduction

TS6100-0030 173Version: 1.9

Parameter Description
Publish Interval After the specified time the connected OPC UA Server checks where there are

new notification packets for the Client. If several value changes occur in a
publishing interval, only the last value is transferred.

Lifetime Count The OPC UA Client is responsible for sending a PublishRequest to the server. In
the PublishResponse, the server returns the respective notification packages.
The Lifetime Count indicates after how many failed PublishRequests from the
client the server deletes the subscription. The calculated duration is shown in
brackets (in the sample 1200 multiplied by 1000 ms = 20 minutes).

Keepalive Count If the server does not have new notification packets for the client, it will not return
any data. The Keepalive Count indicates after how many missed messages the
server would send an empty message to the client to indicate that it is still active
and the subscription is still in place.

4.3.9 Writing variables
To enable the writing of variables, several conditions must be met:

1. The flag "Enable Write" must be set for the variable. This can be done either during the adding
process via the button Add Nodes or afterwards in the parameter settings of the variable.

2. Before a write command, the "Write Enable" output for the I/O client must be enabled globally. Only
then are the write commands generated.

3. In the "Polling" and "Subscriptions" modes, writing only takes place after a value change within the I/O
client. This is particularly important for server restarts. After a server restart, values written once in
these modes are not automatically written again, as another OPC UA Client could have written a new
value in the meantime and this would then be overwritten by an "old" value.

Setting Enable Write for a variable

In order to add not only an input (Read) but also an output (Write) element for a variable in the process
image, it must be enabled explicitly. This can be done by using the Add Nodes dialog while adding the
variables, for example:

Technical introduction

TS6100-0030174 Version: 1.9

Alternatively, this setting can be enabled/disabled at a later stage via the configuration parameters of the
variables in the process image.

Enabling write access globally

Before write commands can be sent, they must be enabled globally. This is done by setting the output
variable "Write Enable" for the I/O client:

Technical introduction

TS6100-0030 175Version: 1.9

4.3.10 Security

4.3.10.1 Overview
One of the reasons for the success of OPC UA as communication technology is the various integrated
security mechanisms. OPC UA-based data communication can be secured on two levels:

1. Transport layer
2. Application level

Endpoints

A server offers the client a list of different endpoints [} 105] to which the client can connect. An endpoint
describes, among other things, which security functions (e.g. Message Security mode, Security Policy and
available Identity Tokens) the communication connection via this endpoint should fulfill. For example, an
endpoint may require signing and encryption of data packets (transport layer), as well as additional
authentication of the client based on user name/password (application layer).

Transport layer

A communication connection based on OPC UA can be secured at the transport layer. This is done through
the use of client/server certificates and a mutual trust relationship between client and server application.
Here, the client must trust the server certificate and vice versa in order for a communication connection to be
established. This requires a mutual certificate exchange [} 176].

Application level

In addition to the transport layer, a communication connection can also be secured at the application layer.
For this purpose, various authentication mechanisms [} 106] are available, which are offered by the server
endpoint.

Also see about this
2 Access rights [} 109]

Technical introduction

TS6100-0030176 Version: 1.9

4.3.10.2 Certificate exchange

To secure the communication connection at transport layer via a secure endpoint [} 105], it is necessary to
establish a mutual trust between client and server.

By default, both the TwinCAT OPC UA Server and the TwinCAT OPC UA Client generate a machine-
specific, self-signed certificate for authentication of the respective application at the first start.

Set up a trust relationship on the server

To establish a trust relationship between any OPC UA Client and the TwinCAT OPC UA Server, you need
the public key of the client certificate. The server must trust this. This can be done via the file system, for
example. The server manages the trust settings for client certificates in the PKI subdirectory.

• Trusted certificates: %InstallDir%\Server\PKI\CA\trusted\certs
• Untrusted certificates: %InstallDir%\Server\PKI\CA\rejected\certs

By moving client certificates between these directories, the trust settings can be adjusted accordingly. The
public key of a client certificate is automatically stored in the above untrusted certificate directory the first
time the client attempts to connect to a secure endpoint. By subsequently moving the public key to the
trusted certificate directory, the client is trusted the next time it attempts to connect.

AutomaticallyTrustAllClientCertificates
If this option is enabled in TcUaServerConfig.xml, the server automatically trusts all client
certificates. In this case, they will not be listed in any of the above directories.

Set up a trust relationship on the client

Depending on the OPC UA Client employed, different steps may need to be taken so that the OPC UA Client
trusts the OPC UA Server. Typically, for client applications with a graphical user interface, a warning
message is displayed the first time you connect to the server, whereby the server certificate can then be
classified as trustworthy.

The following instruction is therefore only valid for the TwinCAT OPC UA Client.

The public key of the OPC UA Server is located as a DER file in the following directory: %InstallDir%
\Server\PKI\CA\own\certs

In the case of the TwinCAT OPC UA Client, copy the file into the corresponding "Trusted" directory:
%InstallDir%\Client\PKI\CA\trusted\certs

Technical introduction

TS6100-0030 177Version: 1.9

4.4 Client PLCopen

4.4.1 Overview
The TwinCAT OPC UA Client offers several options for communicating directly with one or more
OPC UA Servers from the control logic. On the one hand, an OPC UA interface is available directly from the
PLC, in which a connection to an OPC UA Server can be initiated via PLCopen standardized function blocks.
On the other there is an OPC UA Client I/O device that offers a simple mapping-based interface.

PLC function blocks

The following table provides an overview of the functionalities offered:

Functionality Description Relevant function blocks
Connect/Disconnect Establishment and disconnection of

connections to OPC UA Servers.
UA_Connect
UA_Disconnect

Polling (Read/Write) Reading and writing of variables in
the UA namespace in the polling
mode. Contains no subscriptions.

UA_Connect
UA_Disconnect
UA_Read
UA_Write
UA_GetNamespaceIndex
UA_NodeGetHandle
UA_NodeReleaseHandle

Method Call Execution of methods in the UA
namespace.

UA_Connect
UA_Disconnect
UA_MethodGetHandle
UA_MethodReleaseHandle
UA_MethodCall

Security Establishment of an encrypted
connection to an OPC UA Server.

UA_Connect
UA_Disconnect

The interfaces of each function block are described in the section PLC API [} 215].

I/O device

Further information on the TwinCAT OPC UA Client I/O device can be found in the section I/O > Quick start
[} 160].

4.4.2 Supported data types
The OPC UA Client enables direct access to OPC UA Servers from the real-time logic. To read and write
data, the data types must be assigned to both environments (mapping). This assignment is described below.

Basic data types

The assignment of the basic data types is described in PLCopen OPC UA Information Model for IEC
61131-3.

Technical introduction

TS6100-0030178 Version: 1.9

OPC UA data type PLC data type
Boolean BOOL
SByte SINT
Byte USINT
Int16 INT
Int32 DINT
String STRING
USint BYTE
Float REAL
Double LREAL
UInt16 UINT
UInt32 UDINT
Int64 LINT
UInt64 ULINT
DateTime DT

Derived data types

OPC UA defines basic data types. Other data types are derived from these.

On the client side, access to all UA data types is only possible with PLC data types. Data types derived from
the basic data types are also supported from TcOpcUaClient version 2.1.0.36 or higher.

Currently supported non-base data types on the client side are:

• Counter (use UDINT in PLC)

Access to arrays

When creating a node handle, the system checks the possibilities to access the node. Further checks are
performed during reading and writing.

To access array nodes and input and output parameters of method calls, certain conditions must be fulfilled.

• For accessing nodes: The array dimension and data length must match the data provided when
reading and writing.

• Reading strings: If just one string exceeds the specified length for PLC strings, the read process fails.
• Only array dimensions up to three levels are supported.

4.4.3 Best practice

4.4.3.1 How to determine communication parameters
In general a graphic OPC UA Client is used to determine the attributes of a node or methods that have to be
used together with the PLC function blocks, e.g.:

• Node Identifier [} 179]

• Node namespace index and corresponding namespace URI [} 179]

• Node Data Type [} 180]

• Node ID and Object Node ID methods [} 181]

The following documentation uses the generic OPC UA Client UA Expert as an example. This client can be
purchased from the Unified Automation website: www.unified-automation.com.

http://www.unified-automation.com

Technical introduction

TS6100-0030 179Version: 1.9

Node Identifier

A general task consists of reading or writing variables that are generally referred to as nodes in the context
of OPC UA.

Nodes can be marked with the following three attributes:

• NamespaceIndex: The namespace in which the node is located, such as the PLC runtime.
• Identifier: Unique identifier of the node within its namespace
• IdentifierType: Type of node: String, Guid and Numeric

These attributes represent the so-called NodeID – the representation of a node on an OPC UA Server – and
are required by some function blocks.

With the help of UA Expert you can simply determine the attributes of a node by establishing a connection to
the OPC UA Server and browsing to the desired node. The attributes are then visible in the Attributes panel.

Sample:

Node NamespaceIndex and corresponding NamespaceURI

According to the OPC UA specification, the namespace index (as shown above) can be a dynamically
generated value. Therefore, OPC UA Clients must always use the corresponding namespace URI to resolve
the NamespaceIndex before a node handle is detected.

Use the UA_GetNamespaceIndex [} 237] function block to obtain the NamespaceIndex for a NamespaceURI.
The NamespaceURI required for this can be determined with the help of UA Expert by establishing a
connection to the OPC UA Server and browsing to the NamespaceArray node.

This node contains information about all namespaces registered on the OPC UA Server. The corresponding
NamespaceURIs are visible in the Attributes panel.

Sample:

Technical introduction

TS6100-0030180 Version: 1.9

A NodeID in which the NamespaceIndex is 5 is shown in the sample in the section Node Identifier [} 179].
According to the NamespaceArray shown in the figure, the corresponding NamespaceURI is urn://SVENG-
NB04/BeckhoffAutomation/Ua/PLC1. This URI can now be used for the function block
UA_GetNamespaceIndex. The OPC UA Server ensures that the URI always remains the same, even after a
restart. As the NamespaceIndex shown can change, however, the NamespaceURI should always be used in
combination with the UA_GetNamespaceIndex function block for later use with other function blocks, e.g.
UA_Read [} 249], UA_Write [} 252], to resolve the correct NamespaceIndex.

Node DataType

The data type of a node is required in order to see which PLC data type needs to be used in order to assign
a read value or write it to a node. With the help of UA Expert you can simply determine the data type of a
node by establishing a connection to the OPC UA Server and browsing to the desired node. The data type is
then visible in the Attributes panel.

Sample:

In this case the data type (DataType) is "Int16". This must be assigned to an equivalent data type in the PLC,
e.g. "INT".

The PLCopen IEC61131 - to - OPC UA specification describes the defined data type mapping. The following
table is an excerpt from this specification:

Technical introduction

TS6100-0030 181Version: 1.9

IEC61131 elementary data types OPC UA built-in data types
BOOL Boolean
SINT SByte
USINT Byte
INT Int16
UINT UInt16
DINT Int32
UDINT UInt32
LINT Int64
ULINT UInt64
BYTE Byte
WORD UInt16
DWORD UInt32
LWORD UInt64
REAL Float
LREAL Double
STRING String
CHAR Byte
WSTRING String
WCHAR UInt16
DT
DATE_AND_TIME

DateTime

DATE DateTime
TOD
TIME_OF_DAY

DateTime

TIME Double

Method NodeID and Object NodeID

When calling methods from the OPC UA namespace, two identifiers are required if the method handle is get
using the function block UA_MethodGetHandle [} 243]:

• ObjectNodeID: Identifies the UA object that contains the method
• MethodNodeID: Identifies the method itself

With the help of UA Expert you can simply determine both NodeIDs by establishing a connection to the OPC
UA Server and browsing to the desired method or the desired UA object that contains the method.

Sample Method M_Mul:

The method identifier is then visible in the Attributes panel.

Technical introduction

TS6100-0030182 Version: 1.9

Sample Object fbMathematics:

The object identifier is then visible in the Attributes panel.

4.4.3.2 How to establish a connection
The following section describes how you use the TcX_PLCopen_OpcUa function block to establish a
connection to a local or remote OPC UA Server. This connection can then be used to call other functions,
such as read or write nodes, or call methods.

This section contains the following topics:

• Overview [} 182]

• Schematic workflow [} 182]

• General notes [} 183]

• Code snippet [} 183]

Overview

The following function blocks are required to establish a connection to an OPC UA Server and to interrupt
the session later: UA_Connect [} 234], UA_Disconnect [} 236].

First read the section How to determine communication parameters [} 178] to better understand
certain UA functionalities (e.g. how to determine node identifiers).

Schematic workflow

The schematic workflow of each TwinCAT OPC UA Client can be categorized into three different phases:
Preparation, Work and Cleanup.

The use case described in this section can be visualized as follows:

Technical introduction

TS6100-0030 183Version: 1.9

General notes

The UA_Connect function block requires the following information in order to be able to establish a
connection to a local or remote OPC UA Server:

• Server URL
• Session Connect Information

The server URL basically consists of a prefix, a hostname and a port. The prefix describes the OPC UA
transport protocol that should be used for the connection, e.g."opc.tcp://" for a binary TCP connection
(default). The host name or IP address part describes the address information of the OPC UA target server,
e.g. "192.168.1.1" or "CX-12345". The port number is the target port of the OPC UA Server, e.g. "4840".
Overall the server URL may then look like this: opc.tcp://CX-12345:4840.

Code snippet

Declaration:
(* Declarations for UA_Connect *)
fbUA_Connect : UA_Connect;
SessionConnectInfo : ST_UASessionConnectInfo;
nConnectionHdl : DWORD;

(* Declarations for UA_Disconnect *)
fbUA_Disconnect : UA_Disconnect;

(* Declarations for state machine and output handling *)
iState : INT;
bDone : BOOL;
bBusy : BOOL;
bError : BOOL;
nErrorID : DWORD;

Implementation:
CASE iState OF

 0:
 bError := FALSE;
 nErrorID := 0;
 SessionConnectInfo.tConnectTimeout := T#1M;
 SessionConnectInfo.tSessionTimeout := T#1M;
 SessionConnectInfo.sApplicationName := '';
 SessionConnectInfo.sApplicationUri := '';
 SessionConnectInfo.eSecurityMode := eUASecurityMsgMode_None;
 SessionConnectInfo.eSecurityPolicyUri := eUASecurityPolicy_None;
 SessionConnectInfo.eTransportProfileUri := eUATransportProfileUri_UATcp;
 stNodeAddInfo.nIndexRangeCount := nIndexRangeCount;
 stNodeAddInfo.stIndexRange := stIndexRange;
 iState := iState + 1;

 1:
 fbUA_Connect(
 Execute := TRUE,
 ServerURL := ‘opc.tcp://192.168.1.1:4840’,
 SessionConnectInfo := SessionConnectInfo,
 Timeout := T#5S,
 ConnectionHdl => nConnectionHdl);
 IF NOT fbUA_Connect.Busy THEN
 fbUA_Connect(Execute := FALSE);
 IF NOT fbUA_Connect.Error THEN
 iState := iState + 1;
 ELSE

Technical introduction

TS6100-0030184 Version: 1.9

 bError := TRUE;
 nErrorID := fbUA_Connect.ErrorID;
 nConnectionHdl := 0;
 iState := 0;
 END_IF
 END_IF

 2:
 fbUA_Disconnect(
 Execute := TRUE,
 ConnectionHdl := nConnectionHdl);

 IF NOT fbUA_Disconnect.Busy THEN
 fbUA_Disconnect(Execute := FALSE);
 IF NOT fbUA_Disconnect.Error THEN
 iState := 0;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_Disconnect.ErrorID;
 iState := 0;
 nConnectionHdl := 0;
 END_IF
 END_IF

END_CASE

4.4.3.3 How to read nodes
The following section describes how you use the TcX_PLCopen_OpcUa function block to read out an
OPC UA node from a local or remote OPC UA Server.

This section contains the following topics:

• Overview [} 184]

• Schematic workflow [} 184]

• General notes [} 185]

• Code snippet [} 185]

Overview

The following function blocks are required to establish a connection to an OPC UA Server, to read UA nodes
and to interrupt the session later: UA_Connect [} 234], UA_GetNamespaceIndex [} 237], UA_NodeGetHandle
[} 245], UA_Read [} 249], UA_NodeReleaseHandle [} 247], UA_Disconnect [} 236].

First of all, read the section How to determine communication parameters [} 178] so as to be able
to understand certain UA functions better (e.g. how NodeIdentifiers can be determined) as well as
the section How to establish a connection [} 182].

Schematic workflow

The schematic workflow of each TwinCAT OPC UA Client can be categorized into three different phases:
Preparation, Work and Cleanup.

The use case described in this section can be visualized as follows:

Technical introduction

TS6100-0030 185Version: 1.9

General notes
• The UA_Connect function block requires the following information to establish a connection to a local

or remote OPC UA Server (see also How to establish a connection [} 182]):
◦ Server URL
◦ Session Connect Information

• The UA_GetNamespaceIndex function block requires a connection handle (from UA_Connect) and a
NamespaceURI for resolution in a NamespaceIndex, which will be used later by UA_NodeGetHandle
to obtain a node handle (see also How to determine communication parameters [} 178]).

• The UA_NodeGetHandle function block requires a connection handle (from UA_Connect) and the
NodeID (from a ST_UANodeID) in order to obtain a node handle (see also How to determine
communication parameters [} 178]).

• The UA_Read function block requires a connection handle (from UA_Connect), a node handle (from
UA_NodeGetHandle) and a pointer to the target variable (where the read value is to be saved). Make
sure that the target variable has the correct data type (see How to determine communication
parameters [} 178]).

• The UA_NodeReleaseHandle function block requires a connection handle (from UA_Connect) and a
node handle (from UA_NodeGetHandle).

Code snippet

Declaration:
(* Declarations for UA_GetNamespaceIndex *)
fbUA_GetNamespaceIndex : UA_GetNamespaceIndex;
nNamespaceIndex : UINT;

(* Declarations for UA_NodeGetHandle *)
fbUA_NodeGetHandle : UA_NodeGetHandle;
NodeID : ST_UANodeID;
nNodeHdl : DWORD;

(* Declarations for UA_Read *)
fbUA_Read : UA_Read;
stIndexRange : ARRAY [1..nMaxIndexRange] OF ST_UAIndexRange;
nIndexRangeCount : UINT;
stNodeAddInfo : ST_UANodeAdditionalInfo;
sNodeIdentifier : STRING(MAX_STRING_LENGTH) := 'MAIN.nCounter';
nReadData : INT;
cbDataRead : UDINT;

(* Declarations for UA_NodeReleaseHandle *)
fbUA_NodeReleaseHandle : UA_NodeReleaseHandle;

Implementation:
CASE iState OF
 0:
 [...]

 2: (* GetNS Index *)

Technical introduction

TS6100-0030186 Version: 1.9

 fbUA_GetNamespaceIndex(
 Execute := TRUE,
 ConnectionHdl := nConnectionHdl,
 NamespaceUri := sNamespaceUri,
 NamespaceIndex => nNamespaceIndex
);
 IF NOT fbUA_GetNamespaceIndex.Busy THEN
 fbUA_GetNamespaceIndex(Execute := FALSE);
 IF NOT fbUA_GetNamespaceIndex.Error THEN
 iState := iState + 1;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_GetNamespaceIndex.ErrorID;
 iState := 6;
 END_IF
 END_IF

 3: (* UA_NodeGetHandle *)
 NodeID.eIdentifierType := eUAIdentifierType_String;
 NodeID.nNamespaceIndex := nNamespaceIndex;
 NodeID.sIdentifier := sNodeIdentifier;
 fbUA_NodeGetHandle(
 Execute := TRUE,
 ConnectionHdl := nConnectionHdl,
 NodeID := NodeID,
 NodeHdl => nNodeHdl);
 IF NOT fbUA_NodeGetHandle.Busy THEN
 fbUA_NodeGetHandle(Execute := FALSE);
 IF NOT fbUA_NodeGetHandle.Error THEN
 iState := iState + 1;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_NodeGetHandle.ErrorID;
 iState := 6;
 END_IF
 END_IF

 4: (* UA_Read *)
 fbUA_Read(
 Execute := TRUE,
 ConnectionHdl := nConnectionHdl,
 NodeHdl := nNodeHdl,
 cbData := SIZEOF(nReadData),
 stNodeAddInfo := stNodeAddInfo,
 pVariable := ADR(nReadData));
 IF NOT fbUA_Read.Busy THEN
 fbUA_Read(Execute := FALSE, cbData_R => cbDataRead);
 IF NOT fbUA_Read.Error THEN
 iState := iState + 1;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_Read.ErrorID;
 iState := 6;
 END_IF
 END_IF

 5: (* Release Node Handle *)
 fbUA_NodeReleaseHandle(
 Execute := TRUE,
 ConnectionHdl := nConnectionHdl,
 NodeHdl := nNodeHdl);
 IF NOT fbUA_NodeReleaseHandle.Busy THEN
 fbUA_NodeReleaseHandle(Execute := FALSE);
 IF NOT fbUA_NodeReleaseHandle.Error THEN
 iState := iState + 1;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_NodeReleaseHandle.ErrorID;
 iState := 6;
 END_IF
 END_IF

 6:
 [...]

END_CASE

Technical introduction

TS6100-0030 187Version: 1.9

4.4.3.4 How to write nodes
The following section describes how you use the TcX_PLCopen_OpcUa function block to write values in an
OPC UA node from a local or remote OPC UA Server.

This section contains the following topics:

• Overview [} 187]

• Schematic workflow [} 187]

• General notes [} 187]

• Code snippet [} 188]

Overview

The following function blocks are required to establish a connection to an OPC UA Server, write UA nodes
and subsequently interrupt the session: UA_Connect [} 234], UA_GetNamespaceIndex [} 237],
UA_NodeGetHandle [} 245], UA_Write [} 252], UA_NodeReleaseHandle [} 247], UA_Disconnect [} 236].

First of all, read the section How to determine communication parameters [} 178] so as to be able
to understand certain UA functions better (e.g. how NodeIdentifiers can be determined) as well as
the section How to establish a connection [} 182].

Schematic workflow

The schematic workflow of each TwinCAT OPC UA Client can be categorized into three different phases:
Preparation, Work and Cleanup.

The use case described in this section can be visualized as follows:

General notes
• The UA_Connect function block requires the following information to establish a connection to a local

or remote OPC UA Server (see also How to establish a connection [} 182]):
◦ Server URL
◦ Session Connect Information

• The UA_GetNamespaceIndex function block requires a connection handle (from UA_Connect) and a
NamespaceURI for resolution in a NamespaceIndex, which will be used later by UA_NodeGetHandle
to obtain a node handle (see also How to determine communication parameters [} 178]).

• The UA_NodeGetHandle function block requires a connection handle (from UA_Connect) and the
NodeID (from a ST_UANodeID) in order to obtain a node handle (see also How to determine
communication parameters [} 178]).

Technical introduction

TS6100-0030188 Version: 1.9

• The UA_Write function block requires a connection handle (from UA_Connect), a node handle (from
UA_NodeGetHandle) and a pointer to a variable containing the value that is to be written. Make sure
that the target variable has the correct data type (see How to determine communication parameters
[} 178]).

• The UA_NodeReleaseHandle function block requires a connection handle (from UA_Connect) and a
node handle (from UA_NodeGetHandle).

Code snippet

Declaration:
(* Declarations for UA_GetNamespaceIndex *)
fbUA_GetNamespaceIndex : UA_GetNamespaceIndex;
nNamespaceIndex : UINT;

(* Declarations for UA_NodeGetHandle *)
fbUA_NodeGetHandle : UA_NodeGetHandle;
NodeID : ST_UANodeID;
nNodeHdl : DWORD;

(* Declarations for UA_Write *)
fbUA_Write : UA_Write;
stIndexRange : ARRAY [1..nMaxIndexRange] OF ST_UAIndexRange;
nIndexRangeCount : UINT;
stNodeAddInfo : ST_UANodeAdditionalInfo;
sNodeIdentifier: STRING(MAX_STRING_LENGTH) := 'MAIN.nNumber';
nWriteData: INT := 42;

(* Declarations for UA_NodeReleaseHandle *)
fbUA_NodeReleaseHandle : UA_NodeReleaseHandle;

Implementation:
CASE iState OF
 0:
 [...]

 2: (* GetNS Index *)
 fbUA_GetNamespaceIndex(
 Execute := TRUE,
 ConnectionHdl := nConnectionHdl,
 NamespaceUri := sNamespaceUri,
 NamespaceIndex => nNamespaceIndex
);
 IF NOT fbUA_GetNamespaceIndex.Busy THEN
 fbUA_GetNamespaceIndex(Execute := FALSE);
 IF NOT fbUA_GetNamespaceIndex.Error THEN
 iState := iState + 1;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_GetNamespaceIndex.ErrorID;
 iState := 6;
 END_IF
 END_IF

 3: (* UA_NodeGetHandle *)
 NodeID.eIdentifierType := eUAIdentifierType_String;
 NodeID.nNamespaceIndex := nNamespaceIndex;
 NodeID.sIdentifier := sNodeIdentifier;
 fbUA_NodeGetHandle(
 Execute := TRUE,
 ConnectionHdl := nConnectionHdl,
 NodeID := NodeID,
 NodeHdl => nNodeHdl);
 IF NOT fbUA_NodeGetHandle.Busy THEN
 fbUA_NodeGetHandle(Execute := FALSE);
 IF NOT fbUA_NodeGetHandle.Error THEN
 iState := iState + 1;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_NodeGetHandle.ErrorID;
 iState := 6;
 END_IF
 END_IF

 4: (* UA_Write *)
 fbUA_Write(

Technical introduction

TS6100-0030 189Version: 1.9

 Execute := TRUE,
 ConnectionHdl := nConnectionHdl,
 NodeHdl := nNodeHdl,
 stNodeAddInfo := stNodeAddInfo,
 cbData := SIZEOF(nWriteData),
 pVariable := ADR(nWriteData));
 IF NOT fbUA_Write.Busy THEN
 fbUA_Write(
 Execute := FALSE,
 pVariable := ADR(nWriteData));
 IF NOT fbUA_Write.Error THEN
 iState := iState + 1;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_Write.ErrorID;
 iState := 6;
 END_IF
 END_IF

 5: (* Release Node Handle *)
 fbUA_NodeReleaseHandle(
 Execute := TRUE,
 ConnectionHdl := nConnectionHdl,
 NodeHdl := nNodeHdl);
 IF NOT fbUA_NodeReleaseHandle.Busy THEN
 fbUA_NodeReleaseHandle(Execute := FALSE);
 IF NOT fbUA_NodeReleaseHandle.Error THEN
 iState := iState + 1;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_NodeReleaseHandle.ErrorID;
 iState := 6;
 END_IF
 END_IF

 6:
 [...]

END_CASE

4.4.3.5 How to call methods
The following section describes how you use the TcX_PLCopen_OpcUa function block to call methods on a
local or remote OPC UA Server.

This section contains the following topics:

• Overview [} 189]

• Schematic workflow [} 189]

• General notes [} 190]

• Code snippet [} 190]

Overview

The following function blocks are required to connect to an OPC UA Server, call UA methods, and
subsequently interrupt the session: UA_Connect [} 234], UA_GetNamespaceIndex [} 237],
UA_MethodGetHandle [} 243], UA_MethodCall [} 240], UA_MethodReleaseHandle [} 244], UA_Disconnect
[} 236].

First of all, read the section How to determine communication parameters [} 178] so as to be able
to understand certain UA functions better (e.g. how MethodIdentifier can be determined) as well as
the section How to establish a connection [} 182].

Schematic workflow

The schematic workflow of each TwinCAT OPC UA Client can be categorized into three different phases:
Preparation, Work and Cleanup.

The use case described in this section can be visualized as follows:

Technical introduction

TS6100-0030190 Version: 1.9

General notes
• The UA_Connect function block requires the following information to establish a connection to a local

or remote OPC UA Server (see also How to establish a connection [} 182]):
◦ Server URL
◦ Session Connect Information

• The UA_GetNamespaceIndex function block requires a connection handle (from UA_Connect) and a
NamespaceURI for resolution in a NamespaceIndex, which will be used later by UA_NodeGetHandle
to obtain a node handle (see also How to determine communication parameters [} 178]).

• The UA_MethodGetHandle function block requires a connection handle (from UA_Connect), an
ObjectNodeID and a MethodNodeID in order to obtain a method handle (see also How to determine
communication parameters [} 178]).

• The UA_MethodCall function block requires a connection handle (from UA_Connect), a method handle
(from UA_MethodGetHandle) and information about the input and output arguments of the method that
is to be called. Information about the input arguments is represented by the input parameters
pInputArgInfo and pInputArgData of UA_MethodCall. Information about the output parameters is
represented by the pOutputArgInfo and pOutputArgData input parameters of UA_MethodCall. The
input parameter pOutputArgInfoAndData then represents a pointer to a structure containing the results
of the method call, including all output parameters. In the following code snippet the pInputArgInfo and
pInputArgData parameters are calculated and created in the M_Init method.

• The UA_NodeReleaseHandle function block requires a connection handle (from UA_Connect) and a
method handle (from UA_MethodGetHandle).

Code snippet

M_Init initialization method of the function block containing the UA method call
MEMSET(ADR(nInputData),0,SIZEOF(nInputData));
nArg := 1;

(********** Input parameter 1 **********)
InputArguments[nArg].DataType := eUAType_Int16;
InputArguments[nArg].ValueRank := -1; (* Scalar = -1 or Array *)
InputArguments[nArg].ArrayDimensions[1] := 0; (* Number of Dimension in case its an array *)
InputArguments[nArg].nLenData := SIZEOF(numberIn1); (* Length if its a STRING *)
IF nOffset + SIZEOF(numberIn1) > nInputArgSize THEN
 bInputDataError := TRUE;
 RETURN;
ELSE
 MEMCPY(ADR(nInputData)+nOffset,ADR(numberIn1),SIZEOF(numberIn1)); (* VALUE in BYTES FORM *)
 nOffset := nOffset + SIZEOF(numberIn1);
END_IF
nArg := nArg + 1;

(********** Input parameter 2 **********)
InputArguments[nArg].DataType := eUAType_Int16;
InputArguments[nArg].ValueRank := -1; (* Scalar = -1 or Array *)
InputArguments[nArg].ArrayDimensions[1] := 0; (* Number of Dimension in case its an array *)
InputArguments[nArg].nLenData := SIZEOF(numberIn2); (* Length if its a STRING *)
IF nOffset + SIZEOF(numberIn2) > nInputArgSize THEN
 bInputDataError := TRUE;

Technical introduction

TS6100-0030 191Version: 1.9

 RETURN;
ELSE
 MEMCPY(ADR(nInputData)+nOffset,ADR(numberIn2),SIZEOF(numberIn2));(* VALUE in BYTES FORM *)
 nOffset := nOffset + SIZEOF(numberIn2);
END_IF

cbWriteData := nOffset;

Declaration:
(* Declarations for UA_GetNamespaceIndex *)
fbUA_GetNamespaceIndex : UA_GetNamespaceIndex;
nNamespaceIndex : UINT;

(* Declarations for UA_MethodGetHandle *)
fbUA_MethodGetHandle: UA_MethodGetHandle;
ObjectNodeID: ST_UANodeID;
MethodNodeID: ST_UANodeID;
nMethodHdl: DWORD;

(* Declarations for UA_MethodCall *)
fbUA_MethodCall: UA_MethodCall;
sObjectNodeIdIdentifier : STRING(MAX_STRING_LENGTH) := 'MAIN.fbMathematics';
sMethodNodeIdIdentifier : STRING(MAX_STRING_LENGTH) := 'MAIN.fbMathematics#M_Mul';
nAdrWriteData: PVOID;
numberIn1: INT := 42; // change according to input value and data type
numberIn2: INT := 42; // change according to input value and data type
numberOutPro: DINT; // result (output parameter of M_Mul())
cbWriteData: UDINT; // calculated automatically by M_Init()
InputArguments: ARRAY[1..2] OF ST_UAMethodArgInfo; // change according to input parameters
stOutputArgInfo: ARRAY[1..1] OF ST_UAMethodArgInfo; // change according to output parameters
stOutputArgInfoAndData: ST_OutputArgInfoAndData;
nInputData: ARRAY[1..4] OF BYTE; // numberIn1(INT16)(2) + numberIn2(INT16)(2)
nOffset: UDINT; // calculated by M_Init()
nArg: INT; // used by M_Init()

(* Declarations for UA_MethodReleaseHandle *)
fbUA_MethodReleaseHandle: UA_MethodReleaseHandle;

Implementation:
CASE iState OF
 0:
 [...]

 2: (* GetNS Index *)
 fbUA_GetNamespaceIndex(
 Execute := TRUE,
 ConnectionHdl := nConnectionHdl,
 NamespaceUri := sNamespaceUri,
 NamespaceIndex => nNamespaceIndex);
 IF NOT fbUA_GetNamespaceIndex.Busy THEN
 fbUA_GetNamespaceIndex(Execute := FALSE);
 IF NOT fbUA_GetNamespaceIndex.Error THEN
 iState := iState + 1;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_GetNamespaceIndex.ErrorID;
 iState := 7;
 END_IF
 END_IF

 3: (* Get Method Handle *)
 ObjectNodeID.eIdentifierType := eUAIdentifierType_String;
 ObjectNodeID.nNamespaceIndex := nNamespaceIndex;
 ObjectNodeID.sIdentifier := sObjectNodeIdIdentifier;
 MethodNodeID.eIdentifierType := eUAIdentifierType_String;
 MethodNodeID.nNamespaceIndex := nNamespaceIndex;
 MethodNodeID.sIdentifier := sMethodNodeIdIdentifier;

 M_Init();

 IF bInputDataError = FALSE THEN
 iState := iState + 1;
 ELSE
 bBusy := FALSE;
 bError := TRUE;
 nErrorID := 16#70A; //out of memory
 END_IF

Technical introduction

TS6100-0030192 Version: 1.9

 4: (* Method Get Handle *)
 fbUA_MethodGetHandle(
 Execute := TRUE,
 ConnectionHdl := nConnectionHdl,
 ObjectNodeID := ObjectNodeID,
 MethodNodeID := MethodNodeID,
 MethodHdl => nMethodHdl);
 IF NOT fbUA_MethodGetHandle.Busy THEN
 fbUA_MethodGetHandle(Execute := FALSE);
 IF NOT fbUA_MethodGetHandle.Error THEN
 iState := iState + 1;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_MethodGetHandle.ErrorID;
 iState := 6;
 END_IF
 END_IF

 5: (* Method Call *)
 stOutputArgInfo[1].nLenData := SIZEOF(stOutputArgInfoAndData.pro);
 fbUA_MethodCall(
 Execute := TRUE,
 ConnectionHdl := nConnectionHdl,
 MethodHdl := nMethodHdl,
 nNumberOfInputArguments := nNumberOfInputArguments,
 pInputArgInfo := ADR(InputArguments),
 cbInputArgInfo := SIZEOF(InputArguments),
 pInputArgData := ADR(nInputData),
 cbInputArgData := cbWriteData,
 pInputWriteData := 0,
 cbInputWriteData := 0,
 nNumberOfOutputArguments := nNumberOfOutputArguments,
 pOutputArgInfo := ADR(stOutputArgInfo),
 cbOutputArgInfo := SIZEOF(stOutputArgInfo),
 pOutputArgInfoAndData := ADR(stOutputArgInfoAndData),
 cbOutputArgInfoAndData := SIZEOF(stOutputArgInfoAndData));
 IF NOT fbUA_MethodCall.Busy THEN
 fbUA_MethodCall(Execute := FALSE);
 IF NOT fbUA_MethodCall.Error THEN
 iState := iState + 1;
 numberOutPro := stOutputArgInfoAndData.pro;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_MethodCall.ErrorID;
 iState := 6;
 END_IF
 END_IF

 6: (* Release Method Handle *)
 fbUA_MethodReleaseHandle(
 Execute := TRUE,
 ConnectionHdl := nConnectionHdl,
 MethodHdl := nMethodHdl);
 IF NOT fbUA_MethodReleaseHandle.Busy THEN
 fbUA_MethodReleaseHandle(Execute := FALSE);
 bBusy := FALSE;
 IF NOT fbUA_MethodReleaseHandle.Error THEN
 iState := 7;
 ELSE
 bError := TRUE;
 nErrorID := fbUA_MethodReleaseHandle.ErrorID;
 iState := 7;
 END_IF
 END_IF

 7:
 [...]

END_CASE

4.4.4 Security

4.4.4.1 Overview
One of the reasons for the success of OPC UA as communication technology is the various integrated
security mechanisms. OPC UA-based data communication can be secured on two levels:

Technical introduction

TS6100-0030 193Version: 1.9

1. Transport layer
2. Application level

Endpoints

A server offers the client a list of different endpoints [} 105] to which the client can connect. An endpoint
describes, among other things, which security functions (e.g. Message Security mode, Security Policy and
available Identity Tokens) the communication connection via this endpoint should fulfill. For example, an
endpoint may require signing and encryption of data packets (transport layer), as well as additional
authentication of the client based on user name/password (application layer).

Transport layer

A communication connection based on OPC UA can be secured at the transport layer. This is done through
the use of client/server certificates and a mutual trust relationship between client and server application.
Here, the client must trust the server certificate and vice versa in order for a communication connection to be
established. This requires a mutual certificate exchange [} 193].

Application level

In addition to the transport layer, a communication connection can also be secured at the application layer.
For this purpose, various authentication mechanisms [} 106] are available, which are offered by the server
endpoint.

Also see about this
2 Access rights [} 109]

4.4.4.2 Certificate exchange

To secure the communication connection at transport layer via a secure endpoint [} 105], it is necessary to
establish a mutual trust between client and server.

By default, both the TwinCAT OPC UA Server and the TwinCAT OPC UA Client generate a machine-
specific, self-signed certificate for authentication of the respective application at the first start.

Set up a trust relationship on the server

To establish a trust relationship between any OPC UA Client and the TwinCAT OPC UA Server, you need
the public key of the client certificate. The server must trust this. This can be done via the file system, for
example. The server manages the trust settings for client certificates in the PKI subdirectory.

• Trusted certificates: %InstallDir%\Server\PKI\CA\trusted\certs

Technical introduction

TS6100-0030194 Version: 1.9

• Untrusted certificates: %InstallDir%\Server\PKI\CA\rejected\certs

By moving client certificates between these directories, the trust settings can be adjusted accordingly. The
public key of a client certificate is automatically stored in the above untrusted certificate directory the first
time the client attempts to connect to a secure endpoint. By subsequently moving the public key to the
trusted certificate directory, the client is trusted the next time it attempts to connect.

AutomaticallyTrustAllClientCertificates
If this option is enabled in TcUaServerConfig.xml, the server automatically trusts all client
certificates. In this case, they will not be listed in any of the above directories.

Set up a trust relationship on the client

Depending on the OPC UA Client employed, different steps may need to be taken so that the OPC UA Client
trusts the OPC UA Server. Typically, for client applications with a graphical user interface, a warning
message is displayed the first time you connect to the server, whereby the server certificate can then be
classified as trustworthy.

The following instruction is therefore only valid for the TwinCAT OPC UA Client.

The public key of the OPC UA Server is located as a DER file in the following directory: %InstallDir%
\Server\PKI\CA\own\certs

In the case of the TwinCAT OPC UA Client, copy the file into the corresponding "Trusted" directory:
%InstallDir%\Client\PKI\CA\trusted\certs

4.5 Gateway

4.5.1 Overview
The TwinCAT OPC UA Gateway is the latest addition to the TS6100/TF6100 software product. It not only
includes a conventional OPC DA interface for connecting older OPC COM DA applications to the
TwinCAT OPC UA Server and can therefore be regarded as the successor of the old
TwinCAT OPC DA Server (TS6120/TF6120), it also offers an OPC UA interface for converting several basic
TwinCAT OPC UA Servers to a central OPC UA Server.

Technical introduction

TS6100-0030 195Version: 1.9

4.5.2 Quick start
The TwinCAT OPC UA Gateway is available for download as a separate setup. The setup automatically
configures access to a TwinCAT OPC UA Server running on the same computer as the gateway.

If more than one OPC UA Server is added to the gateway, or if the server is running on a different computer,
the standard configuration has to be modified. Use the Configurator [} 199] to configure these settings.

Configuration of the TwinCAT OPC UA Server
Check the configuration of the OPC UA Server and make sure that it is operating as expected
before continuing.

For further information regarding the configuration of the OPC UA Server, read the Quick start [} 35]
in the section "OPC UA Server".

Quick start – OPC COM DA

To connect an OPC COM DA Client to the gateway, start the client and establish a connection to the
following ProgId:
UnifiedAutomation.UaGateway.1

Technical introduction

TS6100-0030196 Version: 1.9

When browsing the gateway, one or more OPC UA Servers will be visible in the namespace of the gateway.

Quick start – OPC UA

The gateway not only offers an OPC COM DA interface, but also allows the aggregation of one or more
OPC UA Servers. The gateway also opens an OPC UA interface for this purpose. The gateway can be
accessed via the following OPC UA Server URL:
opc.tcp://[HostnameOrIpAddressOrLocalhost]:48050

Technical introduction

TS6100-0030 197Version: 1.9

The namespace of the gateway then contains all underlying TwinCAT OPC UA Servers.

4.5.3 Licensing
The TwinCAT OPC UA Gateway is supplied free of charge. No further license purchase is required.

Note that the gateway component can only be used for connecting to TwinCAT OPC UA Servers. The
software prevents connections to third-party UA Servers. The Unified Automation UA Gateway is
recommended where the environment necessitates the connection with a UA Server from a third party. It can
be purchased from http://www.unified-automation.com.

4.5.4 Scenarios
On account of the open and flexible PC-based automation technology from Beckhoff, the OPC UA Gateway
can be operated and installed in different ways. The following section describes the various setup scenarios
and explains the advantages and disadvantages of each configuration.

http://www.unified-automation.com

Technical introduction

TS6100-0030198 Version: 1.9

Gateway and UA Server on the same computer

In this scenario, the gateway and the UA Server are installed on the same computer. The gateway is
configured with the standard settings in order to establish a connection with the local OPC UA Server with
the following Server URL: opc.tcp://localhost:4840.

This scenario only works on non-Windows CE devices.

The TwinCAT OPC UA Server is also available for Windows CE, but the gateway is only available for "big"
Windows platforms.

Gateway and UA Server on different computers

In this scenario, the gateway and the UA Server are installed on different computers. The gateway is
configured for the establishment of a connection with the remote OPC UA Server by defining the latter's
corresponding Server URL, e.g. opc.tcp://192.168.1.1:4840.

The OPC UA Server may be installed on a small embedded device (e.g. a CX8090 with Windows CE), while
the gateway component is installed on a separate big Windows platform, e.g. a central server device.

Gateway connected to multiple UA Server devices

Please note that, regardless of the scenarios described above, it is also possible to connect other
TwinCAT OPC UA Servers to the gateway. For example, the gateway can be configured to access the
following servers:

• the local TwinCAT OPC UA Server (e.g. opc.tcp://localhost:4840)
• a remote TwinCAT OPC UA Server (e.g. opc.tcp://192.168.1.1:4840)
• another remote TwinCAT OPC UA Server (e.g. opc.tcp://192.168.1.21:4841)
• ...

Technical introduction

TS6100-0030 199Version: 1.9

4.5.5 Configurator

4.5.5.1 Overview
The UA Gateway Administration Tool is a graphic user interface for the configuration of the gateway.

The tool is opened via the context menu of the gateway symbol in the Windows taskbar. After starting the
administration tool via the command Administrate UaGateway, the graphic user interface appears.

The interface offers several configuration options:

• General settings [} 199]

• Additional UA Servers [} 201]

• Additional endpoints [} 202]

• OPC COM DA settings [} 203]

4.5.5.2 General settings
The General tab displays general settings of the UA Gateway.

Technical introduction

TS6100-0030200 Version: 1.9

Autostart

In this area you can configure the autostart behavior of the UA Gateway.

Activate UaGateway Runtime Process to start the UA Gateway Service automatically when the computer is
switched on.

Activate the Notification Area Icon to start the symbol of the notification area when a user logs on.

Launching User

The UA Gateway is executed as a Windows NT service. This service is assigned a specific user context so
that COM/DCOM can be properly configured. The user you select is assigned to the UA Gateway service. In
addition, the user is granted a LogOnAsService right (so he/she can start the service) and is added to a local

Technical introduction

TS6100-0030 201Version: 1.9

user group ("UaGatewayUsers"). This group is added to the Access Control List (ACL) of the local machine.
For proper COM/DCOM configuration you must add to this group all the users who are permitted to start and
access the UA Gateway.

Configuration Permissions

It is possible to allow only certain users to change the configuration of the UA Gateway, i.e. to add or remove
connections to basic servers. You can choose from the following settings:

Everyone Any user (including users anonymously logged on to UA) who can contact the UA
Gateway can change the configuration.

Limit to operating system
users

Only local users and users within the same domain can change the configuration.

Limit to users of this
group

Only users within a specific group to change the configuration. If not all available
groups are displayed in the Group drop-down list (or a newly created group is
missing), use the Refresh button to read this group again.

Remote DCOM Access

When Allow Remote Connection to UaGateway OPC COM Server is enabled, DCOM port 135 and the
executable UA Gateway are added to the firewall exception list.

If Allow starting UaGateway by DCOM Clients is disabled, DCOM clients cannot start the UA Gateway. In
this case, UA Gateway can still be started or stopped using the Notification Area Icon or the Start menu
entries.

UA Discovery Registration (UA Local Discovery Server)

Activate Register at Local Discovery Server if the UA Gateway is to be registered with the OPC UA LDS
(Local Discovery Server), if one is installed.

4.5.5.3 Additional UA Servers
The Configured UA Servers tab offers options for the configuration of the underlying OPC UA Servers. By
default the gateway already establishes a connection with the local OPC UA Server (which is running on the
same computer).

Technical introduction

TS6100-0030202 Version: 1.9

To configure or remove further OPC UA Servers from the configuration, click on the Plus and Minus buttons
in the lower right-hand corner and then Apply to save the changes.

4.5.5.4 Additional endpoints
The UA Endpoints tab shows the settings for the UA endpoint configuration.

The UA endpoint is the connection information that a UA Client requires to connect to the gateway.

General

Use the checkboxes to specify the logon methods that a client can use to connect to your UA Gateway.

Technical introduction

TS6100-0030 203Version: 1.9

Endpoints

Here you can define all settings required for different UA endpoints. The endpoint is configured with default
settings as standard. These represent a single UA endpoint offering two security options: None and
Basic128RSsa15.

The None security option allows every UA Client to connect to the UA Gateway. This configuration is only
recommended during commissioning and testing. In a production environment this configuration should be
switched off.

The various configuration elements are described in the following sections.

Network configuration

Endpoint URL This is the endpoint URL of the UA Gateway as seen in FindServers and
GetEndpoint calls.

Protocol This is the protocol used for this endpoint.
Host name/IP This is the host name of the UA Gateway (it can also be the IP address of the

PC running the UA Gateway).
Network adapter This is the network adapter to be used for binding. The available options are:
All Binding is to be applied to all IP addresses of the computer. The endpoint will

be accessible via the given port on all IP addresses.
Network adapter Select a network adapter and an IP address (below) to bind only to that

address. The endpoint will only be accessible to clients that establish a
connection with the selected IP address.

Local only With this selection, the UA Gateway only establishes a binding with the
loopback adapter. The endpoint can only be reached by clients running on the
same machine as the UA Gateway.

Port This is the TCP port of the endpoint (normally 48050).

Security

In this area you can configure the supported security settings of the endpoint. Select the checkboxes for the
security options you want to apply to a specific endpoint. For options other than "None", the available
message security mode(s) must be specified. Signing ensures that messages cannot be changed and that
they are exchanged between applications that have established a connection. Encryption guarantees that no
one can read the messages.

4.5.5.5 OPC COM DA settings
The OPC DA (COM) tab shows the settings for the configuration of the COM DA Server of the UA Gateway.

The following section describes how to configure the COM DA Server of the UA Gateway using the
administration tool.

General

ItemIDs of the COM DA Server are formed from the URI namespace and the identifier of the variable node in
the OPC UA address space. The namespace part can be omitted in the case of a single namespace.

In the Default Name Space drop-down field you can specify the default namespace with the namespace of
a basic OPC server. The ItemIDs of this particular namespace can then be reached by specifying the
identifier only, because the default namespace is automatically added internally when an element is
accessed. This feature can be used to reconfigure all ItemIDs in the client that accesses the UA
Gateway server, if the latter serves as a tunnel solution for a basic COM DA Server, while maintaining the
ItemIDs of the original COM DA Server.

In the second drop-down field the Timestamp Source can be defined. The following options are available:

Technical introduction

TS6100-0030204 Version: 1.9

Internal The time stamps are generated by the OPC COM DA Server.
SourceTimestamp The SourceTimestamps are used as time stamps provided by the

OPC COM DA Server.
ServerTimestamp The ServerTimestamps are used as time stamps provided by the

OPC COM DA Server.

Properties mapping from UA to COM DA

When connecting to the UA Gateway's OPC COM DA Server, all six standard properties (DataType, Value,
Quality, TimeStamp, AccessRights and ScanRate) are automatically assigned. Underlying OPC Servers can
provide further properties (e.g. user-defined properties, DI properties, etc.). These properties can be
assigned to vendor-specific properties (PropertyID ≧ 5000) in the COM DA Server of the UA Gateway.

These vendor-specific PropertyIDs are automatically assigned when the properties are requested for the first
time. This dialog allows you to change the assigned PropertyIDs or configure how the OPC UA properties in
the UA Gateway address space are assigned to the vendor-specific COM DA properties. You have to define
the property name on the UA side and the namespace of the property in the UA Gateway and assign it to the
COM DA PropertyIDs. When connecting to the UA Gateway's COM DA server, you can navigate through the
available properties (QueryAvailableProperties) of a single OPCItem and then you will be able to see the
associated properties as they have been configured (in the range of vendor-specific PropertyIDs above
5000).

Press the [+] or [-] key respectively to add or remove a certain property. To change the contents of a
particular field, double-click it and enter the required values. Double-clicking a value in the UA Property
NameSpace URI column displays a drop-down menu where you can make a selection.

If you add a new property by pressing [+], the values of the last entry are copied to the new line and the
PropertyID is automatically incremented.

4.5.6 Migrating from Tx6120
One of the primary purposes of the UA Gateway is to provide a sustainable connectivity in order to replace
the Tx6120 OPC DA supplement/function. Observe the following notes if you wish to migrate
Tx6120 OPC DA to UA Gateway.

Standard configuration

The standard configuration of the UA Gateway automatically establishes a connection with the local
OPC UA Server and offers the OPC DA Clients an OPC DA interface. For a connection based on this
standard configuration, the OPC DA clients must consider the following points:

• The default ProgID of the UA Gateway is "UnifiedAutomation.Gateway.1". The
TwinCAT OPC DA Server uses a different ProgID ("Beckhoff.TwinCATOpcServerDA").

• The UA Gateway always uses a ProgID instead of multiple clones.
• The ItemIdentifier of an OPC symbol is generated differently in the UA Gateway. This behavior can be

changed.

Changing the syntax of an ItemIdentifier

The syntax used by the UA Gateway for ItemIdentifier can be changed so that the latter corresponds more to
the type of the TwinCAT OPC DA Server. By default, the UA Gateway uses a different syntax to that of the
TwinCAT OPC DA Server when creating its identifiers.

UA Gateway sample:

Technical introduction

TS6100-0030 205Version: 1.9

Sample TwinCAT OPC DA Server:

The UA Gateway uses a prefix so that the underlying OPC UA Client from which the variable originates can
be clearly identified.

The following steps are required to configure the UA Gateway so that it forms its identifiers in roughly the
same way as the TwinCAT OPC DA Server. The functionality has been implemented to simplify the
migration process.

1. Open the UA Gateway configuration file
C:\Program Files (x86)\UnifiedAutomation\UaGateway\bin\uagateway.config.xml

2. Look for the following XML tags in the XML file:
<OpcServerConfig>
 <ComDaServerConfig>
 <ComDaNamespaceUseAlias>false</ComDaNamespaceUseAlias>
 </ComDaServerConfig>
</OpcServerConfig>

1. If the XML tag ComDaNamespaceUseAlias is set to "true", user-defined prefixes can be specified. To do
this, look for the following XML tag in the same XML file:

<OpcServerConfig>
 <UaServerConfig>
 <ConfiguredNamespaces>
 ...
 </ConfiguredNamespaces
 </UaServerConfig>
</OpcServerConfig>

1. In this XML structure, identify the TwinCAT OPC UA Server namespace. By default, it should read as
follows:

<OpcServerConfig>
 <UaServerConfig>
 <ConfiguredNamespaces>
 ...
 <Namespace>
 <Index>...</Index>
 <Uri>TcOpcUaServer/urn:Hostname:BeckhoffAutomation:Ua:PLC1</Uri>
 <AllowRenameUri>false</AllowRenameUri>
 <UniqueId>TcOpcUaServer#TcOpcUaServer/urn:Hostname:BeckhoffAutomation:Ua:PLC1</UniqueId>
 <ComAlias>...</ComAlias>

Technical introduction

TS6100-0030206 Version: 1.9

 </Namespace>
 ...
 </ConfiguredNamespaces
 </UaServerConfig>
</OpcServerConfig>

1. On your computer, the placeholder "..." may look different. Set <ComAlias> to your preferred prefix, for
example "PLC1". The identifiers are then created with the prefix "PLC1".

4.5.7 Security

4.5.7.1 Overview
One of the reasons for the success of OPC UA as communication technology is the various integrated
security mechanisms. OPC UA-based data communication can be secured on two levels:

1. Transport layer
2. Application level

Endpoints

A server offers the client a list of different endpoints [} 105] to which the client can connect. An endpoint
describes, among other things, which security functions (e.g. Message Security mode, Security Policy and
available Identity Tokens) the communication connection via this endpoint should fulfill. For example, an
endpoint may require signing and encryption of data packets (transport layer), as well as additional
authentication of the client based on user name/password (application layer).

Transport layer

A communication connection based on OPC UA can be secured at the transport layer. This is done through
the use of client/server certificates and a mutual trust relationship between client and server application.
Here, the client must trust the server certificate and vice versa in order for a communication connection to be
established. This requires a mutual certificate exchange [} 206].

Application level

In addition to the transport layer, a communication connection can also be secured at the application layer.
For this purpose, various authentication mechanisms [} 106] are available, which are offered by the server
endpoint.

Also see about this
2 Access rights [} 109]

4.5.7.2 Certificate exchange

To secure the communication connection at transport layer via a secure endpoint [} 105], it is necessary to
establish a mutual trust between client and server.

Technical introduction

TS6100-0030 207Version: 1.9

By default, both the TwinCAT OPC UA Server and the TwinCAT OPC UA Client generate a machine-
specific, self-signed certificate for authentication of the respective application at the first start.

Set up a trust relationship on the server

To establish a trust relationship between any OPC UA Client and the TwinCAT OPC UA Server, you need
the public key of the client certificate. The server must trust this. This can be done via the file system, for
example. The server manages the trust settings for client certificates in the PKI subdirectory.

• Trusted certificates: %InstallDir%\Server\PKI\CA\trusted\certs
• Untrusted certificates: %InstallDir%\Server\PKI\CA\rejected\certs

By moving client certificates between these directories, the trust settings can be adjusted accordingly. The
public key of a client certificate is automatically stored in the above untrusted certificate directory the first
time the client attempts to connect to a secure endpoint. By subsequently moving the public key to the
trusted certificate directory, the client is trusted the next time it attempts to connect.

AutomaticallyTrustAllClientCertificates
If this option is enabled in TcUaServerConfig.xml, the server automatically trusts all client
certificates. In this case, they will not be listed in any of the above directories.

Set up a trust relationship on the client

Depending on the OPC UA Client employed, different steps may need to be taken so that the OPC UA Client
trusts the OPC UA Server. Typically, for client applications with a graphical user interface, a warning
message is displayed the first time you connect to the server, whereby the server certificate can then be
classified as trustworthy.

The following instruction is therefore only valid for the TwinCAT OPC UA Client.

The public key of the OPC UA Server is located as a DER file in the following directory: %InstallDir%
\Server\PKI\CA\own\certs

In the case of the TwinCAT OPC UA Client, copy the file into the corresponding "Trusted" directory:
%InstallDir%\Client\PKI\CA\trusted\certs

Technical introduction

TS6100-0030208 Version: 1.9

4.6 Sample Client

4.6.1 Overview
As of version 1.6.80 of the TwinCAT OPC UA Server, a small "UA Sample Client" program is automatically
installed. The program enables you to browse the OPC UA namespace and to test the UA Server
installation. It is located in the Windows Start menu and in the installation directory of the Supplement/
Function. You can run the program both directly on the UA Server and on a computer in your network.

The UA Sample Client currently offers the following features:

• Connecting to the OPC UA Server

• Establishing a secure connection with OPC UA Server (see Establishing a secure connection to
OPC UA Server [} 209])

• Browsing the UA namespace of an OPC UA Server (see Browsing the UA namespace [} 212])
• Adding a UA node from the namespace to the watchlist, which reads the value of the node regularly

(see Using the Watchlist [} 213])

This application is only an OPC UA Sample Client. It does not offer any sophisticated functionalities, but has
been developed to provide users with an easy-to-use interface for carrying out initial tests on the
OPC UA Server

To start the application, run the UA SampleClient.exe file with the Run as Admin option.

Endpoints of the OPC UA Server

The UA Sample Client first connects itself to a specified server URL. The client acquires all endpoints of the
OPC UA Server (see Endpoints drop-down list). The list returned to the server then contains more
information about all the available endpoints the client can connect to. Each endpoint can contain the host
name of the OPC UA Server instead of the IP address. The client then uses the information from the
endpoint to connect to the server.

If the name solution does not work on the user's network, the client cannot connect. If the endpoint to which
you want the client to connect contains the host name of the server, make sure that the name solution works
on your network and that the host name is accessible on the server.

Technical introduction

TS6100-0030 209Version: 1.9

4.6.2 Establishing a secure connection to OPC UA Server
1. Enter the URL of an OPC UA Server in the upper text field of the UA Sample Client.
2. Click the Get Endpoints button.

Technical introduction

TS6100-0030210 Version: 1.9

ð The endpoints provided by the UA Server are then displayed in the Endpoints drop-down list.

3. In this sample, select the entry "<SomeName>/Beckhoff/TcOpcUaServer/1[Basic128Rsa15,
SignAndEncrypt] [opc.tcp://<SomeName>:4840]" and click Connect.
You must copy the public key from the certificate of the UA Sample Client to the UA Server so that it
"trusts" the Sample Client. Otherwise, the connection attempt is rejected by the UA Server via the secure

Technical introduction

TS6100-0030 211Version: 1.9

channel ("BadSecureChannelClosed"). Further information on the certificate management with the
OPC UA Server can be found in the section Certificate exchange [} 206].

Technical introduction

TS6100-0030212 Version: 1.9

ð You can now use the Browser in the left half of the window to navigate through the UA namespace.

4.6.3 Browsing the UA namespace
When a successful connection has been established you can use the Browser in the left half of the
UA Sample Client to navigate through the UA namespace. Below the node PLC1 you will find the currently
running PLC program, and you can display the variables declared there and released for UA.

Technical introduction

TS6100-0030 213Version: 1.9

4.6.4 Using the Watchlist
You can insert PLC variables from the UA namespace into a watchlist, for example to have their values read
cyclically by the UA Sample Client. To do this, open the context menu of a variable and select Add to
Watchlist. The variable is then transferred to the watchlist and its values are automatically read out cyclically
from the PLC.

Technical introduction

TS6100-0030214 Version: 1.9

PLC API

TS6100-0030 215Version: 1.9

5 PLC API

5.1 Tc2_OpcUa

5.1.1 Data types

5.1.1.1 ST_OpcUAServerInfo
ST_OpcUAServerInfo contains session information of a TwinCAT OPC UA Server.

Syntax
TYPE ST_OpcUAServerInfo :
STRUCT
 nReserved : UDINT;
 nCummulatedSessionCount : UDINT;
 nCurrentSessionCount : UDINT;
 nRejectedSessionCount : UDINT;
 nSecurityRejectedSessionCount : UDINT;
 nSessionTimeoutCount : UDINT;
 nCurrentSubscriptionCount : UDINT;
 nRejectedRequestCount : UDINT;
 nSecurityRejectedRequestCount : UDINT;
END_STRUCT
END_TYPE

Parameter

Name Type Description
nReserved UDINT Placeholder.
nCummulatedSessionCount UDINT Total number of client sessions since the server was

started.
nCurrentSessionCount UDINT Total number of current client sessions.
nRejectedSessionCount UDINT Total number of sessions rejected by the server.
nSecurityRejectedSessionCount UDINT Total number of sessions rejected by the server for

security reasons (example: incorrect combination of
user name and password).

nSessionTimeoutCount UDINT Total number of sessions that had a timeout.
nCurrentSubscriptionCount UDINT Total number of current subscriptions in the server.
nRejectedRequestCount UDINT Total number of failed requests.
nSecurityRejectedRequestCount UDINT Total number of failed requests for security reasons.

5.1.1.2 E_OpcUAServerOption
E_OpcUAServerOption determines which command is to be sent to the TwinCAT OPC UA Server.

Syntax
TYPE E_OpcUAServerOption
(
 eOPCUAServerOption_None,
 eOPCUAServerOption_Restart,
 eOPCUAServerOption_Shutdown,
 eOPCUAServerOption_RefreshCfg,
 eOPCUAServerOption_ServerInfo
);
END_TYPE

PLC API

TS6100-0030216 Version: 1.9

Parameter

Name Description
eOPCUAServerOption_Non
e

Initial state of the enumeration.

eOPCUAServerOption_Res
tart

This option triggers a restart of the OPC UA interface of the server.

eOPCUAServerOption_Shu
tdown

This option triggers the shutdown of the OPC UA interface of the server. As the
restart option above works via OPC UA, it is no longer available after using this
option until a complete server restart.

eOPCUAServerOption_Refr
eshCfg

This option currently has no function.

eOPCUAServerOption_Ser
verInfo

This option queries the server information contained in ST_OpcUAServerInfo
[} 215].

5.1.1.3 E_OpcUAServerStatus
E_OpcUAServerStatus represents the runtime status of a TwinCAT OPC UA Server.

Syntax
TYPE E_OpcUAServerStatus
(
 eOPCUAServerStatus_None,
 eOPCUAServerStatus_Alive,
 eOPCUAServerStatus_NotResponding
);
END_TYPE

Parameter

Name Description
eOPCUAServerStatus_None Initial state of the enumeration.
eOPCUAServerStatus_Alive The ADS interface of the TwinCAT OPC UA Server is

accessible.
eOPCUAServerStatus_NotResponding The ADS interface of the TwinCAT OPC UA Server is not

accessible.

5.1.2 Function blocks

5.1.2.1 FB_OpcUAServer

The function block enables status information to be read out and a TwinCAT OPC UA Server to be restarted.

Syntax

Definition:
FUNCTION_BLOCK FB_OpcUAServer
VAR_INPUT
 sNetId : T_AmsNetId;
 bExecute : BOOL;
 eOpcUAServerOption : E_OpcUAServerOption;
 tTimeout : TIME;
END_VAR

PLC API

TS6100-0030 217Version: 1.9

VAR_OUTPUT
 stOpcUAServerInfo : ST_OpcUAServerInfo;
 bBusy : BOOL;
 bError : BOOL;
 nErrorId : UDINT;
END_VAR

 Inputs

Name Type Description
sNetId T_AmsNetId AmsNetId of the system on which the TwinCAT OPC

UA Server runs.
bExecute BOOL A rising edge activates processing of the function block.
eOpcUAServerOption E_OpcUAServerOption

[} 215]
Specifies the operation to be performed.

tTimeout TIME ADS Timeout

 Outputs

Name Type Description
stOpcUAServerInfo ST_OpcUAServerInfo

[} 215]
Contains status information from the server when
ServerInfo is selected at the eOpcUAServerOption input.

bBusy BOOL TRUE as long as processing of the function block is in
progress.

bError BOOL Becomes TRUE as soon as an error situation occurs.
nErrorId UDINT Contains the error code when an error (bError) occurs.

5.1.2.2 FB_OpcUAServerGetStatus

The function block enables the current status (Running, NotResponding) of a TwinCAT OPC UA Server to
be read. It should be noted at this point that this function block deals with the ADS interface of the
OPC UA Server. If the OPC UA Server is restarted or shut down, the ADS interface of the server remains
accessible. The ADS interface can only be closed by terminating the server process.

Syntax

Definition:
FUNCTION_BLOCK FB_OpcUAServerGetStatus
VAR_INPUT
 sNetId : T_AmsNetId;
 bGetStatus : BOOL;
 tTimeout : TIME;
END_VAR
VAR_OUTPUT
 eOPCUAServerStatus : E_OPCUAServerStatus;
 bDone : BOOL;
 bBusy : BOOL;
 bError : BOOL;
 nErrorId : UDINT;
END_VAR

PLC API

TS6100-0030218 Version: 1.9

 Inputs

Name Type Description
sNetId T_AmsNetId AmsNetId of the system on which the TwinCAT OPC

UA Server runs.
bGetStatus BOOL A rising edge activates processing of the function block.
tTimeout TIME ADS Timeout

 Outputs

Name Type Description
eOPCUAServerStatu
s

E_OpcUAServerStatus
[} 216]

Contains status information about the server.

bDone BOOL TRUE when processing of the function block is complete.
bBusy BOOL TRUE as long as processing of the function block is in

progress.
bError BOOL Becomes TRUE as soon as an error situation occurs.
nErrorId UDINT Contains the error code when an error (bError) occurs.

5.2 Tc3_PLCopen_OpcUa

5.2.1 Data types

5.2.1.1 E_UAAttributeID

Syntax
TYPE E_UAAttributeID:
(
 eUAAI_NodeID := 1,
 eUAAI_NodeClass := 2,
 eUAAI_BrowseName := 3,
 eUAAI_DisplayName := 4,
 eUAAI_Description := 5,
 eUAAI_WriteMask := 6,
 eUAAI_UserWriteMask := 7,
 eUAAI_IsAbstract := 8,
 eUAAI_Symmetric := 9,
 eUAAI_InverseName := 10,
 eUAAI_ContainsNoLoops := 11,
 eUAAI_EventNotifier := 12,
 eUAAI_Value := 13,
 eUAAI_DataType := 14,
 eUAAI_ValueRank := 15,
 eUAAI_ArrayDimensions := 16
)DINT;
END_TYPE

PLC API

TS6100-0030 219Version: 1.9

Values

Name Description
NodeID OPC UA NodeID
NodeClass OPC UA NodeClass
BrowseName OPC UA BrowseName
DisplayName OPC UA DisplayName
Description OPC UA Description
WriteMask OPC UA WriteMask
UserWriteMask OPC UA UserWriteMask
IsAbstract OPC UA IsAbstract
Symmetric OPC UA Symmetric
InverseName OPC UA InverseName
ContainsNoLoops OPC UA ContainsNoLoops
EventNotifier OPC UA EventNotifier
Value OPC UA Value
DataType OPC UA DataType
ValueRank OPC UA ValueRank
ArrayDimensions OPC UA ArrayDimensions

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

5.2.1.2 E_UABrowseDirection

Syntax
TYPE E_UABrowseDirection:
(
 eUABD_Forward := 0,
 eUABD_Inverse := 1,
 eUABD_Both := 2
)DINT;
END_TYPE

Values

Name Description
eUABD_Forward Forward references
eUABD_Inverse Inverse references
eUABD_Both Forward and inverse references

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

5.2.1.3 E_UABrowseResultMask

Syntax
TYPE E_UABrowseResultMask:
(
 eUABRM_ReferenceTypeId := 1,
 eUABRM_IsForward := 2,
 eUABRM_ReferenceTypeInfo := 3,

PLC API

TS6100-0030220 Version: 1.9

 eUABRM_NodeClass := 4,
 eUABRM_BrowseName := 8,
 eUABRM_DisplayName := 16,
 eUABRM_TypeDefinition := 32,
 eUABRM_TargetInfo := 60,
 eUABRM_All := 63
)DINT;
END_TYPE

Values

Name Description
eUABRM_ReferenceTypeId ReferenceTypeId
eUABRM_IsForward IsForward
eUABRM_ReferenceTypeInfo ReferenceTypeInfo
eUABRM_NodeClass NodeClass
eUABRM_BrowseName BrowseName
eUABRM_DisplayName DisplayName
eUABRM_TypeDefinition TypeDefinition
eUABRM_TargetInfo TargetInfo
eUABRM_All All

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

5.2.1.4 E_UAConnectionStatus

Syntax
TYPE E_UAConnectionStatus:
(
 Connected := 0
 ConnectionError := 1,
 Shutdown := 2
)DINT;
END_TYPE

Values

Name Description
Connected The connection has been established.
ConnectionError An error occurred while establishing the connection.
Shutdown The connection was disconnected.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

PLC library Required version
Tc3_PLCopen_OpcUa >= 3.2.11.0

5.2.1.5 E_UADataType

Syntax
TYPE E_UADataType:
(
 eUAType_Undefinied := -1,

PLC API

TS6100-0030 221Version: 1.9

 eUAType_Null := 0,
 eUAType_Boolean := 1,
 eUAType_SByte := 2,
 eUAType_Byte := 3,
 eUAType_Int16 := 4,
 eUAType_UInt16 := 5,
 eUAType_Int32 := 6,
 eUAType_UInt32 := 7,
 eUAType_Int64 := 8,
 eUAType_UInt64 := 9,
 eUAType_Float := 10,
 eUAType_Double := 11,
 eUAType_String := 12,
 eUAType_DateTime := 13,
 eUAType_Guid := 14,
 eUAType_ByteString := 15,
 eUAType_XmlElement := 16,
 eUAType_NodeId := 17,
 eUAType_ExpandedNodeId := 18,
 eUAType_StatusCode := 19,
 eUAType_QualifiedName := 20,
 eUAType_LocalizedText := 21,
 eUAType_ExtensionObject := 22,
 eUAType_DataValue := 23,
 eUAType_Variant := 24,
 eUAType_DiagnosticInfo := 25
)DINT;
END_TYPE

Values

Name Description
eUAType_Undefinied Undefinied
eUAType_Null Zero
eUAType_Boolean Boolean
eUAType_SByte SByte
eUAType_Byte Byte
eUAType_Int16 Int16
eUAType_UInt16 UInt16
eUAType_Int32 Int32
eUAType_UInt32 UInt32
eUAType_Int64 Int64
eUAType_UInt64 UInt64
eUAType_Float Float
eUAType_Double Double
eUAType_String String
eUAType_DateTime DateTime
eUAType_Guid Guid
eUAType_ByteString ByteString
eUAType_XmlElement XmlElement
eUAType_NodeId NodeId
eUAType_ExpandedNodeId ExpandedNodeId
eUAType_StatusCode StatusCode
eUAType_QualifiedName QualifiedName
eUAType_LocalizedText LocalizedText
eUAType_ExtensionObject ExtensionObject
eUAType_DataValue DataValue
eUAType_Variant Variant
eUAType_DiagnosticInfo DiagnosticInfo

PLC API

TS6100-0030222 Version: 1.9

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

5.2.1.6 E_UAIdentifierType

Syntax
TYPE E_UAIdentifierType:
(
 eUAIdentifierType_String := 1,
 eUAIdentifierType_Numeric := 2,
 eUAIdentifierType_GUID := 3,
 eUAIdentifierType_Opaque := 4
)DINT;
END_TYPE

Values

Name Description
eUAIdentifierType_String String
eUAIdentifierType_Numeric Numeric
eUAIdentifierType_GUID GUID
eUAIdentifierType_Opaque Opaque

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

5.2.1.7 E_UANodeClassMask

Syntax
TYPE E_UANodeClassMask:
(
 eUANCM_Unspecified := 0,
 eUANCM_Object := 1,
 eUANCM_Variable := 2,
 eUANCM_Method := 4,
 eUANCM_ObjectType := 8,
 eUANCM_VariableType := 16,
 eUANCM_ReferenceType := 32,
 eUANCM_DataType := 64,
 eUANCM_View := 128,
 eUANCM_All := 255
)DINT;
END_TYPE

PLC API

TS6100-0030 223Version: 1.9

Values

Name Description
eUANCM_Unspecified Unspecified
eUANCM_Object Object
eUANCM_Variable Variable
eUANCM_Method Method
eUANCM_ObjectType ObjectType
eUANCM_VariableType VariableType
eUANCM_ReferenceType ReferenceType
eUANCM_DataType DataType
eUANCM_View View
eUANCM_All All

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

5.2.1.8 E_UASecurityMsgMode

Syntax
TYPE E_UASecurityMsgMode:
(
 eUASecurityMsgMode_BestAvailable := 0,
 eUASecurityMsgMode_None := 1,
 eUASecurityMsgMode_Sign := 2,
 eUASecurityMsgMode_Sign_Encrypt := 3
)DINT;
END_TYPE

Values

Name Description
eUASecurityMsgMode_BestAvailable Highest available security
eUASecurityMsgMode_None No security
eUASecurityMsgMode_Sign Signing
eUASecurityMsgMode_Sign_Encrypt Signing and encryption

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

5.2.1.9 E_UASecurityPolicy

Syntax
TYPE E_UASecurityPolicy:
(
 eUASecurityPolicy_BestAvailable := 0
 eUASecurityPolicy_None := 1,
 eUASecurityPolicy_Basic128 := 2,
 eUASecurityPolicy_Basic128Rsa15 := 3,
 eUASecurityPolicy_Basic256 := 4
)DINT;
END_TYPE

PLC API

TS6100-0030224 Version: 1.9

Values

Name Description
BestAvailable Highest available security.
None Guideline for configurations with minimal security requirements.
Basic128 Guideline for configurations with low to medium security requirements.
Basic128Rsa15 Defines a security guideline for configurations with moderate to high security

requirements.
Basic256 Defines a security policy for configurations with high security requirements.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

5.2.1.10 E_UAServerState

Syntax
TYPE E_UAServerState:
(
 Running := 0
 Failed := 1,
 NoConfiguration := 2,
 Suspended := 3,
 Shutdown := 4,
 Test := 5,
 CommunicationFault := 6,
 Unknown := 7
)DINT;
END_TYPE

Values

Name Description
Running Running
Failed Failed
NoConfiguration NoConfiguration
Suspended Suspended
Shutdown Shutdown
Test Test
CommunicationFault CommunicationFault
Unknown Unknown

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

PLC library Required version
Tc3_PLCopen_OpcUa >= 3.2.11.0

5.2.1.11 E_UATransportProfile

Syntax
TYPE E_UATransportProfile:
(
 eUATransportProfileUri_UATcp := 1,
 eUATransportProfileUri_WSHttpBinary := 2,
 eUATransportProfileUri_WSHttpXmlOrBinary := 3,

PLC API

TS6100-0030 225Version: 1.9

 eUATransportProfileUri_WSHttpXml := 4
)DINT;
END_TYPE

Values

Name Description
eUATransportProfileUri_UATcp UATcp
eUATransportProfileUri_WSHttpBinary WSHttpBinary
eUATransportProfileUri_WSHttpXmlOrBinary WSHttpXmlOrBinary
eUATransportProfileUri_WSHttpXml WSHttpXml

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

5.2.1.12 E_UAUserIdentityTokenType

Syntax
TYPE E_UAUserIdentityTokenType:
(
 eUAUITT_Anonymous := 0,
 eUAUITT_Username := 1,
 eUAUITT_x509 := 2,
 eUAUITT_IssuedToeken := 3
)DINT;
END_TYPE

Values

Name Description
eUAUITT_Anonymous Anonymous user.
eUAUITT_Username Log in by user name.
eUAUITT_x509 Certificate file for logging in.
eUAUITT_IssuedToeken Log in via token.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

5.2.1.13 ST_UABrowseDescription

Syntax
TYPE ST_UABrowseDescription:
STRUCT
 stStartingNodeId : ST_UANodeId;
 eDirection : E_UABrowseDirection;
 stReferenceTypeId : ST_UANodeId;
 bIncludeSubtypes : BOOL;
 eNodeClass : E_UANodeClassMask;
 eResultMask : E_UABrowseResultMask;
END_STRUCT
END_TYPE

PLC API

TS6100-0030226 Version: 1.9

Values

Name Description
stStartingNodeId Default Starting Node: ObjectRoot
eDirection Default Browse Direction: Forward
stReferenceTypeId Default ReferenceType: Hierarchical
bIncludeSubtypes Default IncludeSubtypes: TRUE
eNodeClass Default NodeClassMask: All
eResultMask Default BrowseResultMask: All

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

5.2.1.14 ST_UAExpandedNodeID

Syntax
TYPE ST_UAExpandedNodeID:
STRUCT
 nServerIndex : UDINT;
 sNamespaceURI : STRING(MAX_STRING_LENGTH);
 stNodeID : ST_UANodeID;
END_STRUCT
END_TYPE

Values

Name Description
nServerIndex ServerIndex
sNamespaceURI NamespaceName
stNodeID NodeID (ST_UANodeID [} 228])

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

5.2.1.15 ST_UASessionConnectInfo

Syntax
TYPE ST_UASessionConnectInfo:
STRUCT
 sApplicationName : STRING(MAX_STRING_LENGTH);

 eSecurityMode : E_UASecurityMsgMode;
 eSecurityPolicyUri : E_UASecurityPolicy;
 eTransportProfileUri : E_UATransportProfile;

 tSessionTimeout : TIME;
 tConnectTimeout : TIME;
END_STRUCT
END_TYPE

PLC API

TS6100-0030 227Version: 1.9

Values

Name Description
sApplicationUri (obsolete) Application Uri maximum string length 255.

From TcUAClient 2.0.0.14 or higher this is automatically specified by the
certificate, as defined in the PLCOpen specification. Therefore no longer used in
current library versions.

sApplicationName Application name with a maximum string length of 255.
eSecurityMode Security message mode. For available modes see E_UASecurityMsgMode

[} 223].
eSecurityPolicyUri Security policy Uri. For available security policy Uri see E_UASecurityPolicy

[} 223].
eTransportProfileUri Transport profile Uri. For available transport profile Uri see E_UATransportProfile

[} 224];
stUserIdentTokenType Structure with authentication data for logging on to the OPC UA Server. Full

description under ST_UAUserIdentityTokenType [} 230].
tSessionTimeout Session timeout value.
tConnectTimeout Value for the connection timeout. This must be set at the UA_Connect function

block to match the ADS timeout. The rule of thumb is: ADS Timeout > 2 *
ConnectionTimeout.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

5.2.1.16 ST_UAIndexRange

Syntax
TYPE ST_UAIndexRange:
STRUCT
 nStartIndex : UDINT;
 nEndIndex : UDINT;
END_STRUCT
END_TYPE

Values

Name Description
nStartIndex Start index of the data.
nEndIndex End index of the data.

For all dimensions:

• StartIndex and EndIndex must be assigned.
• StartIndex must be smaller than EndIndex.
• To be able to access all elements in a dimension, StartIndex and EndIndex must be assigned in the

dimension depending on the total number of elements.
• Individual elements of a dimension can be selected by specifying the same StartIndex and EndIndex.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

PLC API

TS6100-0030228 Version: 1.9

5.2.1.17 ST_UALocalizedText

Syntax
TYPE ST_UALocalizedText:
STRUCT
 sLocale : STRING(6);
 sText : STRING(MAX_STRING_LENGTH);
END_STRUCT
END_TYPE

Values

Name Description
sLocale Language identifier of the LocalizedText
sText Text

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

5.2.1.18 ST_UAMethodArgInfo

Syntax
TYPE ST_UAMethodArgInfo:
STRUCT
 DataType : E_UADataType := -1;
 ValueRank : DINT := 2147483647;
 ArrayDimensions : ARRAY[1..3] OF UDINT := [0,0,0];
 nLenData : DINT;
END_STRUCT
END_TYPE

Values

Name Description
DataType Defines the UA data type for the method parameter. (Type: E_UADataType [} 220])
ValueRank Determines whether the parameter is scalar (-1) or array.
ArrayDimensions If the parameter is an array, it specifies the dimensions of the array. Each element

determines the length per dimension.
nLenData Specifies the length of the argument. For output information STRUCT only requests

this element.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

5.2.1.19 ST_UANodeID

Syntax
TYPE ST_UANodeID:
STRUCT
 nNamespaceIndex : UINT;
 nReserved : ARRAY [1..2] OF BYTE; //fill bytes
 sIdentifier : STRING(MAX_STRING_LENGTH);
 eIdentifierType : E_UAIdentifierType;
END_STRUCT
END_TYPE

PLC API

TS6100-0030 229Version: 1.9

Values

Name Description
nNamespaceIndex Namespace index under which the node is available.

Can be determined with the function block
UA_GetNamespaceIndex [} 237].

nReserved Placeholder
sIdentifier Identifier as shown in the UA namespace (attribute

'Identifier').
eIdentifierType Variable type, described by E_UAIdentifierType

[} 222].

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

5.2.1.20 ST_UANodeAdditionalInfo

Syntax
TYPE ST_UANodeAdditionalInfo:
STRUCT
 eAttributeID : E_UAAttributeID;
 nIndexRangeCount : UINT;
 nReserved : ARRAY[1..2] OF BYTE; // fill bytes
 stIndexRange : ARRAY[1..nMaxIndexRange] OF ST_UAIndexRange;
END_STRUCT
END_TYPE

Values

Name Description
eAttributeID Specifies the ID of the OPC UA attribute. eUAAI_Value is used by default. (Type:

E_UAAttributeID [} 218]).
nIndexRangeCount Determines how many index ranges are used in stIndexRange.
nReserved Placeholder
stIndexRange Specifies an index range for reading values from an array. (Type:

ST_UAIndexRange [} 227]).

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

5.2.1.21 ST_UAReferenceDescription

Syntax
TYPE ST_UAReferenceDescription:
STRUCT
 stReferenceTypeId : ST_UANodeId;
 bIsForward : BOOL;
 stNodeId : ST_UAExpandedNodeId;
 stBrowseName : STRING(MAX_STRING_LENGTH);
 stDisplayName : ST_UALocalizedText;
 eNodeClass : E_UANodeClassMask;
 stTypeDefinition : ST_UAExpandedNodeId;
END_STRUCT
END_TYPE

PLC API

TS6100-0030230 Version: 1.9

Values

Name Description
stReferenceTypeId NodeId of the reference type (e.g. Organizes, HasChild, HasTypeDefinition, ...) as

data type ST_UANodeId [} 228].
bIsForward Indicates whether the reference is a forward or backward reference.
stNodeId NodeId as data type ST_UAExpandedNodeId [} 226].
stBrowseName BrowseName of the reference.
stDisplayName DisplayName of the reference (ST_UALocalizedText [} 228]).
eNodeClass NodeClass of the reference (E_UANodeClassMask [} 222]).
stTypeDefinition Type definition (HasTypeDefinition) (ST_UAExpandedNodeId [} 226]).

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

5.2.1.22 ST_UAUserIdentityTokenType

Syntax
TYPE ST_UAUserIdentityTokenType:
STRUCT
 eUserIdentTokenType : E_UAUserIdentityTokenType;
 sTokenParam1 : STRING(MAX_STRING_LENGTH);
 sTokenParam2 : STRING(MAX_STRING_LENGTH);
END_STRUCT
END_TYPE

Values

Name Description
eUserIdentTokenType Type of user, described using

E_UAUserIdentityTokenType [} 225]..
sTokenParam1 User name for logging on to the OPC UA Server.
sTokenParam2 Password for logging on to the OPC UA Server.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

5.2.1.23 UAHADataValue
This function block acts as a data object. An instance represents a value for the OPC UA Historical Access
function. A whole field of these values is transferred to the UA_HistoryUpdate [} 238] function block on
calling.

Syntax
aDataValues : ARRAY [1..50] OF UAHADataValue(ValueSize:=SIZEOF(LREAL));

Each data object is initialized with the expected size (in bytes) of the value.

PLC API

TS6100-0030 231Version: 1.9

 Properties

Name Type Access Initial value Description
Value PVOID Set - Specifies the address of a

variable containing the
desired value. This is usually
assigned with the help of the
operator ADR(). The value
itself is hereby assigned at
the same time and copied into
the data object.

StatusCode UAHAUpdateSt
atusCode
[} 231]

Get, Set UAHAUpdateStat
usCode.Historian

Raw

Indicates the status code of
the value.

SourceTimeStamp ULINT Get, Set 0 Indicates the timestamp of the
source in UTC format. This
can be determined with the
help of the function
F_GetSystemTime
(Tc2_System PLC library).

ServerTimeStamp ULINT Get, Set 0 Indicates the timestamp of the
OPC UA Server in UTC
format. This function is not
currently supported.

Data type size of the value
The size of the data type used is already indicated and thus defined in the declaration of the data
object. This size is taken as the basis when assigning a value later.
Values of the type STRING are accordingly also saved and transmitted with a fixed initialized size.
An indication of the current text length cannot be made.

Sample
{attribute 'OPC.UA.DA' := '1'}
fMyValue : LREAL; // Variable for HistorcalAccess
aDataValues : ARRAY [1..50] OF UAHADataValue(ValueSize:=SIZEOF(LREAL));

fMyValue := 27.75;
aDataValues[1].Value := ADR(fMyValue);
aDataValues[1].StatusCode := UAHAUpdateStatusCode.HistorianRaw;
aDataValues[1].SourceTimeStamp := F_GetSystemTime();

In this sample a field of 50 values is defined, of which each is represented by a data object. The current
content of the variable fMyValue (= 27.75) is assigned to the first value.

The field can now be filled by means of further assignments in subsequent PLC cycles.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 >= 4024.1 Win32, Win64, WinCE-x86 Tc3_PLCopen_OpcUa

>= v3.1.9.0

5.2.1.24 UAHAUpdateStatusCode
A status code is assigned to each data value transferred using the OPC UA Historical Access function. This
is a property of the object UAHADataValue [} 230].

PLC API

TS6100-0030232 Version: 1.9

Syntax
{attribute 'qualified_only'}
TYPE UAHAUpdateStatusCode :
(
 HistorianRaw := 0, // A raw data value.
 HistorianCalculated := 1, // A data value which was calculated.
 HistorianInterpolated := 2, // A data value which was interpolated.
 Reserved := 3, // Undefined.
 HistorianPartial := 4, // A data value which was calculated with an incomplete interva
l.
 HistorianExtraData := 8, // A raw data value that hides other data at the same timestamp.
 HistorianMultiValue := 16 // Multiple values match the Aggregate criteria (i.e. multiple min
imum values at different timestamps within the same interval).
) UDINT;
END_TYPE

Values

Name Description
HistorianRaw HistorianRaw
HistorianCalculated HistorianCalculated
HistorianInterpolated HistorianInterpolated
Reserved Reserved
HistorianPartial HistorianPartial
HistorianExtraData HistorianExtraData
HistorianMultiValue HistorianMultiValue

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 >= 4024.1 Win32, Win64, WinCE-x86 Tc3_PLCopen_OpcUa

>= v3.1.9.0

5.2.2 Function blocks

5.2.2.1 UA_Browse

This function block allows browsing through the namespace of a server. Starting from a start node, its
references are read and returned accordingly.

 Inputs
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 BrowseDescription : ST_UABrowseDescription;
 ContinuationPointIn : DWORD;
 Timeout : TIME;
END_VAR

PLC API

TS6100-0030 233Version: 1.9

Name Type Description
Execute BOOL The command is triggered by a rising edge at

this input.
ConnectionHdl DWORD Connection handle previously output by the

function block UA_Connect.
BrowseDescription ST_UABrowseDescription [} 225] The address information for the node to be read

is specified here.
ContinuationPointIn DWORD If a previous call of the function block returned a

value as ContinuationPointOut, this value can
be created here to get further data from the
server.

Timeout TIME Time until the function is aborted.

 Inputs/outputs
VAR_IN_OUT
 ReferenceDescriptions : POINTER TO ST_UAReferenceDescriptions;
END_VAR

Name Type Description
ReferenceDescript
ions

POINTER
TO
ST_UARef
erenceDes
criptions

Contains the list of ReferenceDescriptions returned by the server, i.e. the
result of the UA_Browse call. The contained ReferenceDescriptions can
then be used for further UA_Browse calls in the BrowseDescription, e.g. to
navigate deeper into the namespace.

 Outputs
VAR_OUTPUT
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : DWORD;
 ContinuationPointOut : DWORD;
 cbBrowseResultCnt : UDINT;
END_VAR

Name Type Description
Done BOOL Switches to TRUE if the function block was executed successfully.
Busy BOOL TRUE until the function block has executed a command, at the most for

the duration of the "Timeout" at the input. The inputs accept no new
command as long as Busy = TRUE. It is not the connection time that is
monitored but the reception time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The
command-specific error code is included in ErrorID.

ErrorID DWORD Contains the command-specific error code of the most recently executed
command.

ContinuationPoint
Out

DWORD If the server returns data batch-wise (ContinuationPointOut != 0), the value
of ContinuationPointOut can be used as ContinuationPointIn at the next
call of the function block to get the further data.

cbBrowseResultC
nt

UDINT Number of ReferenceDescriptions.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

PLC API

TS6100-0030234 Version: 1.9

5.2.2.2 UA_Connect

This function block establishes an OPC UA Remote connection to another OPC UA Server, which is
specified via ServerUrl and SessionConnectInfo. The function block returns a connection handle that can be
used for other function blocks, such as UA_Read.

 Inputs
VAR_INPUT
 Execute : BOOL;
 ServerUrl : STRING(MAX_STRING_LENGTH);
 SessionConnectInfo : ST_UASessionConnectInfo;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Name Type Description
Execute BOOL The command is triggered by a rising

edge at this input.
ServerUrl STRING(MAX_STRING_LENGTH) OPC UA Server URL, i.e. 'opc.tcp://

172.16.3.207:4840' or 'opc.tcp://
CX_0193BF:4840'.

SessionConnectInfo ST_UASessionConnectInfo Connection information (see
ST_UASessionConnectInfo [} 226])

Timeout TIME Time until the function is aborted.
DEFAULT_ADS_TIMEOUT is a global
constant, set to 5 seconds. The value
must be set to match the
ST_UASessionConnectInfo.tConnecti
onTimeout. The rule of thumb is: ADS
Timeout > 2 * ConnectionTimeout.

 Outputs
VAR_OUTPUT
 ConnectionHdl : DWORD;
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : DWORD;
END_VAR

Name Type Description
ConnectionHdl DWORD OPC UA connection handle.
Done BOOL Switches to TRUE if the function block was executed successfully.
Busy BOOL TRUE until the function block has executed a command, at the most for the

duration of the "Timeout" at the input. The inputs accept no new command
as long as Busy = TRUE. It is not the connection time that is monitored but
the reception time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The
command-specific error code is included in ErrorID.

ErrorID DWORD Contains the command-specific error code of the most recently executed
command.

PLC API

TS6100-0030 235Version: 1.9

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

5.2.2.3 UA_ConnectGetStatus

This function block checks the connection status of an existing connection to another OPC UA Server. The
connection is referenced via the respective connection handle. The status is then returned as
E_UAConnectionStatus [} 220]. The connection status is determined based on the internal session info or the
OPC UA heartbeat, no additional communication (read or similar) is performed.

The service level of the OPC UA Server can be read out via the additional input parameter GetServiceLevel.
For this purpose, a read command is sent to the server in the background to determine this information.

 Inputs
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 GetServiceLevel : BOOL;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Name Type Description
Execute BOOL The command is triggered by a rising edge at this input.
ConnectionHdl DWORD Connection handle of an existing communication link.
GetServiceLevel BOOL Reads out the ServiceLevel of the OPC UA Server.
Timeout TIME Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global

constant, set to 5 seconds. The value must be set to match the
ST_UASessionConnectInfo.tConnectionTimeout. The rule of thumb is:
ADS Timeout > 2 * ConnectionTimeout.

 Outputs
VAR_OUTPUT
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : DWORD;
 ConnectionStatus : E_UAConnectionStatus;
 ServerState : E_UAServerState;
 ServiceLevel : BYTE;
END_VAR

PLC API

TS6100-0030236 Version: 1.9

Name Type Description
Done BOOL Switches to TRUE if the function block was executed

successfully.
Busy BOOL TRUE until the function block has executed a

command, at the most for the duration of the
"Timeout" at the input. The inputs accept no new
command as long as Busy = TRUE. It is not the
connection time that is monitored but the reception
time.

Error BOOL Switches to TRUE if an error occurs while executing
a command. The command-specific error code is
included in ErrorID.

ErrorID DWORD Contains the command-specific error code of the
most recently executed command.

ConnectionStatus E_UAConnectionStatus Connection status (see E_UAConnectionStatus
[} 220]).

ServerState E_UAServerState Server state (see E_UAServerState [} 224]).
ServerState BYTE ServiceLevel of the OPC UA Server.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

PLC library Required version
Tc3_PLCopen_OpcUa >= 3.2.11.0

5.2.2.4 UA_Disconnect

This function block closes an OPC UA Remote connection to another OPC UA Server. The connection is
specified via its connection handle.

Disconnect all connections
If the UA-Disconnect method is called and a connection handle of 0 is passed, the OPC UA client
disconnects all existing connections. This also applies to connections established via an OPC UA I/
O client configuration.

 Inputs
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Name Type Description
Execute BOOL The command is triggered by a rising edge at this input.
ConnectionHdl DWORD Connection handle previously output by the function block UA_Connect.
Timeout TIME Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global

constant, set to 5 seconds.

PLC API

TS6100-0030 237Version: 1.9

 Outputs
VAR_OUTPUT
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : DWORD;
END_VAR

Name Type Description
Done BOOL Switches to TRUE if the function block was executed successfully.
Busy BOOL TRUE until the function block has executed a command, at the most for the

duration of the "Timeout" at the input. The inputs accept no new command as long
as Busy = TRUE. It is not the connection time that is monitored but the reception
time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The command-
specific error code is contained in nErrID.

ErrorID DWORD Contains the command-specific error code of the most recently executed command.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

5.2.2.5 UA_GetNamespaceIndex

This function block collects the namespace index for a namespace URI. The namespace index is required
for identifying symbols, for example, if the function blocks UA_Read [} 249]or UA_Write [} 252]are used.

 Inputs
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 NamespaceUri : STRING(MAX_STRING_LENGTH);
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Name Type Description
Execute BOOL The command is triggered by a rising edge at this input.
ConnectionHdl DWORD Connection handle previously output by the function block UA_Connect.
NamespaceUri STRING Namespace URI to be resolved. For the TwinCAT OPC UA Server, this is

"urn:BeckhoffAutomation:Ua:PLC1“" for the first PLC runtime.
Timeout TIME Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global

constant, set to 5 seconds.

 Outputs
VAR_OUTPUT
 NamespaceIndex : UINT;
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : DWORD;
END_VAR

PLC API

TS6100-0030238 Version: 1.9

Name Type Description
NamespaceIndex UINT Namespace Index of the given namespace URI. This can be used in

other function blocks, e.g. UA_NodeGetHandle or
UA_MethodGetHandle.

Done BOOL Switches to TRUE if the function block was executed successfully.
Busy BOOL TRUE until the function block has executed a command, at the most for

the duration of the "Timeout" at the input. The inputs accept no new
command as long as Busy = TRUE. It is not the connection time that is
monitored but the reception time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The
command-specific error code is included in ErrorID.

ErrorID DWORD Contains the command-specific error code of the most recently executed
command.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

5.2.2.6 UA_HistoryUpdate

This function block sends historical data via OPC UA to a server that supports the OPC UA HistoryUpdate
function, e.g. the TwinCAT OPC UA Server. With one call you can transfer a large number of values
including time stamps to the server for a node handle. The server ensures that the values transmitted are
saved in a data memory and are available via Historical Access.

The function block can be instanced several times if values of several node handles (different variables) are
to be transmitted.

PLC API

TS6100-0030 239Version: 1.9

Operation with TwinCAT OPC UA Server

The function block is well suited if you use Historical Access in the TwinCAT OPC UA Server and want to
make data available from a certain time interval in which, for example, a special machine state prevailed.
Values for the desired period can be purposefully transmitted.

If on the other hand values are sent cyclically and are to be made available in the server via Historical
Access, then the Historical Access function on the server side is better suited, as in this case you only have
to configure the recording node in the configurator and set the desired sampling rate.

See also: Program sample TF6100_OPCUA_HASample [} 254]

 Inputs
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 NodeHdl : DWORD;
 PerformInsert : BOOL;
 PerformReplace : BOOL;
 DataValueCount : UINT;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Name Type Description
Execute BOOL The command is triggered by a rising edge at this input.
ConnectionHdl DWORD Connection handle previously output by the function block UA_Connect.
NodeHdl DWORD Node handle that was previously output by the function block

UA_NodeGetHandle.
PerformInsert BOOL The default is TRUE.
PerformReplace BOOL The default is FALSE. If a value for the given timestamp already exists in

the history, it should be replaced if the PerformReplace option is set (=
TRUE). Currently this option can only be selected for SQL adapters.
Other adapters do not support the option.

DataValueCount UINT Defines the number of values transferred. A maximum number of 1000
values is supported.

Timeout TIME Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global
constant, set to 5 seconds.

 Inputs/outputs
VAR_IN_OUT
 DataValues : ARRAY[*] OF UAHADataValue;
 ValueErrorIDs : ARRAY[*] OF DWORD;
END_VAR

Name Type Description
DataValues (read-only) ARRAY All collected values are transferred in the form of a field of the

type UAHADataValue. The length of the field is not
prescribed, but it must correspond at least to the specification
of DataValueCount. Internally the values are accessed only
for reading.

ValueErrorIDs (write-only) ARRAY After execution of the command this field contains an error
code for each value. The length of the field must correspond
at least to the specification of DataValueCount. If one or more
values report an error, it is also signaled via the outputs Error
and ErrorID of the function block. With the help of this field
you can then determine which error has occurred for which
value. The error code 16#80000000, for example, signalizes a
failed operation, meaning that the value could not be written.

PLC API

TS6100-0030240 Version: 1.9

 Outputs
VAR_OUTPUT
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : DWORD;
END_VAR

Name Type Description
Done BOOL Switches to TRUE if the function block was executed successfully.
Busy BOOL TRUE until the function block has executed a command, at the most for the

duration of the "Timeout" at the input. The inputs accept no new command as long
as Busy = TRUE. It is not the connection time that is monitored but the reception
time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The command-
specific error code is included in ErrorID.

ErrorID DWORD Contains the command-specific ADS error code of the most recently executed
command.

Number of values transferred
The larger the number, the greater the required computing effort and thus the longer the PLC
execution time when executing the command.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 >= 4024.1 Win32, Win64, WinCE-x86 Tc3_PLCopen_OpcUa

>= v3.1.9.0

Also see about this
2 UA_Connect [} 234]
2 UA_NodeGetHandle [} 245]
2 UAHADataValue [} 230]

5.2.2.7 UA_MethodCall

This function block calls a method on a remote UA Server. The method is determined by a connection and a
method handle. The former can be queried by UA_Connect [} 234], the latter by UA_MethodGetHandle
[} 243].

PLC API

TS6100-0030 241Version: 1.9

 Inputs
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 MethodHdl : DWORD;
 nNumberOfInputArguments : UDINT;
 pInputArgInfo : POINTER TO ST_UAMethodArgInfo;
 cbInputArgInfo : UDINT;
 pInputArgData : PVOID;
 cbInputArgData : UDINT;
 pInputWriteData : PVOID;
 cbInputWriteData : UDINT;
 nNumberOfOutputArguments : UDINT;
 pOutputArgInfo : POINTER TO ST_UAMethodArgInfo;
 cbOutputArgInfo : UDINT;
 pOutputArgInfoAndData : PVOID;
 cbOutputArgInfoAndData : UDINT;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

PLC API

TS6100-0030242 Version: 1.9

Name Type Description
Execute BOOL The command is triggered by a rising edge

at this input.
ConnectionHdl DWORD Connection handle previously output by the

function block UA_Connect.
MethodHdl DWORD Method handle, previously output by the

function block UA_MethodGetHandle.
nNumberOfInputAr
guments

UDINT Number of input parameters.

pInputArgInfo POINTER TO ST_UAMethodArgInfo Points to the buffer address where input
parameter information is stored in the form
of an array ST_UAMethodArgInfo.

cbInputArgInfo UDINT Size of the buffer where the input
parameter information is stored.

pInputArgData PVOID Points to the buffer address where input
parameters (constant length) are stored.

cbInputArgData UDINT Size of the input buffer where input
parameters (with constant length) are
stored.

pInputWriteData PVOID Pointer to buffer address where input
parameters (dynamic length) are stored.

cbInputWriteData UDINT Size of the input buffer where input
parameters (with dynamic length) are
stored.

nNumberOfOutput
Arguments

UDINT Number of output parameters.

pOutputArgInfo POINTER TO ST_UAMethodArgInfo Points to the buffer address where output
parameter information is stored as array
ST_UAMethodArgInfo.
nLenData is required to determine the
target memory of the individual output
parameters. The other elements can be set
in such a way that a type check of the
returned parameters takes place or
remains undefined.

cbOutputArgInfo UDINT Size of the buffer where the output
parameter information is stored.

pOutputArgInfoAn
dData

PVOID Points to the buffer address where the
output parameters are to be saved as a
BYTE array. The BYTE array contains the
number of output parameters as DINT, four
reserved bytes and parameter information
as ARRAY OF ST_UAMethodArgInfo
[} 228] (with the length of the output
parameters), followed by pure data. Note
that the data is packed as 1-byte
alignment.

cbOutputArgInfoA
ndData

UDINT Size of the buffer in which the output
parameters are to be saved as a BYTE
array.

Timeout TIME Time until the function is aborted.
DEFAULT_ADS_TIMEOUT is a global
constant, set to 5 seconds.

PLC API

TS6100-0030 243Version: 1.9

 Outputs
VAR_OUTPUT
 cbRead_R : UDINT;
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : UDINT;
END_VAR

Name Type Description
cbRead_R UDINT Counts all the bytes received.
Done BOOL Switches to TRUE if the function block was executed successfully.
Busy BOOL TRUE until the function block has executed a command, at the most for the

duration of the "Timeout" at the input. The inputs accept no new command as long
as Busy = TRUE. It is not the connection time that is monitored but the reception
time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The command-
specific error code is contained in nErrID.

ErrorID UDINT Contains the command-specific error code of the most recently executed
command.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

5.2.2.8 UA_MethodGetHandle

This function block collects a handle for a UA method, which can then be used to call a method using
UA_MethodCall [} 240].

 Inputs
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 ObjectNodeID : ST_UANodeID;
 MethodNodeID : ST_UANodeID;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Name Type Description
Execute BOOL The command is triggered by a rising edge at this input.
ConnectionHdl DWORD Connection handle previously output by the function block

UA_Connect.
ObjectNodeID ST_UANodeID Object node ID of the method to be called. (Type: ST_UANodeID

[} 228]).
MethodNodeID ST_UANodeID Method node ID of the method to be called. Corresponds to the ID

attribute in the UA namespace. (Type: UA_Connect [} 234]).
Timeout TIME Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a

global constant, set to 5 seconds.

PLC API

TS6100-0030244 Version: 1.9

 Outputs
VAR_OUTPUT
 MethodHdl : DWORD;
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : UDINT;
END_VAR

Name Type Description
MethodHdl DWORD Returns a method handle that can be used to call a method via UA_MethodCall

[} 240].
Done BOOL Switches to TRUE if the function block was executed successfully.
Busy BOOL TRUE until the function block has executed a command, at the most for the

duration of the "Timeout" at the input. The inputs accept no new command as
long as Busy = TRUE. It is not the connection time that is monitored but the
reception time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The
command-specific error code is contained in nErrID.

ErrorID UDINT Contains the command-specific error code of the most recently executed
command.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

5.2.2.9 UA_MethodReleaseHandle

This function block releases the specified method handle.

 Inputs
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 MethodHdl : DWORD;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Name Type Description
Execute BOOL The command is triggered by a rising edge at this input.
ConnectionHdl DWORD Connection handle previously output by the function block UA_Connect.
MethodHdl DWORD Method handle previously output by the function block

UA_MethodGetHandle.
Timeout TIME Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global

constant, set to 5 seconds.

 Outputs
VAR_OUTPUT
 Done : BOOL;
 Busy : BOOL;

PLC API

TS6100-0030 245Version: 1.9

 Error : BOOL;
 ErrorID : UDINT;
END_VAR

Name Type Description
Done BOOL Switches to TRUE if the function block was executed successfully.
Busy BOOL TRUE until the function block has executed a command, at the most for the duration

of the "Timeout" at the input. The inputs accept no new command as long as Busy =
TRUE. It is not the connection time that is monitored but the reception time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The command-
specific error code is contained in nErrID.

ErrorID UDINT Contains the command-specific ADS error code of the most recently executed
command.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

Also see about this
2 UA_Connect [} 234]
2 UA_MethodGetHandle [} 243]

5.2.2.10 UA_NodeGetHandle

This function block queries a node handle for a given symbol in the UA namespace. The symbol is specified
by a connection handle and its node ID.

 Inputs
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 NodeID : ST_UANodeID;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Name Type Description
Execute BOOL The command is triggered by a rising edge at this input.
ConnectionHdl DWORD Connection handle previously output by the function block

UA_Connect.
Node ID ST_UANodeID Unique addressing of the UA node, consisting of Identifier,

IdentifierType and NamespaceIndex, which are resolved from a
NamespaceName, e.g. by means of the method
UA_GetNamespaceIndex [} 237].

Timeout TIME Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a
global constant, set to 5 seconds.

 Outputs
VAR_OUTPUT
 NodeHdl : DWORD;
 Done : BOOL;

PLC API

TS6100-0030246 Version: 1.9

 Busy : BOOL;
 Error : BOOL;
 ErrorID : DWORD;
END_VAR

Name Type Description
NodeHdl DWORD Node handle that can be used for other function blocks, such as UA_Read or

UA_Write.
Done BOOL Switches to TRUE if the function block was executed successfully.
Busy BOOL TRUE until the function block has executed a command, at the most for the

duration of the "Timeout" at the input. The inputs do not accept new commands as
long as Busy is TRUE. It is not the connection time that is monitored but the
reception time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The command-
specific error code is included in ErrorID.

ErrorID DWORD Contains the command-specific ADS error code of the most recently executed
command.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

Also see about this
2 UA_Connect [} 234]

5.2.2.11 UA_NodeGetHandleList

This function block queries node handles for nodes in the UA namespace.

 Inputs
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 NodeIDCount : UINT;
 NodeIDs : ARRAY[1..nMaxNodeIDsInList] OF ST_UANodeID;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Name Type Description
Execute BOOL The command is triggered by a rising edge at this input.
ConnectionHdl DWORD Connection handle previously output by the function block UA_Connect.
NodeIDCount UINT Number of nodes for which a node handle is required.
NodeIDs ARRAY Array of NodeIDs created with struct ST_UANodeID [} 228].
Timeout TIME Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global

constant, set to 5 seconds.

 Outputs
VAR_OUTPUT
 NodeHdls : ARRAY[1..nMaxNodeIDsInList] OF DWORD;
 NodeErrorIDs : ARRAY[1..nMaxNodeIDsInList] OF DWORD;

PLC API

TS6100-0030 247Version: 1.9

 cbData_R : UDINT;
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : DWORD;
END_VAR

Name Type Description
NodeHdls ARRAY Array of requested node handles.
NodeErrorIDs ARRAY Array of error IDs if no node handles are available.
cbData_R UDINT Size of the data read.
Done BOOL Switches to TRUE if the function block was executed successfully.
Busy BOOL TRUE until the function block has executed a command, at the most for the

duration of the "Timeout" at the input. The inputs accept no new command
as long as Busy = TRUE. It is not the connection time that is monitored but
the reception time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The
command-specific error code is in nErrID.

ErrorID DWORD Contains the error ID if an error occurs.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

Also see about this
2 UA_Connect [} 234]

5.2.2.12 UA_NodeReleaseHandle

This function block releases a node handle.

 Inputs
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 NodeHdl : DWORD;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Name Type Description
Execute BOOL The command is triggered by a rising edge at this input.
ConnectionHdl DWORD Connection handle previously output by the function block UA_Connect.
NodeHdl DWORD Node handle to be released.
Timeout TIME Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global

constant, set to 5 seconds.

 Outputs
VAR_OUTPUT
 Done : BOOL;
 Busy : BOOL;

PLC API

TS6100-0030248 Version: 1.9

 Error : BOOL;
 ErrorID : DWORD;
END_VAR

Name Type Description
Done BOOL Switches to TRUE if the function block was executed successfully.
Busy BOOL TRUE until the function block has executed a command, at the most for the

duration of the "Timeout" at the input. The inputs accept no new command as long
as Busy = TRUE. It is not the connection time that is monitored but the reception
time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The command-
specific error code is included in ErrorID.

ErrorID DWORD Contains the command-specific ADS error code of the most recently executed
command.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

Also see about this
2 UA_Connect [} 234]

5.2.2.13 UA_NodeReleaseHandleList

This function block releases several node handles.

 Inputs
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 NodeHdlCount : UINT;
 NodeHdls : ARRAY[1..nMaxNodeIDsInList] OF DWORD;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Name Type Description
Execute BOOL The command is triggered by a rising edge at this input.
ConnectionHdl DWORD Connection handle previously output by the function block UA_Connect.
NodeHdlCount UINT Number of node handles.
NodeHdls ARRAY Array of node handles to be released.
Timeout TIME Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global

constant, set to 5 seconds.

 Outputs
VAR_OUTPUT
 NodeErrorIDs : ARRAY[1..nMaxNodeIDsInList] OF DWORD;
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : DWORD;
END_VAR

PLC API

TS6100-0030 249Version: 1.9

Name Type Description
NodeErrorIDs ARRAY Array of error IDs if a node handle could not be released.
Done BOOL Switches to TRUE if the function block was executed successfully.
Busy BOOL TRUE until the function block has executed a command, at the most for the

duration of the "Timeout" at the input. The inputs accept no new command
as long as Busy = TRUE. It is not the connection time that is monitored but
the reception time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The
command-specific error code is in nErrID.

ErrorID DWORD Contains the error ID if an error occurs.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

Also see about this
2 UA_Connect [} 234]

5.2.2.14 UA_Read

This function block reads values from a given node and connection handle.

 Inputs
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 NodeHdl : DWORD;
 stNodeAddInfo : ST_UANodeAdditionalInfo;
 pVariable : PVOID;
 cbData : UDINT;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

PLC API

TS6100-0030250 Version: 1.9

Name Type Description
Execute BOOL The command is triggered by a rising edge at this input.
Connection
Hdl

DWORD Connection handle previously output by the function block
UA_Connect.

NodeHdl DWORD Node handle that was previously output by the function
block UA_NodeGetHandle.

stNodeAddI
nfo

ST_UANodeAdditionalInfo Defines additional information, such as which attribute is
read from the UA namespace (default: 'Value' attribute) or
which IndexRange is to be used. Specified by STRUCT
ST_UANodeAdditionalInfo [} 229].

pVariable PVOID Pointer to data memory where the read data is to be stored.
cbData UDINT Determines the size of the data to be read.
Timeout TIME Time until the function is aborted.

DEFAULT_ADS_TIMEOUT is a global constant, set to 5
seconds.

 Outputs
VAR_OUTPUT
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : UDINT;
 cbData_R : UDINT;
END_VAR

Name Type Description
Done BOOL Switches to TRUE if the function block was executed successfully.
Busy BOOL TRUE until the function block has executed a command, at the most for the

duration of the "Timeout" at the input. The inputs accept no new command as long
as Busy = TRUE. It is not the connection time that is monitored but the reception
time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The command-
specific error code is contained in nErrID.

ErrorID UDINT Contains the command-specific ADS error code of the most recently executed
command.

cbData_R UDINT Number of bytes to be read.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

Also see about this
2 UA_Connect [} 234]
2 UA_NodeGetHandle [} 245]

5.2.2.15 UA_ReadList

This function block reads values from several given node and connection handles.

PLC API

TS6100-0030 251Version: 1.9

 Inputs
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 NodeHdlCount : UINT;
 NodeHdls : ARRAY[1..nMaxNodeIDsInList] OF DWORD;
 stNodeAddInfo : ARRAY[1..nMaxNodeIDsInList] OF ST_UANodeAdditionalInfo;
 pVariable : PVOID;
 cbData : ARRAY[1..nMaxNodeIDsInList] UDINT;
 cbDataTotal : UDINT;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Name Type Description
Execute BOOL The command is triggered by a rising edge at this input.
ConnectionHdl DWORD Connection handle previously output by the function block UA_Connect

[} 234].
NodeHdlCount UINT Number of node handles stored in the input variable NodeHdls.
NodeHdls ARRAY Array of node handles previously received by the function block

UA_NodeGetHandle [} 245] or UA_NodeGetHandleList [} 246].
stNodeAddInfo ARRAY Defines additional information, such as which attribute is read from the UA

namespace (default: 'Value' attribute) or which IndexRange is to be used.
Specified by STRUCT ST_UANodeAdditionalInfo [} 229].

pVariable PVOID Pointer to data memory where the read data is to be stored.
cbData ARRAY Determines the size of the data to be read.
cbDataTotal UDINT Total size of the data to be received.
Timeout TIME Time until the function is aborted. DEFAULT_ADS_TIMEOUT is a global

constant, set to 5 seconds.

 Outputs
VAR_OUTPUT
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : UDINT;
 cbData_R : UDINT;
END_VAR

Name Type Description
Done BOOL Switches to TRUE if the function block was executed successfully.
Busy BOOL TRUE until the function block has executed a command, at the most for the

duration of the "Timeout" at the input. The inputs accept no new command as long
as Busy = TRUE. It is not the connection time that is monitored but the reception
time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The command-
specific error code is in nErrID.

ErrorID UDINT Contains the command-specific ADS error code of the most recently executed
command.

cbData_R UDINT Number of bytes read.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

PLC API

TS6100-0030252 Version: 1.9

5.2.2.16 UA_Write

This function block writes values to a given node and connection handle.

 Inputs
VAR_INPUT
 Execute : BOOL;
 ConnectionHdl : DWORD;
 NodeHdl : DWORD;
 stNodeAddInfo : ST_UANodeAdditionalInfo;
 pVariable : PVOID;
 cbData : UDINT;
 Timeout : TIME := DEFAULT_ADS_TIMEOUT;
END_VAR

Name Type Description
Execute BOOL The command is triggered by a rising edge at this

input.
ConnectionHdl DWORD Connection handle previously output by the function

block UA_Connect [} 234].
NodeHdl DWORD Node handle that was previously output by the

function block UA_NodeGetHandle [} 245].
stNodeAddInfo ST_UANodeAdditionalInfo Defines additional information, e.g. which IndexRange

or which attribute is to be written (by default, the'
Value' attribute is used). Specified by STRUCT
ST_UANodeAdditionalInfo [} 229].

pVariable PVOID Pointer to data to be written.
cbData UDINT Sets the size of the values to be written.
Timeout TIME Time until the function is aborted.

DEFAULT_ADS_TIMEOUT is a global constant, set to
5 seconds.

 Outputs
VAR_OUTPUT
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : DWORD;
END_VAR

PLC API

TS6100-0030 253Version: 1.9

Name Type Description
Done BOOL Switches to TRUE if the function block was executed successfully.
Busy BOOL TRUE until the function block has executed a command, at the most for the

duration of the "Timeout" at the input. The inputs accept no new command as long
as Busy = TRUE. It is not the connection time that is monitored but the reception
time.

Error BOOL Switches to TRUE if an error occurs while executing a command. The command-
specific error code is included in ErrorID.

ErrorID DWORD Contains the command-specific ADS error code of the most recently executed
command.

Requirements

Development environment Target platform PLC libraries to include
TwinCAT 3.1 Win32, Win64, CE-X86, CE-ARM Tc3_PLCopen_OpcUa

Samples

TS6100-0030254 Version: 1.9

6 Samples
Sample code and configurations for this product can be obtained from the corresponding repository on
GitHub: https://github.com/Beckhoff/TF6100_Samples. There you have the option to clone the repository or
download a ZIP file containing the sample.

The following samples exist:

Name TwinCAT Ver-
sion

Description

TF6100_OpcUa_Client_Sample TwinCAT 3 This sample contains sample code for various
functions of the TwinCAT OPC UA Client (PLCOpen
function blocks). These include Browse, Connect,
HistoryUpdate, MethodCall, Read and Write. The
server sample for access is also included.

TF6100_OpcUa_Server_Sample TwinCAT 3 This sample contains a PLC with extensive provision
of PLC data for the TwinCAT OPC UA Server
(OPC UA Data Access).

TS6100_OpcUa_Client_Sample TwinCAT 2 This sample contains sample code for various
functions of the TwinCAT OPC UA Client (PLCOpen
function blocks). These include MethodCall, Read
and Write.

https://github.com/Beckhoff/TF6100_Samples

Appendix

TS6100-0030 255Version: 1.9

7 Appendix

7.1 Error diagnosis
In the following sections, possible errors for all components of the OPC UA setup are shown in the form of a
table. In addition, helpful troubleshooting hints are provided for the respective errors.

Appendix

TS6100-0030256 Version: 1.9

7.1.1 Server

Appendix

TS6100-0030 257Version: 1.9

Behavior Notes
An OPC UA Client does not see the PLC
namespace

TF6100 Setup Version 3.x and older: this status indicates
a missing license. Check whether you have activated a
valid TF6100 license.

An OPC UA Client is assigned the StatusCode
0x810e0000 when reading nodes.

TF6100 Setup Version 4.x: this status indicates a missing
license. Check whether you have activated a valid TF6100
license.

The variables released via comments/attributes
are not displayed in the OPC UA Server

Check whether the symbol file has been correctly
transferred to the controller (e.g., check boxes in the PLC
project), verify that it exists in the boot directory and that
the path to the symbol file in the configuration file of the
server refers to the correct symbol file. You can also use
the DeviceState Node in the respective namespace to
check any error messages that may have occurred. An
entry is made here if the symbol file was not found.
Also check that the comments/attributes are spelled
correctly.

The server does not comply with the sampling
rate/publishing interval required by the
OPC UA Client

OPC UA Client/Server is not a real-time protocol, i.e., there
is no guarantee that the server will always meet 100% of
the sampling rate or publishing interval required by the
client. The available sampling rates and publishing
intervals can be viewed in the server configuration file and
modified if required (<AvailableSamplingRates> and
<MinPublishingInterval>).

An OPC UA Client cannot connect to the server
although the server is displayed in the Windows
Task Manager. The error message "Host
unreachable" (or similar) appears.

Check whether firewall settings prevent communication
with the server. The server port must be open for incoming
TCP communication so that a client can connect.

An OPC UA Client sees the server's endpoints,
but a connection with them fails with the error
message "Host unreachable"

Check that the name resolution in your network is working
properly and that the server is accessible under its host
name. Even if the OPC UA Client apparently connects to
the IP address of the server (e.g., opc.tcp://
192.168.0.1:4840) to access the server's endpoints, the
server always returns its own host name in its endpoints. If
the client connects directly to one of the endpoints, it will
use the host name of the server again. If the name
resolution does not work, the connection fails.

An OPC UA Client sees the endpoints of the
server, but a connection to a secure endpoint
fails. The error message
"BadSecurityChecksFailed" appears

Check whether the server trusts the client certificate. The
required configuration steps can be found in section
Certificate exchange [} 108]. In this case, it must also be
ensured that a signature hash algorithm of the SHA 2
group (SHA256, SHA364, SHA512) is used to sign the
client certificate. If obsolete algorithms such as SHA1 are
used, the TwinCAT OPC UA Server does not allow a
connection.

When using an SQL server to store Historical
Access information, the values are not added to
the SQL database

Check the access data to the SQL Server and verify that
the SQL Server is also accessible in the network. Also
make sure that you are using a "Big Windows" operating
system on the TwinCAT OPC UA Server, since SQL
Server cannot be used for Historical Access under
Windows CE (although SQL Compact is OK).

When reading variables, an OPC UA Client
receives the error message "BadDeviceFailure"

This is an indication that the associated ADS device
cannot be reached, for example if no PLC program has
been started. Check the connectivity with the ADS device
and make sure that the appropriate runtime is active.

Appendix

TS6100-0030258 Version: 1.9

Behavior Notes
Arrays are not displayed in the namespace with
full resolution

By default, arrays of simple data types are not displayed in
expanded form in the namespace. However, individual
array indices can still be addressed using the IndexRange
function of OPC UA. An OPC UA Client should therefore
support this function. If this is not the case, a radio button
in the configuration file of the server can be used to display
an array in expanded form, so that each individual array
element can be addressed as a separate node. This radio
button is described in the section Arrays [} 55].

7.1.2 Client I/O
Behavior Notes
When creating a new I/O client by specifying the
server URL with the host name of the server, no
connection can be established subsequently via the
AddNodes dialog.

Please check if name resolution is operational in your
network. Alternatively try again via the IP address of
the server.

Some configuration items from the I/O client are not
present, although they should be according to the
documentation.

In this case, the system manager description file
(TMC) was probably not updated after a TF6100
update. Please execute the command "Reload TMC"
from the context menu of the I/O client to reload the
description file.

Write commands to a variable are not executed or do
not arrive at the server.

Please check whether the "Write Enable" output has
been enabled on the I/O client.

7.1.3 Client PLCopen
Behavior Notes
The attempt to read or write a Structured Data Type
from a server fails.

Structured Data Types are not supported by the
PLCopen-based client. Please use the I/O client for
this purpose.

7.1.4 Gateway
Behavior Notes
The gateway cannot connect to the server. One of the possible causes is that an old

configuration is being used. For example, if there is a
new server certificate, the gateway only notices this
when the configured endpoint is deleted and
reinserted under a different name. With the same
endpoint or a new endpoint with the same name, the
gateway would use the connection information from a
cache and as a result would no longer be able to
connect to the server.

7.2 Status codes

7.2.1 ADS Return Codes
Grouping of error codes:
Global error codes: ADS Return Codes [} 259]... (0x9811_0000 ...)
Router error codes: ADS Return Codes [} 259]... (0x9811_0500 ...)
General ADS errors: ADS Return Codes [} 260]... (0x9811_0700 ...)
RTime error codes: ADS Return Codes [} 262]... (0x9811_1000 ...)

Appendix

TS6100-0030 259Version: 1.9

Global error codes

Hex Dec HRESULT Name Description
0x0 0 0x98110000 ERR_NOERROR No error.
0x1 1 0x98110001 ERR_INTERNAL Internal error.
0x2 2 0x98110002 ERR_NORTIME No real time.
0x3 3 0x98110003 ERR_ALLOCLOCKEDMEM Allocation locked – memory error.
0x4 4 0x98110004 ERR_INSERTMAILBOX Mailbox full – the ADS message could not be sent.

Reducing the number of ADS messages per cycle will
help.

0x5 5 0x98110005 ERR_WRONGRECEIVEHMSG Wrong HMSG.
0x6 6 0x98110006 ERR_TARGETPORTNOTFOUND Target port not found – ADS server is not started or is

not reachable.
0x7 7 0x98110007 ERR_TARGETMACHINENOTFOUND Target computer not found – AMS route was not found.
0x8 8 0x98110008 ERR_UNKNOWNCMDID Unknown command ID.
0x9 9 0x98110009 ERR_BADTASKID Invalid task ID.
0xA 10 0x9811000A ERR_NOIO No IO.
0xB 11 0x9811000B ERR_UNKNOWNAMSCMD Unknown AMS command.
0xC 12 0x9811000C ERR_WIN32ERROR Win32 error.
0xD 13 0x9811000D ERR_PORTNOTCONNECTED Port not connected.
0xE 14 0x9811000E ERR_INVALIDAMSLENGTH Invalid AMS length.
0xF 15 0x9811000F ERR_INVALIDAMSNETID Invalid AMS Net ID.
0x10 16 0x98110010 ERR_LOWINSTLEVEL Installation level is too low –TwinCAT 2 license error.
0x11 17 0x98110011 ERR_NODEBUGINTAVAILABLE No debugging available.
0x12 18 0x98110012 ERR_PORTDISABLED Port disabled – TwinCAT system service not started.
0x13 19 0x98110013 ERR_PORTALREADYCONNECTED Port already connected.
0x14 20 0x98110014 ERR_AMSSYNC_W32ERROR AMS Sync Win32 error.
0x15 21 0x98110015 ERR_AMSSYNC_TIMEOUT AMS Sync Timeout.
0x16 22 0x98110016 ERR_AMSSYNC_AMSERROR AMS Sync error.
0x17 23 0x98110017 ERR_AMSSYNC_NOINDEXINMAP No index map for AMS Sync available.
0x18 24 0x98110018 ERR_INVALIDAMSPORT Invalid AMS port.
0x19 25 0x98110019 ERR_NOMEMORY No memory.
0x1A 26 0x9811001A ERR_TCPSEND TCP send error.
0x1B 27 0x9811001B ERR_HOSTUNREACHABLE Host unreachable.
0x1C 28 0x9811001C ERR_INVALIDAMSFRAGMENT Invalid AMS fragment.
0x1D 29 0x9811001D ERR_TLSSEND TLS send error – secure ADS connection failed.
0x1E 30 0x9811001E ERR_ACCESSDENIED Access denied – secure ADS access denied.

Router error codes

Hex Dec HRESULT Name Description
0x500 1280 0x98110500 ROUTERERR_NOLOCKEDMEMORY Locked memory cannot be allocated.

0x501 1281 0x98110501 ROUTERERR_RESIZEMEMORY The router memory size could not be changed.

0x502 1282 0x98110502 ROUTERERR_MAILBOXFULL The mailbox has reached the maximum number of
possible messages.

0x503 1283 0x98110503 ROUTERERR_DEBUGBOXFULL The Debug mailbox has reached the maximum
number of possible messages.

0x504 1284 0x98110504 ROUTERERR_UNKNOWNPORTTYPE The port type is unknown.
0x505 1285 0x98110505 ROUTERERR_NOTINITIALIZED The router is not initialized.
0x506 1286 0x98110506 ROUTERERR_PORTALREADYINUSE The port number is already assigned.
0x507 1287 0x98110507 ROUTERERR_NOTREGISTERED The port is not registered.
0x508 1288 0x98110508 ROUTERERR_NOMOREQUEUES The maximum number of ports has been reached.
0x509 1289 0x98110509 ROUTERERR_INVALIDPORT The port is invalid.
0x50A 1290 0x9811050A ROUTERERR_NOTACTIVATED The router is not active.
0x50B 1291 0x9811050B ROUTERERR_FRAGMENTBOXFULL The mailbox has reached the maximum number for

fragmented messages.
0x50C 1292 0x9811050C ROUTERERR_FRAGMENTTIMEOUT A fragment timeout has occurred.
0x50D 1293 0x9811050D ROUTERERR_TOBEREMOVED The port is removed.

Appendix

TS6100-0030260 Version: 1.9

General ADS error codes

Appendix

TS6100-0030 261Version: 1.9

Hex Dec HRESULT Name Description
0x700 1792 0x98110700 ADSERR_DEVICE_ERROR General device error.
0x701 1793 0x98110701 ADSERR_DEVICE_SRVNOTSUPP Service is not supported by the server.
0x702 1794 0x98110702 ADSERR_DEVICE_INVALIDGRP Invalid index group.
0x703 1795 0x98110703 ADSERR_DEVICE_INVALIDOFFSET Invalid index offset.
0x704 1796 0x98110704 ADSERR_DEVICE_INVALIDACCESS Reading or writing not permitted.
0x705 1797 0x98110705 ADSERR_DEVICE_INVALIDSIZE Parameter size not correct.
0x706 1798 0x98110706 ADSERR_DEVICE_INVALIDDATA Invalid data values.
0x707 1799 0x98110707 ADSERR_DEVICE_NOTREADY Device is not ready to operate.
0x708 1800 0x98110708 ADSERR_DEVICE_BUSY Device is busy.
0x709 1801 0x98110709 ADSERR_DEVICE_INVALIDCONTEXT Invalid operating system context. This can result

from use of ADS blocks in different tasks. It may be
possible to resolve this through multitasking
synchronization in the PLC.

0x70A 1802 0x9811070A ADSERR_DEVICE_NOMEMORY Insufficient memory.
0x70B 1803 0x9811070B ADSERR_DEVICE_INVALIDPARM Invalid parameter values.
0x70C 1804 0x9811070C ADSERR_DEVICE_NOTFOUND Not found (files, ...).
0x70D 1805 0x9811070D ADSERR_DEVICE_SYNTAX Syntax error in file or command.
0x70E 1806 0x9811070E ADSERR_DEVICE_INCOMPATIBLE Objects do not match.
0x70F 1807 0x9811070F ADSERR_DEVICE_EXISTS Object already exists.
0x710 1808 0x98110710 ADSERR_DEVICE_SYMBOLNOTFOUND Symbol not found.
0x711 1809 0x98110711 ADSERR_DEVICE_SYMBOLVERSIONINVALID Invalid symbol version. This can occur due to an

online change. Create a new handle.
0x712 1810 0x98110712 ADSERR_DEVICE_INVALIDSTATE Device (server) is in invalid state.
0x713 1811 0x98110713 ADSERR_DEVICE_TRANSMODENOTSUPP AdsTransMode not supported.
0x714 1812 0x98110714 ADSERR_DEVICE_NOTIFYHNDINVALID Notification handle is invalid.
0x715 1813 0x98110715 ADSERR_DEVICE_CLIENTUNKNOWN Notification client not registered.
0x716 1814 0x98110716 ADSERR_DEVICE_NOMOREHDLS No further handle available.
0x717 1815 0x98110717 ADSERR_DEVICE_INVALIDWATCHSIZE Notification size too large.
0x718 1816 0x98110718 ADSERR_DEVICE_NOTINIT Device not initialized.
0x719 1817 0x98110719 ADSERR_DEVICE_TIMEOUT Device has a timeout.
0x71A 1818 0x9811071A ADSERR_DEVICE_NOINTERFACE Interface query failed.
0x71B 1819 0x9811071B ADSERR_DEVICE_INVALIDINTERFACE Wrong interface requested.
0x71C 1820 0x9811071C ADSERR_DEVICE_INVALIDCLSID Class ID is invalid.
0x71D 1821 0x9811071D ADSERR_DEVICE_INVALIDOBJID Object ID is invalid.
0x71E 1822 0x9811071E ADSERR_DEVICE_PENDING Request pending.
0x71F 1823 0x9811071F ADSERR_DEVICE_ABORTED Request is aborted.
0x720 1824 0x98110720 ADSERR_DEVICE_WARNING Signal warning.
0x721 1825 0x98110721 ADSERR_DEVICE_INVALIDARRAYIDX Invalid array index.
0x722 1826 0x98110722 ADSERR_DEVICE_SYMBOLNOTACTIVE Symbol not active.
0x723 1827 0x98110723 ADSERR_DEVICE_ACCESSDENIED Access denied.
0x724 1828 0x98110724 ADSERR_DEVICE_LICENSENOTFOUND Missing license.
0x725 1829 0x98110725 ADSERR_DEVICE_LICENSEEXPIRED License expired.
0x726 1830 0x98110726 ADSERR_DEVICE_LICENSEEXCEEDED License exceeded.
0x727 1831 0x98110727 ADSERR_DEVICE_LICENSEINVALID Invalid license.
0x728 1832 0x98110728 ADSERR_DEVICE_LICENSESYSTEMID License problem: System ID is invalid.
0x729 1833 0x98110729 ADSERR_DEVICE_LICENSENOTIMELIMIT License not limited in time.
0x72A 1834 0x9811072A ADSERR_DEVICE_LICENSEFUTUREISSUE Licensing problem: time in the future.
0x72B 1835 0x9811072B ADSERR_DEVICE_LICENSETIMETOLONG License period too long.
0x72C 1836 0x9811072C ADSERR_DEVICE_EXCEPTION Exception at system startup.
0x72D 1837 0x9811072D ADSERR_DEVICE_LICENSEDUPLICATED License file read twice.
0x72E 1838 0x9811072E ADSERR_DEVICE_SIGNATUREINVALID Invalid signature.
0x72F 1839 0x9811072F ADSERR_DEVICE_CERTIFICATEINVALID Invalid certificate.
0x730 1840 0x98110730 ADSERR_DEVICE_LICENSEOEMNOTFOUND Public key not known from OEM.
0x731 1841 0x98110731 ADSERR_DEVICE_LICENSERESTRICTED License not valid for this system ID.
0x732 1842 0x98110732 ADSERR_DEVICE_LICENSEDEMODENIED Demo license prohibited.
0x733 1843 0x98110733 ADSERR_DEVICE_INVALIDFNCID Invalid function ID.
0x734 1844 0x98110734 ADSERR_DEVICE_OUTOFRANGE Outside the valid range.
0x735 1845 0x98110735 ADSERR_DEVICE_INVALIDALIGNMENT Invalid alignment.
0x736 1846 0x98110736 ADSERR_DEVICE_LICENSEPLATFORM Invalid platform level.

Appendix

TS6100-0030262 Version: 1.9

Hex Dec HRESULT Name Description
0x737 1847 0x98110737 ADSERR_DEVICE_FORWARD_PL Context – forward to passive level.
0x738 1848 0x98110738 ADSERR_DEVICE_FORWARD_DL Context – forward to dispatch level.
0x739 1849 0x98110739 ADSERR_DEVICE_FORWARD_RT Context – forward to real time.
0x740 1856 0x98110740 ADSERR_CLIENT_ERROR Client error.
0x741 1857 0x98110741 ADSERR_CLIENT_INVALIDPARM Service contains an invalid parameter.
0x742 1858 0x98110742 ADSERR_CLIENT_LISTEMPTY Polling list is empty.
0x743 1859 0x98110743 ADSERR_CLIENT_VARUSED Var connection already in use.
0x744 1860 0x98110744 ADSERR_CLIENT_DUPLINVOKEID The called ID is already in use.
0x745 1861 0x98110745 ADSERR_CLIENT_SYNCTIMEOUT Timeout has occurred – the remote terminal is not

responding in the specified ADS timeout. The route
setting of the remote terminal may be configured
incorrectly.

0x746 1862 0x98110746 ADSERR_CLIENT_W32ERROR Error in Win32 subsystem.
0x747 1863 0x98110747 ADSERR_CLIENT_TIMEOUTINVALID Invalid client timeout value.
0x748 1864 0x98110748 ADSERR_CLIENT_PORTNOTOPEN Port not open.
0x749 1865 0x98110749 ADSERR_CLIENT_NOAMSADDR No AMS address.
0x750 1872 0x98110750 ADSERR_CLIENT_SYNCINTERNAL Internal error in Ads sync.
0x751 1873 0x98110751 ADSERR_CLIENT_ADDHASH Hash table overflow.
0x752 1874 0x98110752 ADSERR_CLIENT_REMOVEHASH Key not found in the table.
0x753 1875 0x98110753 ADSERR_CLIENT_NOMORESYM No symbols in the cache.
0x754 1876 0x98110754 ADSERR_CLIENT_SYNCRESINVALID Invalid response received.
0x755 1877 0x98110755 ADSERR_CLIENT_SYNCPORTLOCKED Sync Port is locked.
0x756 1878 0x98110756 ADSERR_CLIENT_REQUESTCANCELLED The request was cancelled.

RTime error codes

Hex Dec HRESULT Name Description
0x1000 4096 0x98111000 RTERR_INTERNAL Internal error in the real-time system.
0x1001 4097 0x98111001 RTERR_BADTIMERPERIODS Timer value is not valid.
0x1002 4098 0x98111002 RTERR_INVALIDTASKPTR Task pointer has the invalid value 0 (zero).
0x1003 4099 0x98111003 RTERR_INVALIDSTACKPTR Stack pointer has the invalid value 0 (zero).
0x1004 4100 0x98111004 RTERR_PRIOEXISTS The request task priority is already assigned.
0x1005 4101 0x98111005 RTERR_NOMORETCB No free TCB (Task Control Block) available. The

maximum number of TCBs is 64.
0x1006 4102 0x98111006 RTERR_NOMORESEMAS No free semaphores available. The maximum number of

semaphores is 64.
0x1007 4103 0x98111007 RTERR_NOMOREQUEUES No free space available in the queue. The maximum

number of positions in the queue is 64.

0x100D 4109 0x9811100D RTERR_EXTIRQALREADYDEF An external synchronization interrupt is already applied.
0x100E 4110 0x9811100E RTERR_EXTIRQNOTDEF No external sync interrupt applied.
0x100F 4111 0x9811100F RTERR_EXTIRQINSTALLFAILED Application of the external synchronization interrupt has

failed.
0x1010 4112 0x98111010 RTERR_IRQLNOTLESSOREQUAL Call of a service function in the wrong context
0x1017 4119 0x98111017 RTERR_VMXNOTSUPPORTED Intel VT-x extension is not supported.
0x1018 4120 0x98111018 RTERR_VMXDISABLED Intel VT-x extension is not enabled in the BIOS.
0x1019 4121 0x98111019 RTERR_VMXCONTROLSMISSING Missing function in Intel VT-x extension.
0x101A 4122 0x9811101A RTERR_VMXENABLEFAILS Activation of Intel VT-x fails.

Specific positive HRESULT Return Codes:

HRESULT Name Description
0x0000_0000 S_OK No error.
0x0000_0001 S_FALSE No error.

Example: successful processing, but with a negative or
incomplete result.

0x0000_0203 S_PENDING No error.
Example: successful processing, but no result is available
yet.

0x0000_0256 S_WATCHDOG_TIMEOUT No error.
Example: successful processing, but a timeout occurred.

TCP Winsock error codes

Appendix

TS6100-0030 263Version: 1.9

Hex Dec Name Description
0x274C 10060 WSAETIMEDOUT A connection timeout has occurred - error while establishing the

connection, because the remote terminal did not respond properly after a
certain period of time, or the established connection could not be
maintained because the connected host did not respond.

0x274D 10061 WSAECONNREFUSED Connection refused - no connection could be established because the
target computer has explicitly rejected it. This error usually results from an
attempt to connect to a service that is inactive on the external host, that is,
a service for which no server application is running.

0x2751 10065 WSAEHOSTUNREACH No route to host - a socket operation referred to an unavailable host.
More Winsock error codes: Win32 error codes

7.2.2 Client I/O
The OPC UA Client modules that belong to a virtual OPC UA device offer different status variables as well as
control variables. These variables are explained below.

Reading the status codes
Please note that the status code of the state machine is listed here in hexadecimal notation. If the
code is displayed as a decimal number in TwinCAT, it must be converted for interpretation.

Fig. 1: OPCUAClientModulesStatusCodes

Appendix

TS6100-0030264 Version: 1.9

Variable Schema 0 1- State machine state 2- Keep alive
count if using
subscriptions

3- Connection state
(&read busy)

Status
0x0123 - 0 = Initialize (init) 0 = false(&off)

1 = Connect 1 = true(&off)
2 = Resolve namespace 2 = false(&on)
3 = Get node handles 3 = true(&on)
4 = Continuous read/write
5 = Triggered read/write
6 = Awaiting data change
notifications (subscriptions
))
7 = Disconnect
8 = Reset

Control
0x0123 - - - 0 = Standard (default)

1 = Reset state
machine
2 = Execute (in
triggered read mode)

Variable Data type Description

Connected
BIT 1 TRUE | 0= FALSE.

ReadBusy
BIT 1 TRUE | 0= FALSE. This function

is only active when reading and
writing via trigger variables.

KeepAlives
BIT4 Shows the number of KeepAlive

messages counted. Only active
when reading and writing using
subscriptions.

StmState
BYTE Can be read in the table above.

ResetStm
BIT The client is reset when this bit is

set to 1.

Execute
BIT 1 TRUE | 0= FALSE. Reading/

writing takes place if this bit is set
to 1 during reading and writing via
trigger variables.
If this bit remains set, there is no
difference to cyclic reading/
writing.

7.2.3 Client PLCopen
The function blocks of the TwinCAT OPC UA Client have their own error codes, which indicate the
occurrence of an error and use an ErrorID to display further information about the problem that has occurred.
TwinCAT ADS error messages (ADS Return Codes [} 258]) with the HighWord 0x0000 and custom error
messages from the client or the PLC library with the HighWord 0xE4DD can occur.

Possible TwinCAT ADS errors include the following:

Hex Name Description
0x 0000 0705 DEVICE_INVALIDSIZE Parameter size not correct
0x 0000 0706 DEVICE_INVALIDDATA Invalid parameter values
0x 0000 070A DEVICE_NOMEMORY Not enough memory

Appendix

TS6100-0030 265Version: 1.9

This error code list shows the possible custom error values:

Appendix

TS6100-0030266 Version: 1.9

Hex Name Description
0x E4DD 0001 UAC_E_FAIL UA service call failed
0x E4DD 0100 UAC_E_CONNECTED Server already connected
0x E4DD 0101 UAC_E_CONNECT General error when establishing a connection
0x E4DD 0102 UAC_E_UASECURITY UA security could not be set up
0x E4DD 0103 UAC_E_ITEMEXISTS Element ID already exists
0x E4DD 0104 UAC_E_ITEMNOTFOUND Element does not exist
0x E4DD 0105 UAC_E_ITEMTYPE Invalid or unsupported item type
0x E4DD 0106 UAC_E_CONVERSION Variable types cannot be converted
0x E4DD 0107 UAC_E_SUSPENDED Device hangs. Please try again later...
0x E4DD 0108 UAC_E_TYPE_NOT_SUPPORTED Conversion variable type is not supported.
0x E4DD 0109 UAC_E_NSNAME_NOTFOUND No namespace with the specified name found.
0x E4DD 0110 UAC_E_CONNECT_NOTFOUND Connection failed: Target host could not be

found.
0x E4DD 0111 UAC_E_TIMEOUT Timeout: i.e. target host does not respond
0x E4DD 0112 UAC_E_INVALIDHDL Session handle invalid
0x E4DD 0113 UAC_E_INVALIDNODEID UA node ID unknown
0x E4DD 0114 UAC_E_INVAL_IDENTIFIER_TYPE Identifier type of UaNodeId invalid
0x E4DD 0115 UAC_E_IDENTIFIER_NOTSUPP Identifier type UaNodeId is not supported
0x E4DD 0116 UAC_E_INVAL_NODE_HDL Invalid node handle
0x E4DD 0117 UAC_E_UAREADFAILED UA read failed for unknown reasons
0x E4DD 0118 UAC_E_UAWRITEFAILED UA write failed for unknown reasons
0x E4DD 0119 UAC_E_INVAL_NODEMETHOD_HDL Invalid method handle
0x E4DD 011A UAC_E_CALL_FAILED Call failed, cause unknown
0x E4DD 011B UAC_E_CALLDECODE_FAILED Successful call, decoding return value failed
0x E4DD 011C UAC_E_NOTMAPPEDTYPE Unassigned data type in return value
0x E4DD 011D UAC_E_CALL_FAILED_BADINTERNAL Call failed with UA_BadInternal

0x E4DD 011E UAC_E_METHODIDINVALID Unknown MethodID (returned on call, even if
provided by GetMethodHdl)

0x E4DD 011F UAC_E_TOOMUCHDIM Method call has returned parameters with more
than 3 dimensions; not supported.

0x E4DD 0120 UAC_E_CALL_FAILED_INVALIDARG Call failed with
OpcUa_BadInvalidArgument

0x E4DD 0121 UAC_E_CALL_FAILED_TYPEMISMATC
H

Call failed with
UAC_E_CALL_FAILED_TYPEMISMATCH

0x E4DD 0122 UAC_E_CALL_FAILED_OUTOFRANGE Call failed with
UAC_E_CALL_FAILED_OUTOFRANGE

0x E4DD 0123 UAC_E_CALL_FAILED_BADSTRUCTU
RE

Call failed with
OpcUa_BadStructureMissing

0x E4DD 0124 UAC_E_CALL_TYPEMISMATCH_OUTP
ARAM

Call successful, but type of output information
provided does not match

0x E4DD 0125 UAC_E_NONVALIDTYPEINFO Node has insufficient type information
0x E4DD 0126 UAC_E_INVALIDATTRIBID Access to invalid node attribute
0x E4DD 0128 UAC_E_NOTSUPPORTED The command is not supported by the

connected UaServer, e.g. when calling
UA_HistoryUpdate.

0x E4DE 0100 UAC_E_INVALID_ARRAY_LENGTH An invalid array length not matching
DataValueCount was assigned to
UA_HistoryUpdate.

0x E4DE 0101 UAC_E_INVALID_DATASIZE A data value with an invalid data type size was
assigned to UA_HistoryUpdate. All assigned
DataValues must be of the same data type.

Appendix

TS6100-0030 267Version: 1.9

Hex Name Description
0x E4DE 0102 UAC_E_SUBERROR A lower-level error was output for at least one

of the transferred data values. See
ValueErrorIDs at UA_HistoryUpdate.

7.3 Support and Service
Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Download finder

Our download finder contains all the files that we offer you for downloading. You will find application reports,
technical documentation, technical drawings, configuration files and much more.

The downloads are available in various formats.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on our internet
page: www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:

• support
• design, programming and commissioning of complex automation systems
• and extensive training program for Beckhoff system components

Hotline: +49 5246 963-157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

• on-site service
• repair service
• spare parts service
• hotline service

Hotline: +49 5246 963-460
e-mail: service@beckhoff.com

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20
33415 Verl
Germany

https://www.beckhoff.com/en-gb/support/download-finder/index-2.html
https://www.beckhoff.com/support
https://www.beckhoff.com/

Appendix

TS6100-0030268 Version: 1.9

Phone: +49 5246 963-0
e-mail: info@beckhoff.com
web: www.beckhoff.com

https://www.beckhoff.com/

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/ts6100

mailto:info@beckhoff.de?subject=TS6100-0030
https://www.beckhoff.com
https://www.beckhoff.com/ts6100

	 Inhaltsverzeichnis
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security

	2 Overview
	2.1 Scenarios
	2.2 Application examples
	2.2.1 Post-processing in the Cloud

	3 Installation
	3.1 Setup overview
	3.2 System requirements
	3.3 Installation (TC3)
	3.4 Installation (TC2)
	3.5 Installation Windows CE (TC3)
	3.6 Installation Windows CE (TC2)
	3.7 Licensing (TC3)
	3.8 Licensing (TC2)

	4 Technical introduction
	4.1 Server
	4.1.1 Overview
	4.1.2 Quick start
	4.1.3 Initialization
	4.1.4 Recommended steps
	4.1.5 Optimizations
	4.1.6 Data Access
	4.1.6.1 PLC
	4.1.6.1.1 Arrays
	4.1.6.1.2 Enums
	4.1.6.1.3 Properties
	4.1.6.1.4 StructuredTypes
	4.1.6.1.5 AnalogItemTypes
	4.1.6.1.6 Pointers and references
	4.1.6.1.7 Type system
	4.1.6.1.8 StatusCode
	4.1.6.1.9 List of attributes and comments

	4.1.6.2 C++
	4.1.6.2.1 Arrays

	4.1.6.3 Matlab/Simulink
	4.1.6.4 I/O task

	4.1.7 Historical Access
	4.1.7.1 Display historical data

	4.1.8 Alarms and Conditions
	4.1.9 Method Call
	4.1.9.1 Job methods
	4.1.9.2 PLC
	4.1.9.3 C++

	4.1.10 File transfer
	4.1.10.1 Access to files and folders via OPC UA

	4.1.11 Global Discovery Service
	4.1.12 TwinCAT EventLogger
	4.1.13 Security
	4.1.13.1 Overview
	4.1.13.2 Endpoints
	4.1.13.3 Authentication
	4.1.13.4 Certificate exchange
	4.1.13.5 Access rights

	4.1.14 Miscellaneous
	4.1.14.1 Configuring firewalls
	4.1.14.2 Namespace for configuration of the server
	4.1.14.3 DeviceState
	4.1.14.4 ReverseConnect
	4.1.14.5 DI Components
	4.1.14.6 ServerState
	4.1.14.7 Logging

	4.2 Configurator
	4.2.1 Visual Studio
	4.2.1.1 Overview
	4.2.1.2 Creating a new project
	4.2.1.3 Connecting to a server
	4.2.1.4 Performing the server initialization
	4.2.1.5 Adding ADS devices
	4.2.1.6 Reading and writing the configuration
	4.2.1.7 Importing and exporting configuration files
	4.2.1.8 Configuring historical access
	4.2.1.9 Configuring Alarms and Conditions
	4.2.1.10 Configuring alarm texts
	4.2.1.11 Configuring endpoints
	4.2.1.12 Trust relationship for certificates
	4.2.1.13 Configuring security settings
	4.2.1.14 Restarting the server
	4.2.1.15 Logging

	4.2.2 Standalone
	4.2.2.1 Overview
	4.2.2.2 Connecting to a server
	4.2.2.3 Performing the server initialization
	4.2.2.4 Adding ADS devices
	4.2.2.5 Reading and writing the configuration
	4.2.2.6 Configuring historical access
	4.2.2.7 Configuring Alarms and Conditions
	4.2.2.8 Configuring alarm texts
	4.2.2.9 Configuring endpoints
	4.2.2.10 Trust relationship for certificates
	4.2.2.11 Configuring security settings
	4.2.2.12 Restarting the server
	4.2.2.13 Logging

	4.3 Client I/O
	4.3.1 Overview
	4.3.2 Quick start
	4.3.3 Supported data types
	4.3.4 Adding nodes of a Server
	4.3.5 Node attributes
	4.3.6 Method call
	4.3.7 StructuredTypes
	4.3.8 Data recording
	4.3.9 Writing variables
	4.3.10 Security
	4.3.10.1 Overview
	4.3.10.2 Certificate exchange

	4.4 Client PLCopen
	4.4.1 Overview
	4.4.2 Supported data types
	4.4.3 Best practice
	4.4.3.1 How to determine communication parameters
	4.4.3.2 How to establish a connection
	4.4.3.3 How to read nodes
	4.4.3.4 How to write nodes
	4.4.3.5 How to call methods

	4.4.4 Security
	4.4.4.1 Overview
	4.4.4.2 Certificate exchange

	4.5 Gateway
	4.5.1 Overview
	4.5.2 Quick start
	4.5.3 Licensing
	4.5.4 Scenarios
	4.5.5 Configurator
	4.5.5.1 Overview
	4.5.5.2 General settings
	4.5.5.3 Additional UA Servers
	4.5.5.4 Additional endpoints
	4.5.5.5 OPC COM DA settings

	4.5.6 Migrating from Tx6120
	4.5.7 Security
	4.5.7.1 Overview
	4.5.7.2 Certificate exchange

	4.6 Sample Client
	4.6.1 Overview
	4.6.2 Establishing a secure connection to OPC UA Server
	4.6.3 Browsing the UA namespace
	4.6.4 Using the Watchlist

	5 PLC API
	5.1 Tc2_OpcUa
	5.1.1 Data types
	5.1.1.1 ST_OpcUAServerInfo
	5.1.1.2 E_OpcUAServerOption
	5.1.1.3 E_OpcUAServerStatus

	5.1.2 Function blocks
	5.1.2.1 FB_OpcUAServer
	5.1.2.2 FB_OpcUAServerGetStatus

	5.2 Tc3_PLCopen_OpcUa
	5.2.1 Data types
	5.2.1.1 E_UAAttributeID
	5.2.1.2 E_UABrowseDirection
	5.2.1.3 E_UABrowseResultMask
	5.2.1.4 E_UAConnectionStatus
	5.2.1.5 E_UADataType
	5.2.1.6 E_UAIdentifierType
	5.2.1.7 E_UANodeClassMask
	5.2.1.8 E_UASecurityMsgMode
	5.2.1.9 E_UASecurityPolicy
	5.2.1.10 E_UAServerState
	5.2.1.11 E_UATransportProfile
	5.2.1.12 E_UAUserIdentityTokenType
	5.2.1.13 ST_UABrowseDescription
	5.2.1.14 ST_UAExpandedNodeID
	5.2.1.15 ST_UASessionConnectInfo
	5.2.1.16 ST_UAIndexRange
	5.2.1.17 ST_UALocalizedText
	5.2.1.18 ST_UAMethodArgInfo
	5.2.1.19 ST_UANodeID
	5.2.1.20 ST_UANodeAdditionalInfo
	5.2.1.21 ST_UAReferenceDescription
	5.2.1.22 ST_UAUserIdentityTokenType
	5.2.1.23 UAHADataValue
	5.2.1.24 UAHAUpdateStatusCode

	5.2.2 Function blocks
	5.2.2.1 UA_Browse
	5.2.2.2 UA_Connect
	5.2.2.3 UA_ConnectGetStatus
	5.2.2.4 UA_Disconnect
	5.2.2.5 UA_GetNamespaceIndex
	5.2.2.6 UA_HistoryUpdate
	5.2.2.7 UA_MethodCall
	5.2.2.8 UA_MethodGetHandle
	5.2.2.9 UA_MethodReleaseHandle
	5.2.2.10 UA_NodeGetHandle
	5.2.2.11 UA_NodeGetHandleList
	5.2.2.12 UA_NodeReleaseHandle
	5.2.2.13 UA_NodeReleaseHandleList
	5.2.2.14 UA_Read
	5.2.2.15 UA_ReadList
	5.2.2.16 UA_Write

	6 Samples
	7 Appendix
	7.1 Error diagnosis
	7.1.1 Server
	7.1.2 Client I/O
	7.1.3 Client PLCopen
	7.1.4 Gateway

	7.2 Status codes
	7.2.1 ADS Return Codes
	7.2.2 Client I/O
	7.2.3 Client PLCopen

	7.3 Support and Service

		documentation@beckhoff.com
	2023-11-20T11:31:10+0100
	Beckhoff Automation, Verl
	Documentation Publishing

