Functional description | EN
TF5280 | TwinCAT 3 CNC
Volumetric compensation
Notes on the documentation

This description is only intended for the use of trained specialists in control and automation engineering who are familiar with the applicable national standards.

It is essential that the documentation and the following notes and explanations are followed when installing and commissioning the components.

It is the duty of the technical personnel to use the documentation published at the respective time of each installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under development.

We reserve the right to revise and change the documentation at any time and without prior announcement.

No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff Automation GmbH.

Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners.

Patent Pending

The EtherCAT technology is patent protected, in particular by the following applications and patents:
with corresponding applications or registrations in various other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The reproduction, distribution and utilisation of this document as well as the communication of its contents to others without express authorisation are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.
General and safety instructions

Icons used and their meanings

This documentation uses the following icons next to the safety instruction and the associated text. Please read the (safety) instructions carefully and comply with them at all times.

Icons in explanatory text

1. Indicates an action.
 ⇒ Indicates an action statement.

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
</table>

Acute danger to life!
If you fail to comply with the safety instruction next to this icon, there is immediate danger to human life and health.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
</table>

Personal injury and damage to machines!
If you fail to comply with the safety instruction next to this icon, it may result in personal injury or damage to machines.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
</table>

Restriction or error
This icon describes restrictions or warns of errors.

• Tips and other notes
 This icon indicates information to assist in general understanding or to provide additional information.

General example
Example that clarifies the text.

NC programming example
Programming example (complete NC program or program sequence) of the described function or NC command.

• Specific version information
 Optional or restricted function. The availability of this function depends on the configuration and the scope of the version.
Table of contents

Notes on the documentation .. 3

General and safety instructions ... 4

1 Overview .. 8

2 Description .. 9

3 Configuration ... 10
 3.1 General configuration (obligatory) .. 10
 3.2 Tool length (optional) ... 13
 3.3 Modification of compensation values (optional) ... 14
 3.4 Alternative model (optional) .. 14
 3.5 Diagnosis (optional) ... 14
 3.6 Linkage to channel (optional) ... 15
 3.7 Access to configuration and state data with V.G variables .. 16

4 Programming ... 17
 4.1 Activation ... 17
 4.2 Behaviour on reset and in the event of errors ... 18

5 Notes on measurement .. 19
 5.1 Pre-compensation ... 19
 5.2 Influence of measuring strategy on configuration .. 19
 5.2.1 Workpiece axes ... 19
 5.2.2 Cartesian pre-compensation ... 20
 5.2.3 Coordinate system offset, rotation centre ... 21

6 Error parameters .. 22
 6.1 Parametric model according to DIN ISO 230 and ISO TR 16907 22
 6.2 List of parameters supported .. 24
 6.3 File formats supported .. 24
 6.3.1 Units of measure ... 24
 6.3.2 ISG CSV format ... 26
 6.3.3 Etalon Exchange Format .. 27
 6.4 Interpolation of parameter values ... 27
 6.4.1 Interpolation mode ... 27
 6.4.2 Constancy in the case of modulo passages, parameter splicing 27

7 Examples .. 29
 7.1 Cartesian compensation of XYZ kinematics ... 29
 7.2 Compensation of head kinematics CYXZ, with Cartesian pre-compensation 30

8 Support and Service .. 32

Index .. 33
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Kinematic chain for a 5-axis CB machine</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2</td>
<td>5-axis machine XYZBC with rotary and swivel axis in the workpiece</td>
<td>20</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Position errors of the C axis, without C0C</td>
<td>22</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Component errors of the X axis</td>
<td>23</td>
</tr>
</tbody>
</table>
1 Overview

Task

The term "volumetric compensation" denotes compensation of machine tools' geometric errors in the overall work volume. It is based on a parametric machine model that is standardized in the DIN ISO 230-1/7 "Test code for machine tools" and ISO/TR 16907 "Machine tools — Numerical compensation of geometric errors" standards. Chapter "Notes on measurement and use [19]" provides a short overview of the model.

The purpose of compensation is to balance out errors in tool positioning and orientation by correcting the axis setpoints, thus enhancing the quality of the workpiece.

- Volumetric Compensation only compensates for tool position. Errors resulting from incorrect positioning are compensated but not tool orientation.

Characteristics

Volumetric Compensation can be used for all machines that can be described by serial kinematics with precisely 3 linear axes X, Y, Z and up to 3 rotary axes A, B, C.

Gantry combinations are supported (transparently for the user) by the fact that the slave axes are supplied with the same compensation values as their master axes.

Programming

Volumetric Compensation can be activated and deactivated in the NC program by the \#VOLCOMP command.

- This function is an additional option requiring a license.

Links to other documents

For the sake of clarity, links to other documents and parameters are abbreviated, e.g. [PROG] for the Programming Manual or P-AXIS-00001 for an axis parameter.

For technical reasons, these links only function in the Online Help (HTML5, CHM) but not in pdf files since pdfs do not support cross-linking.
2 Description

General approach

The first step towards use of Volumetric Compensation consists of measuring the machine to determine the parameters for the machine model. There are several vendors of appropriate hardware and software on the market. The ISG controller supports:

- ISG CSV format
- Etalon® Exchange Format (see Section “File formats supported [24]”).

After measurement, the parameters are available in one or more file(s). These parameter files can be loaded to the ISG kernel via a file interface. Volumetric Compensation is configured via the start-up list and the axis parameter lists.

Volumetric Compensation can be

- activated
- deactivated
- by a CNC programming command and the parameter files can be read in again.
3 Configuration

3.1 General configuration (obligatory)

Volumetric Compensation(s) takes place
 • in the start-up list "hochlauf.lis" [STUP/Chapter Volumetric Compensation] and
 • in the compensation-specific lists [VOLC].

Up to five compensations can be configured for each controller. Configuration of more than only one
compensation makes sense on multi-channel machines, for example. Moreover, the measuring strategy can
influence whether you have to work with one or more compensations; see Section "Influence of measuring
strategy on configuration". [19]

Axis assignment

Volumetric Compensation requires the presence of
 • 3 translatory axes and
 • up to 3 rotary axes.

The ISO standard stipulates the letters X, Y, Z, A, B and C as axis names.

Which physical axis assumes the role of the X axis, the Y axis, etc. is assigned by the logical axis number.

 NOTE

This axis assignment must match the axis identifier when the machine is measured. Otherwise, the com-
pensation values are assigned to the wrong axes and this results in an inexact TCP position during machin-
ing.

Axis assignment in compensation list

Axis assignment for 0-th compensation, via logical axis number

X 1
Y 2
Z 3
C 7
A 19

Number of records

For memory allocation, a bound must be specified for the number of records to be read. An error is issued if
this number is exceeded when the parameter files are read in.

Example – number of records in "hochlauf.lis"

Upper bound for the number of records
vol_comp[0].max_records 2000

Parameter files

Up to 10 parameter files can be used for each compensation. A file name and the file format used must be
specified for each parameter file.

The following names are available for the file format.

<table>
<thead>
<tr>
<th>Name</th>
<th>File format</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISG_CSV</td>
<td>ISG CSV file format, see section "ISG CSV format [26]"</td>
</tr>
</tbody>
</table>
Kinematic model

Further information is needed to completely describe the machine kinematic model. In particular, the sequence of axes in the kinematic chain must be specified.

Under certain circumstances, the number of axes located on the workpiece side must be specified. Whether this value must be specified depends on the measuring strategy, see section “Influence of the measurement strategy on configuration”. [19]
Kinematic model in compensation list

Example: a 5-axis CB machine, table-table kinematics
ID57 in the ISG library for Kinematic Transformations

the sequence of the axes is CBYXZ
chain CBYXZ
(the first) two axes CA are located on the workpiece side
workpiece_axes 2

Specifying the kinematic chain starts with the workpiece and then runs along the axes up to the tool. The sequence in which the axes occur specifies the **kinematic chain**. In this example, we have a CBYXZ kinematic.

Figure 1: Kinematic chain for a 5-axis CB machine

Limit value

A limit for the compensation value must be specified in the axis parameters for each of the axes to be compensated (previously X, Y, Z).
The `lr_param.vol_comp.s_limit` (P-AXIS-00525) parameter defines the maximum allowed compensation value for this axis. If this value is exceeded, an error is issued and the axis is stopped in a controlled manner.

NOTE

If this limit is not defined, an error is issued when compensation is activated.

Limit in "achsmd1.lis"

```plaintext
# Limit of 1mm for compensation values, in 0.1um
lr_param.vol_comp.s_limit 10000
```

NOTE

The `s_limit` parameter must also be defined for gantry axes whose master axes are involved in Volumetric Compensation. Otherwise, an error is output when a compensation value is applied.

3.2 Tool length (optional)

Tool length generally has an influence on compensation values. By default, calculation is performed with tool length 0. In order to incorporate tool length as well, the N0X, N0Y, N0Z parameters must be set in a parameter file. See Section "List of protected parameters" [24].

The vector `[N0X, N0Y, N0Z]` must be scaled and specifies tool orientation at zero position (from the flange to the tool tip). Except for the sign, this is typically the direction of the last axis in the kinematic chain, i.e. `[0, 0, -1]` for the example machine CBYXZ.

Tool length is automatically monitored and kept updated.
3.3 **Modification of compensation values (optional)**

The compensation values calculated by the compensation function can also be manipulated for each axis. You can either negate the compensation values or set them to 0.

Modification in compensation list

<table>
<thead>
<tr>
<th>Example: Negate compensation values for X and Y axes, Axis sequence makes no difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>negate XY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example: Set compensation values for Z axis to zero</th>
</tr>
</thead>
<tbody>
<tr>
<td>set_to_zero Z</td>
</tr>
</tbody>
</table>

3.4 **Alternative model (optional)**

The application requires expert knowledge and is not necessary in normal use. This alternative model may prove useful for customers to develop their own measurement cycles.

Position errors in the rotary axes (see Section “Parametric model in accordance with DIN ISO 230 and ISO TR 16907 [22]”) are regarded as “average values” of the associated component errors in the literature on measurement/calibration of machine tools.

In this model, the rotation takes place around an ideal axis and afterwards the motion is subjected to location and component errors in the same manner. In default mode, the ISG implementation follows this model and is therefore compliant with the calibration models of third-party vendors.

However, the parameter in the compensation list

| alternative_model 1 |

switches to an alternative model for the position errors of rotary axes. In this alternative model, the main rotation actually takes place about a distorted axis and any component errors then affect the rotary motion.

3.5 **Diagnosis (optional)**

For diagnostic purposes, you can create a file that contains a sorted list of all parameter records read in.

The file is in the "ECMA-376 Office Open XML File Format – spreadsheet" and is fully editable in versions of Microsoft® Office 2010® or higher or in Office 2013® or higher. This file is created during start-up of the controller and whenever compensation is updated.

Creating a diagnostic file in compensation list

<table>
<thead>
<tr>
<th>Specify path to the diagnostic file</th>
</tr>
</thead>
<tbody>
<tr>
<td>diagnosis_file C:\volcomp\diagnosis_00.xml</td>
</tr>
</tbody>
</table>

The function to create a diagnostic file is not available in TwinCAT.
3.6 Linkage to channel (optional)

Compensation may be linked to the channel in which it is activated. This has the effect that only axes contained in the channel are compensated. In addition, this linkage affects behaviour at program end; see Section “Behaviour on reset and in the event of errors [17]”.

Linkage to channel in compensation list

<table>
<thead>
<tr>
<th># Link to channel (Boolean)</th>
<th>associate_to_channel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
3.7 Access to configuration and state data with V.G variables

V.G variables

Read and write access to some configuration and state data can be made directly from the NC program with V.G variables.

Path and file name

The V.G.VOLCOMP[i].FILE[j] parameter permits read and write access to the path and name of the parameter file under Index 'j' of Volumetric Compensation with Index 'i'. It therefore includes the value of the compensation parameter P-VOLC-00012 (file[j]). The data type is STRING.

Activated

The V.G.VOLCOMP[i].ACTIVE parameter contains the information whether Volumetric Compensation is currently active with Index 'i'. Write access is not possible. The data type is BOOLEAN.
4 Programming

NOTE

Two preconditions must be fulfilled to use a previously configured compensation.

- Each of the axes involved in compensation must be referenced and error-free.
- The axes should also be referenced before the machine is measured.

The referencing requirement does not apply to axes with absolute encoders.

4.1 Activation

When these preconditions are met, Volumetric Compensation can be activated. This takes place either

- automatically (default) or
- manually by an NC command.

This behaviour is configured by the parameter P-VOLC-00017 (manual_activation) in the compensation list.

Configure activation in the compensation list

```plaintext
# Compensation is either
# - activated automatically as soon as all participating axes allow it (error-free, referenced, etc.) or
# - manually by the NC command #VOLCOMP ON/OFF
manual_activation 0

# Compensation is exclusively activated/deactivated by the NC command
# #VOLCOMP ON/OFF
manual_activation 1
```

Manual activation/deactivation

Volumetric Compensation can be activated and deactivated in the NC program by the #VOLCOMP command.

```plaintext
#VOLCOMP ON | OFF [ ID<expr> [NO_MOVE]] (modal)
or
#VOLCOMP [ ID<expr> UPDATE] (modal)
```

- **ON** Activate Volumetric Compensation
- **OFF** Deactivate Volumetric Compensation
- **ID<expr>** Identifier of the compensation to be programmed (0 – 4)
- **NO_MOVE** If the keyword NO_MOVE is specified, the axes do not move when compensation is activated/deactivated. Therefore, correction values are not increased, only the position controller setpoints are corrected.
- **UPDATE** Update a specific compensation. The affected compensation must be deactivated beforehand.

The NC command below activates and deactivates all Volumetric Compensations in a single step:

```plaintext
#VOLCOMP ON ALL (modal)
or
#VOLCOMP OFF ALL (modal)
```

Activate/deactivate compensation in the NC program

```plaintext
; Activate compensation with ID0
N10 #VOLCOMP ON [ID0]
...
Programming

NOTE

The machine stops when a #VOLCOMP commands is used. Therefore, it is advisable to plan the use of #VOLCOMP commands only for times when the machine is supposed to be in standstill anyway.

If NO_MOVE was not specified, the NC command #VOLCOMP ON/OFF causes the immediate activation/deactivation of compensation values, i.e. the participating axes move. Correction values are then filtered by a filter whose size and duration are set in the parameter P-VOLC-00018 (filter_steps).

Update

When #VOLCOMP [IDxx UPDATE] is activated, the parameters are read from the configured files again. However, the related compensation must first be deactivated.

An update also refreshes the configuration from the compensation lists (participating axes, kinematic chain etc.) in addition to the error parameters.

Before an update, the compensation is implicitly deactivated, if necessary.

Reload parameters to the NC program

; Deactivate compensation
; ...
N090 #VOLCOMP OFF [ID0]
; Update compensation parameters
N100 #VOLCOMP [ID0 UPDATE]
; Reactivate compensation
N110 #VOLCOMP ON [ID0]

4.2 Behaviour on reset and in the event of errors

Reset

A controller reset disables all Volumetric Compensations without causing additional axis movements.

Error case

If an axis assumes an error state, every compensation in which the axis participates is marked as incorrect. Compensation values are removed from the axis without causing an additional axis movement. The affected compensations are deactivated; the other participating axes are stopped in a controlled fashion and their compensation values are reduced.

Response

After reset, deactivated compensations are re-activated by the #VOLCOMP command.

Program end

If compensations are still active at program end (M30) and they are linked to the current channel, an error is output and the compensation values of the affected axes are reduced without any additional movement.
5 Notes on measurement

5.1 Pre-compensation

Pre-compensation

Volumetric Compensation is regarded as an additional function block in addition to the conventional geometric compensations to enhance machine accuracy even further. Conventional compensations include:

- Leadscrew error compensation
- Cross compensation
- Plane compensation

For this reason, it is advisable to activate these conventional compensations in advance, i.e. to execute a pre-compensation and then add the measurement and finally apply Volumetric Compensation.

5.2 Influence of measuring strategy on configuration

The measuring strategy applied to parameter determination, the error model used and the other configuration factors of the machine all influence how Volumetric Compensation must be configured.

In general, the following must match:

- measuring strategy and
- configuration of the Volumetric Compensation

5.2.1 Workpiece axes

In general, it makes a difference whether an axis lies on the tool or the workpiece side. For Volumetric Compensation, this distinction is made via the workpiece axes parameter. By default, this value is assigned the value 0 and so all axes lie in the tool.

Due to settings on the machine, an axis on the workpiece side may already be considered elsewhere, e.g. as a result of the vz_stellgr or vz_istw axis parameters. In this case, the axis lies in the tool — also for the measuring technician — and the axis should also lie in the tool for Volumetric Compensation, i.e. workpiece_axes should remain at 0.

Rule of thumb: if the measuring technician considers an axis to be on the tool side, the axis should also be treated as such when configuring Volumetric Compensation and vice versa.
5.2.2 Cartesian pre-compensation

The sequence for measuring the axes plays an important role.

In the example, let us assume there is a 5-axis machine XYZBC with rotary and swivel axis in the workpiece.

If all 5 axes are measured simultaneously, one Volumetric Compensation CBYXZ is sufficient.

However, the following sequence is also possible:

- The axes YXZ are measured and compensated.
- Then the B and C axes are measured and compensated.

2 compensations are used:

- YXZ, Cartesian parameter file only
- CBYXZ, parameter files for the B and C axes only

This is how the measuring strategy of Cartesian pre-compensation used is mapped.
5.2.3 Coordinate system offset, rotation centre

Some measuring technicians do not include the error parameters of rotary axes in the machine coordinate system but in the system for the rotation centre of the axis (for example, in the tool table).

If the rotation centre of the C axis lies at [0, 0, -550], for example, the method of measuring the machine with [X, Y, Z] commands may result in the output of compensation values that would actually be expected with [X, Y, Z ± 550].

This problem can be solved by implementing a coordinate system offset on the axis side. The parameters IDX, IDY, IDZ can be used for this; see Section "Workpiece axes".[19]

**NOTE**

In the event that the C axis was compensated in a different coordinate system than the Cartesian axes, it is imperative to configure two compensations. Otherwise, the machine cannot be compensated at the exact position.
6 Error parameters

6.1 Parametric model according to DIN ISO 230 and ISO TR 16907

Classic compensations (leadscrew error, crossing and error compensation) determine their compensation values by means of a simple lookup operation in one or multi-dimensional tables. The compensation value of the affected axis then depends on:

- the current value of the axis itself (ssfk) or
- only the value of another axis (crosscomp) or
- the values of two axes (crosscomp2).

The decisive drawback of this approach is that it cannot be generalised in practice for higher dimensions since the required lookup tables would be too unwieldy and measuring the machine would take too long. A 5-dimensional table would be needed to compensate adequately for a 5-axis machine ("crosscomp5"). 10 interpolation points per axis would result in $10^5$ grid points.

The parametric approach avoids this weakness by including information about the machine that is ignored by the lookup approach. A kinematic model of the (inexact) machine is created by using the given parameters. Then the compensated axis values are calculated from the known target position of the tool by inverting the model.

The Volumetric Compensation model works with two kinds of error parameters:

- Position errors
- Component errors

Position errors

The position errors of an axis describe how strongly the position and orientation of an axis deviate from their ideal values (position deviation is only relevant for rotary axes). In this way, global aspects of the machine, for example the rectangularity of axes, can be detected.

Real C-axis

Figure 3: Position errors of the C axis, without C0C
Component errors

Component errors specify which deviations a slide experiences when it is guided along an axis. The slide can be shifted with respect to its target position in each of the three spatial directions (EX*, EY*, EZ*) and can be inclined with respect to its target orientation (EA*, EB*, EC*). These errors are typically provided in a one-dimensional lookup table.

Figure 4: Component errors of the X axis
6.2 List of parameters supported

DIN ISO 230

The list below contains all error parameters that are supported in compliance with the DIN ISO 230 standard.

The number of position errors is redundant: only a subset of position errors is required to describe a machine completely. In addition, there are several options to choose this type of descriptive subset.

<table>
<thead>
<tr>
<th>Position errors</th>
<th>Component errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>X0X, Y0X, Z0X, A0X, B0X, C0X</td>
<td>EXX, EYX, EZX, EAX, EBX, ECX</td>
</tr>
<tr>
<td>X0Y, Y0Y, Z0Y, A0Y, B0Y, C0Y</td>
<td>EXY, EYY, EZY, EAY, EBY, ECY</td>
</tr>
<tr>
<td>X0Z, Y0Z, Z0Z, A0Z, B0Z, C0Z</td>
<td>EXZ, EYZ, EZZ, EAZ, EBZ, ECZ</td>
</tr>
<tr>
<td>X0A, Y0A, Z0A, A0A, B0A, C0A</td>
<td>EXA, EYA, EZA, EAA, EBA, ECA</td>
</tr>
<tr>
<td>X0B, Y0B, Z0B, A0B, B0B, C0B</td>
<td>EXB, EYB, EZN, EAB, EBB, ECB</td>
</tr>
<tr>
<td>X0C, Y0C, Z0C, A0C, B0C, C0C</td>
<td>EXC, EYC, EZC, EAC, EBC, ECC</td>
</tr>
</tbody>
</table>

ISG parameters

The ISG kernel uses the following additional parameters to describe the kinematic model of the machine or provides other functions.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0X, P0Y, P0Z</td>
<td>Zero position of the tool (TCP)</td>
</tr>
<tr>
<td>N0X, N0Y, N0Z</td>
<td>Zero orientation of the tool, scaled vector</td>
</tr>
<tr>
<td>PXA, PYA, PZA</td>
<td>Centre of rotation of A axis</td>
</tr>
<tr>
<td>PXB, PYB, PZB</td>
<td>Centre of rotation of B axis</td>
</tr>
<tr>
<td>PXC, PYC, PZC</td>
<td>Centre of rotation of C axis</td>
</tr>
<tr>
<td>VXX, VYX, VZX</td>
<td>for cardanic machines</td>
</tr>
<tr>
<td>VXY, VYY, VZY</td>
<td>Modified orientation of the X axis</td>
</tr>
<tr>
<td>VXZ, VYZ, VZZ</td>
<td>Modified orientation of the Y axis</td>
</tr>
<tr>
<td>VXA, VYA, VZA</td>
<td>Modified orientation of the Z axis</td>
</tr>
<tr>
<td>VXB, VYB, VZB</td>
<td>Modified orientation of the A axis</td>
</tr>
<tr>
<td>VXC, VYC, VZC</td>
<td>Modified orientation of the B axis</td>
</tr>
<tr>
<td>IDX, IDY, IDZ, IDA, IDB, IDC</td>
<td>Additive offsets to the programmed axis values</td>
</tr>
<tr>
<td>LNX, LNY, LNZ, LNA, LNB, LNC</td>
<td>Logical axis numbers, overwrites compensation parameters X, Y, from Section 2.1 [10]. This allows to note the logical axis numbers of the measured axes in the compensation file.</td>
</tr>
</tbody>
</table>

6.3 File formats supported

6.3.1 Units of measure

General

The following units of measure apply to all file formats.
Parameter values

The values of parameters must be specified in millimetres for offsets or rad (e.g. $[0.2\pi]$) for angles.

Arguments

While position errors are global quantities and have only one value, component errors are typically specified as a function of the current axis value. For example, as a unidimensional lookup table, the error $E_Y(X)$ generally depends on $X$. The arguments of the component errors (in this case $X$) must be specified in millimetres (for translation axes) or in degrees (e.g. $[0^\circ, 360^\circ]$), for rotation axes).

The following arguments are currently available.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Axis value of the X axis, millimetres</td>
</tr>
<tr>
<td>Y</td>
<td>Axis value of the Y axis, millimetres</td>
</tr>
<tr>
<td>Z</td>
<td>Axis value of the Z axis, millimetres</td>
</tr>
<tr>
<td>A</td>
<td>Axis value of the A axis, in degrees</td>
</tr>
<tr>
<td>B</td>
<td>Axis value of the B axis, in degrees</td>
</tr>
<tr>
<td>C</td>
<td>Axis value of the C axis, in degrees</td>
</tr>
</tbody>
</table>
6.3.2 ISG CSV format

Description
The simplest and most flexible file format is a tabular ISG CSV format.

In terms of its structure it is very similar to an Excel spreadsheet.

- The columns are named in the header. The header can contain both argument and parameter names.
- The actual records are specified in the rows below.
- Row comments start by a double slash "/".
- A "file break" can be created with a hash ".#". After this break, a new header and the associated records can be specified.

Machine position errors

```plaintext
// The header only contains position errors.
Y0A Z0A X0B ...
// Position errors are typically (but not necessarily)
// constant. Therefore, one data row is usually sufficient here.
0.1 0.2 0.11 ...
```

Component errors of the X axis

```plaintext
// The header contains the argument "X" and component errors.
X EXX EYX EZX EAX EBX ECX
0.0 0.02 0.01 0.07 0.00 0.0042 0.003
10.0 0.00 -0.1 0.01 0.00 0.0011 0.002
...
```

Extended functional dependencies
Any functional dependencies can be implemented in the ISG CSV format. For example, it is conceivable that two data blocks for component errors in the X axis, one each for Z = 0 and one for Z = 100, must be specified due to sag effects on the machine. Parameters are interpolated as described in Section "File formats supported".

Any higher-dimensional dependencies can be implemented with this method.

Component errors of the X axis for Z = 0 and Z = 100

```plaintext
// The argument "Z" now crops up in the header.
Z X EXX EYX EZX EAX EBX ECX
// In the first block Z is always = 0.
0.0 0.0 0.02 0.01 0.07 0.00 0.0042 0.003
0.0 10.0 0.00 -0.1 0.01 0.00 0.0011 0.002
...
// In the second block Z is always = 100.
100.0 0.0 0.01 0.02 0.03 0.07 0.0040 0.003
100.0 10.0 0.03 -0.09 0.03 0.06 0.0015 0.000
...
```
6.3.3 Etalon Exchange Format

Description

Etalon AG® is a vendor of hardware and software for the ISO-compliant measurement of machine tools. Measurement returns a set of parameter files in the proprietary exchange format. This format is similar to the format of Microsoft Windows INI files.

Row comments start by a double slash "//".

NOTE

Etalon offers output in the exchange format in two variants: "Vendor" or "Kinematic". The "Vendor" variant must always be selected here.

Position errors

// Every parameter is specified in a block.
// The block begins with the name of the parameter in square brackets.
[C0B]
VALUE = 0.000022355737

[A0B]
VALUE = 0.000047622950

// Lookup tables are specified via a 2D array called "Gridpoints".

[EXY]
Gridpoints = {
  -280.0 -0.001358635132
  -270.0 -0.000240680764
  -260.0 0.000877273605
  ... // Further records in the form of "Parameter argument"
  260.0 -0.001297146744
  270.0 -0.000316265101
}

6.4 Interpolation of parameter values

6.4.1 Interpolation mode

A specific interpolation mode can be set or forced via the interpolation compensation parameter.

• GRID (default) – linear interpolation, expects the parameter values on a grid
• SCATTER – non-linear interpolation, any distribution of parameters
• AUTO – analyses whether the parameters lie on a grid and selects GRID or SCATTER accordingly
• PATH: Error parameters are specified at the corner points of a polygon. Interpolation takes place in linear sections along the polygon.
• PATH_XY: Error parameters are specified at the corner points of a polygon in the XY plane.

6.4.2 Constancy in the case of modulo passages, parameter splicing

Constancy

In the case of rotary axes, the axis values typically jump between two cycles, from just less than 360° to just over 0°, e.g. for a 360° transition. This may then result in interpolated parameter values jumping.
Users have two options to prevent jumping.

**Splicing by hand**

Users can adapt the parameter files by adding a new record for 360° for every affected parameter where the same parameter value is set as in the case of the 0° record.

**EXC – Etalon Exchange Format**

```plaintext
[EXC]
Gridpoints = {
 0.0 -0.000833484486
 10.0 -0.000845857719
 ...
 340.0 -0.001687237526
 350.0 -0.001699610758
 360.0 -0.000833484486 // <- duplicate of the 0° row
}
```

**Splicing in the kernel**

Splicing the parameter values can also be executed by the kernel itself by setting enable_splicing to 1.

The precondition is that the applicable rotary parameter is provided as a 1D table. There is no automatic splicing for higher-dimensional tables.

In addition, steps must be taken to ensure that enough memory is reserved for the new parameter sets to be added, i.e. that the chosen value for vol_comp[i].max_records is large enough.
7.1 Cartesian compensation of XYZ kinematics

**Configuration in start-up list**

<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>vol_comp[0].max_records</td>
<td>1000</td>
</tr>
<tr>
<td>vol_comp[0].file_name</td>
<td>C:\volcomp\vol_comp_0.lis</td>
</tr>
</tbody>
</table>

**Configuration of XYZ kinematics in "vol_comp_0.lis"**

<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>Y</td>
<td>2</td>
</tr>
<tr>
<td>Z</td>
<td>3</td>
</tr>
<tr>
<td>chain</td>
<td>YXZ</td>
</tr>
<tr>
<td>file[0]</td>
<td>C:\kartesisch_YXZ.exe</td>
</tr>
<tr>
<td>file_format[0]</td>
<td>ETALON_EXCHANGE</td>
</tr>
</tbody>
</table>
7.2 Compensation of head kinematics CYXZ, with Cartesian pre-compensation

Configuration in start-up list

# Cartesian pre-compensation
vol_comp[0].max_records 1000
vol_comp[0].file_name C:\volcomp\vol_comp_0.lis

# second compensation, for C axis
vol_comp[1].max_records 1000
vol_comp[1].file_name C:\volcomp\vol_comp_1.lis

Configuration YXZ kinematics in "vol_comp_0.lis"

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

chain YXZ

t[0] C:\kartesisch_YXZ.exe
t_format[0] ETALON_EXCHANGE

Configuration CYXZ kinematics in "vol_comp_1.lis"

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

chain CYXZ

file[0] C:\C_achse.exe
file_format[0] ETALON_EXCHANGE
Parameter file C:\C_axis.exc, including parameter splicing

// Etalon Exchange Format
// Created by TRAC-CAL V30 Build: 0017 dated 2015-04-28
// Parametric errors of one rotary axis by multilateration
// Date: 24-Jun-2015
// --------------------------------------
//
// [HEADER]
MACHINE_TYPE = Exeron HSC 600
MACHINE_NO =
CUSTOMER = ETALON AG
DATE_OF_CALIBRATION = -
OPERATOR = Etalon master
FILE_TYPE = rotary
USERSPECIFIC_COMMENT = -

[EZC]
Gridpoints = {
   0.0  -0.000423728477
   5.0  -0.000351288461
  10.0  -0.000278665223
  15.0  -0.000205672612
  20.0  -0.000132112763
  ...
  335.0  -0.000001094701
  340.0  -0.000120503607
  345.0  -0.000239848892
  350.0  -0.000359170264
  355.0  -0.000478491636
  360.0  -0.000423728477
}
// end of EZC
// The example is curtailed at this point
Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff’s branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff products!

The addresses of Beckhoff’s branch offices and representatives round the world can be found on her internet pages: https://www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of individual Beckhoff products, but also with other, wide-ranging services:

• support
• design, programming and commissioning of complex automation systems
• and extensive training program for Beckhoff system components

Hotline: +49 5246 963 157
Fax: +49 5246 963 9157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

• on-site service
• repair service
• spare parts service
• hotline service

Hotline: +49 5246 963 460
Fax: +49 5246 963 479
e-mail: service@beckhoff.com

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG
Huelshorstweg 20
33415 Verl
Germany

Phone: +49 5246 963 0
Fax: +49 5246 963 198
e-mail: info@beckhoff.com
web: https://www.beckhoff.com
More information:
www.beckhoff.com/TF5280