TF5200 | TwinCAT 3 CNC

Real time status information of CNC
Notes on the documentation

This description is only intended for the use of trained specialists in control and automation engineering who are familiar with the applicable national standards.
It is essential that the documentation and the following notes and explanations are followed when installing and commissioning the components.
It is the duty of the technical personnel to use the documentation published at the respective time of each installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under development.
We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff Automation GmbH.
Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners.

Patent Pending

The EtherCAT technology is patent protected, in particular by the following applications and patents:
with corresponding applications or registrations in various other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The reproduction, distribution and utilisation of this document as well as the communication of its contents to others without express authorisation are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.
General and safety instructions

Icons used and their meanings

This documentation uses the following icons next to the safety instruction and the associated text. Please read the (safety) instructions carefully and comply with them at all times.

Icons in explanatory text

1. Indicates an action.
 ⇒ Indicates an action statement.

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute danger to life!</td>
</tr>
<tr>
<td>If you fail to comply with the safety instruction next to this icon, there is immediate danger to human life and health.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal injury and damage to machines!</td>
</tr>
<tr>
<td>If you fail to comply with the safety instruction next to this icon, it may result in personal injury or damage to machines.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restriction or error</td>
</tr>
<tr>
<td>This icon describes restrictions or warns of errors.</td>
</tr>
</tbody>
</table>

Tips and other notes

This icon indicates information to assist in general understanding or to provide additional information.

General example

Example that clarifies the text.

NC programming example

Programming example (complete NC program or program sequence) of the described function or NC command.

Specific version information

Optional or restricted function. The availability of this function depends on the configuration and the scope of the version.
Table of contents

Notes on the documentation... 3

General and safety instructions.. 4

1 Overview.. 8

2 Status information.. 9

3 Description... 10
 3.1 D_CoveredDistance .. 10
 3.2 D_CommandFeed, D_ActiveFeed... 10
 3.3 D_StopConditions.. 11
 3.4 X_ProgramEnd... 11
 3.5 X_WaitErrorRemoval.. 12
 3.6 X_InterpolationActive, X_DwellTimeActive.. 12
 3.7 HLIBahnCoordDispData_Coord... 12
 3.8 HLISAddProgInfo_Data... 12
 3.9 Extended status information.. 13
 3.9.1 X_SpeedLimitDetect, Look Ahead für Geschwindigkeitsgrenzwert.. 13
 3.9.2 Description... 14

4 Example.. 19

5 Parameter... 20
 5.1 Overview... 20
 5.2 Description... 20

6 Support and Service.. 22

Index ... 23
List of figures

Figure 1 Path shape block position over time of D_CoveredDistance .. 10
Figure 2 Path velocity at D_ActiveFeed .. 10
Figure 3 F Word and status signal “speed limit detected” ... 14
Figure 4 Timing diagram without override weighting (f_override_weight_v_limit = 0) 15
Figure 5 Timing diagram with override weighting (f_override_weight_v_limit = 1) 15
Figure 6 Missing PLC acknowledgement and “speed limit detected” status signal 16
Figure 7 A restart after PLC acknowledgement resets the “speed limit detect” status signal 17
Figure 8 Inadequate block supply results in the activation of the “speed limit detected” signal 18
Figure 9 F word and “speed limit detected” status signal .. 19
1 Overview

Task

The CNC provides the user with 2 types of status information:

1. Status information and status signals of an informative nature provided to the user by means of display data or by the HMI or the PLC.
2. Status information on improved techniques to master machining technologies.

Characteristics

Real-time status signals consist of information from the real-time area of the CNC. The status information provided by the path interpolator is described below.

This mainly consists of information regarding CNC operation modes such as:

- active manual mode,
- active path interpolation,
- program status and
- state information regarding CNC-internal sequences.

This information is useful for diagnosis purposes. The PLC can control or influence the internal status process by the logical linking of status signals.

The CNC also provides status information to improve mastery of specific machining technologies with the support of the PLC.

The information signals described are located in the HLI interface.

Programming

Status information on the HLI with the structure `StateBahn` is created and is invokable in the PLC programming language `Structured Text` on the path `pMC[ChannelIdx]^addr^StateBahn_Data...`

Links to other documents

For the sake of clarity, links to other documents and parameters are abbreviated, e.g. [PROG] for the Programming Manual or P-AXIS-00001 for an axis parameter.

For technical reasons, these links only function in the Online Help (HTML5, CHM) but not in pdf files since pdfs do not support cross-linking.
2 Status information

This documentation only lists the most important status information that is valid at interpolator level.

A complete description of all available access or influencing options can be found in the documentation [HLI, section "Status information of a channel"].

The information listed below is saved on the HLI in the structure StateBahn and can be invoked in the PLC programming language structured text on the path.

\[pMC[ChannelIdx].addr^\text{StateBahn}_\text{Data}... \]

<table>
<thead>
<tr>
<th>Status information</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_CoveredDistance</td>
<td>Current block position or path distance</td>
</tr>
<tr>
<td>D_CommandFeed</td>
<td>Programmed feedrate (F word)</td>
</tr>
<tr>
<td>D_ActiveFeed</td>
<td>Current path feedrate</td>
</tr>
<tr>
<td>D_StopConditions</td>
<td>Current stop condition (bit-encoded)</td>
</tr>
<tr>
<td>X_ProgramEnd</td>
<td>Program end reached (M30)</td>
</tr>
<tr>
<td>X_WaitErrorRemoval</td>
<td>Wait for error acknowledgement by user</td>
</tr>
<tr>
<td>X_InterpolationActive</td>
<td>Interpolation is active</td>
</tr>
<tr>
<td>X_AxesInPosition</td>
<td>Axis group is in position</td>
</tr>
<tr>
<td>X_WaitAxesInPosition</td>
<td>Wait until axes are in position</td>
</tr>
<tr>
<td>X_WaitTechnoAcknowledge</td>
<td>Wait for acknowledgement from PLC</td>
</tr>
<tr>
<td>X_WaitContinue</td>
<td>Wait for user continuation request</td>
</tr>
<tr>
<td>X_DwellTimeActive</td>
<td>Wait due to dwell time</td>
</tr>
<tr>
<td>X_BlockSearchActive</td>
<td>Interpolator block search active</td>
</tr>
<tr>
<td>X_SpeedLimitDetect</td>
<td>Speed limit undershot</td>
</tr>
<tr>
<td>HLIBahnCoordDispData_Coord</td>
<td>CNC coordinates and coordinate system</td>
</tr>
<tr>
<td>HLISAddProgInfo_Data</td>
<td>Additional program information</td>
</tr>
</tbody>
</table>
3 Description

3.1 D_CoveredDistance

Data type: HLI_SGN32
ST path: pMC[ChannelIdx]^.addr^.StateBahn_Data.D_CoveredDistance

This variable contains the current block position referred to the path distance in space in the motion block in per mil \(sd(t)\). The path distance in space results from the path components of the main axes and the path component of a single axis. Within a motion block, the value \(sd(t)\) always varies within the range of \(0 < D_CoveredDistance < 1000\).

Figure 1: Path shape block position over time of D_CoveredDistance

3.2 D_CommandFeed, D_ActiveFeed

Data type: HLI_SGN32
ST-Path: pMC[ChannelIdx]^.addr^.StateBahn_Data.D_CommandFeed
pMC[ChannelIdx]^.addr^.StateBahn_Data.D_ActiveFeed

The D_CommandFeed variable contains the path velocity programmed via the F word. D_ActiveFeed is the current command path feedrate in the block.

Figure 2: Path velocity at D_ActiveFeed
3.3 D_StopConditions

Data type: HLI_UNS32
ST-Path: pMC[ChannelIdx]^.*.addr^.StateBahn_Data.D_StopConditions

In bit-encoded form, this contains the stop conditions which cause a motion stop or a program execution stop in the interpolator as a result of NC programming or a PLC command.

The table below shows the constants which are defined for these stop conditions in the PLC:

<table>
<thead>
<tr>
<th>Stop condition</th>
<th>Constant in PLC</th>
<th>Status bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feedhold</td>
<td>SC_BIT_FEEDHOLD</td>
<td>0x0000 0001</td>
</tr>
<tr>
<td>No axis-specific feed enable</td>
<td>SC_BIT_VFG</td>
<td>0x0000 0002</td>
</tr>
<tr>
<td>Single step mode active</td>
<td>SC_BIT_SINGLE_BLOCK</td>
<td>0x0000 0004</td>
</tr>
<tr>
<td>Wait due to M00, M01</td>
<td>SC_BIT_M00_OR_M01</td>
<td>0x0000 0010</td>
</tr>
<tr>
<td>Wait for PLC acknowledgement</td>
<td>SC_BIT_PLC_ACKNOWLEDGE</td>
<td>0x0000 0020</td>
</tr>
<tr>
<td>Override = 0</td>
<td>SC_BIT_OVERRIDE_ZERO</td>
<td>0x0000 0040</td>
</tr>
<tr>
<td>Dwell time</td>
<td>SC_BIT_DELAY_TIME</td>
<td>0x0000 0200</td>
</tr>
<tr>
<td>Channel synchronisation active</td>
<td>SC_BIT_CHANNEL_SYNC</td>
<td>0x0000 0800</td>
</tr>
<tr>
<td>IPO input FIFO empty</td>
<td>SC_BIT_IPO_INPUT_EMPTY</td>
<td>0x0000 1000</td>
</tr>
<tr>
<td>Read-in enable</td>
<td>SC_BIT_IPO_INPUT_DISABLED</td>
<td>0x0000 2000</td>
</tr>
<tr>
<td>Wait for axes in case of axis exchange</td>
<td>SC_BIT_WAIT_FOR_AXES</td>
<td>0x0000 8000</td>
</tr>
<tr>
<td>Channel in error state</td>
<td>SC_BIT_CHANNEL_ERROR</td>
<td>0x0001 0000</td>
</tr>
<tr>
<td>Waiting for acknowledgement of M/H/ST technology functions</td>
<td>SC_BIT_STOP_WAIT_TECHNO_ACKN</td>
<td>0x0002 0000</td>
</tr>
<tr>
<td>Wait to continue motion after a collision is detected</td>
<td>SC_BIT_WAIT_CONT_AFTER_COLLISION</td>
<td>0x0004 0000</td>
</tr>
<tr>
<td>Block supply problem (HSC slope only)</td>
<td>SC_BIT_SLOPE_SUPPLY_PROBLEM</td>
<td>0x0008 0000</td>
</tr>
<tr>
<td>Back-interpolation after tracking mode active</td>
<td>SC_BIT_BACK_INTERPOLATION</td>
<td>0x0010 0000</td>
</tr>
</tbody>
</table>

3.4 X_ProgramEnd

Data type: HLI_BOOLEAN
ST-Path: pMC[ChannelIdx]^.*.addr^.StateBahn_Data.X_ProgramEnd

This status information indicates that the program end is reached or that no NC program is currently executed.
3.5 **X_WaitErrorRemoval**

Data type
HLIBOOLEAN

ST-Path
pMC[ChannelIdx]^.addr^.StateBahn_Data.X_WaitErrorRemoval

This status is indicated in the event of a CNC error in the real-time area that can be removed by means of an NC reset (depending on the error reaction class).

3.6 **X_InterpolationActive, X_DwellTimeActive**

Data type
HLIBOOLEAN

ST-Path
pMC[ChannelIdx]^.addr^.StateBahn_Data.X_InterpolationActive
pMC[ChannelIdx]^.addr^.StateBahn_Data.X_DwellTimeActive

Block is in the process of being interpolated

The X_InterpolationActive status is indicated if a part program with path motions is in execution and if a path block is being currently interpolated in the real-time part.

N20 G01 X10 Y20 Z30 F2000 #Block is in the process of being interpolated

Block currently executed with dwell time

The X_DwellTimeActive status is indicated if a part program with dwell time is in execution and a block with a dwell time is currently being executed in the real-time part.

N20 G04 10 #Block currently executed with dwell time

3.7 **HLIBahnCoordDispData_Coord**

Data type
HLIBahnCoordDispData

ST-Path
pMC[ChannelIdx]^.addr^.StateBahn_Data.HLIBahnCoordDispData_Coord[Ch AxIdx]…

This consists of the coordinates of various coordinate systems that the CNC can provide to the outside world.

3.8 **HLISAddProgInfo_Data**

Data type
HLISAddProgInfo

ST-Path
pMC[ChannelIdx]^.addr^.StateBahn_Data.HLISAddProgInfo_Data…

This consists of additional information that can be retrieved in relation to the NC program.
3.9 Extended status information

3.9.1 X_SpeedLimitDetect, Look Ahead für Geschwindigkeitsgrenzwert

Data type: HLISAddProgInfo
ST-Path: \pMC[ChannelIdx]^\addr^.StateBahn_Data.X_SpeedLimitDetect

General
This function generates a CNC status signal depending on the motion blocks and the current path velocity. It is mainly used for plasma cutting technology to deactivate distance control of the cutting head via the PLC if the speed drops below a certain limit. This occurs, for example

- when decelerating ahead of and
- accelerating after a corner.

Therefore, the critical positions in the motion segment (corner) are defined by a speed limit.

"Speed limit detect" status flag
The "speed limit detect" status flag to the PLC is set if the current path velocity is below the specified limit. The drop in path velocity results from:

- Reduction in velocity at block transition due to a kink in the path contour.
- Reduction of velocity due to override setting.
- Expected M function acknowledgement from PLC at block transition.
- Look-ahead reduces velocity because of inadequate block supply.

Zone
In addition the signal can be set in advance or cleared with a delay at a specified distance (time/distance).

- Advance: The expected velocity at block end undershoots the speed limit, for example due to a geometrical corner. The status flag is set in advance at the specified distance to the expected limit undershoot.
- Delay: The expected velocity at block start already undershoots the speed limit. The status flag is again cleared with a delay at the specified distance to the actual speed overshoot.

Clear
I.e. the status flag is reset when both of the following conditions are met:

- The current path velocity rises above the speed limit.
- The path position is outside the specified time and distance delay.
3.9.2 Description

Activation
When the function is activated, a CNC status signal is generated according to the control flag P-CHAN-00017 and signals a speed limit undershoot or the detection of a future speed limit undershoot.

Limit value
The speed limit is defined via the percentage weighting (P-CHAN-00089) of the F word in the NC program.

Advance, delay
The expected drop in velocity at block end can be signalled in advance by the parameter P-CHAN-00013. Accordingly, the signal can also be cleared with a delay by the parameter P-CHAN-00012. The parameters P-CHAN-00012 / P-CHAN-00013 can therefore define a type of hysteresis.

Distance, time
The parameter P-CHAN-00018 defines the zone parameter unit as either a distance or time.
The CNC generates the “speed limit detect” status signal if the path position is inside this zone.

Figure 3: F Word and status signal “speed limit detected”
Influence of override

The parameter P-CHAN-00155 controls the influence of the speed limit by means of the real-time feed override.

In the default setting (P-CHAN-00155 = 0) the real-time feed override does not influence the speed limit P-CHAN-00089. The “speed limit detect” status signal is also set if the path feedrate weighted by the override drops below the speed limit P-CHAN-00089.

Since override is a user-initiated online influence of speed, the delay/advance of the status signal cannot be evaluated in this case.

When P-CHAN-00155 is set, the parameterised speed limit P-CHAN-00089 is weighted by the override value. This is desirable e.g. for path start-up or run-in.

Note that, with a non-constant programmed feed, the "speed limit detect" signal is activated in each acceleration phase because the speed limit at the start of the block is set to the new value.
Influence of technology functions

The "speed limit detect" status signal is set if the CNC has to stop and wait due to certain types of technology functions or missing PLC synchronisation. In this case, the signal advance or delay related to the set time or distance is also evaluated.

Waiting for PLC acknowledgement

![Diagram showing the path velocity, deceleration, block limit, PLC acknowledgement, and status signals.](image)

Figure 6: Missing PLC acknowledgement and "speed limit detected" status signal

With M functions of the MVS_SNS type, later synchronisation or M functions with look-ahead are only stopped if the PLC acknowledgement is missing. If the PLC acknowledgement arrives before the motion, a restart can be executed immediately.

However, the advance signal (advance, distance to "corner") can still be executed correctly although an actual speed undershoot no longer arrives.
PLC acknowledgement during deceleration

Figure 7: A restart after PLC acknowledgement resets the "speed limit detect" status signal.

- Each M or H function of the MVS_SVS or MNS_SNS type always results in a motion stop (see also [FCT-C1]).

** Interruption of block supply **

If the path velocity fluctuates due to short blocks and inadequate block supply, this may cause activation of the "speed limit detect" status signal. In the example below the advance/delay parameters (distance to corner and distance from corner) are disabled for the sake of simplification.
Figure 8: Inadequate block supply results in the activation of the "speed limit detected" signal.
4 Example

The “speed limit detect” status signal is generated depending on the set parameters if the programmed paths cause deceleration along the path and the speed drops below the speed limit, e.g. due to a corner.

Parameter

Excerpt from the channel parameter list [CHAN]:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>speed_limit_look_ahead.f_enable</td>
<td>1</td>
</tr>
<tr>
<td>speed_limit_look_ahead.v_limit</td>
<td>750</td>
</tr>
<tr>
<td>speed_limit_look_ahead.f_time</td>
<td>0</td>
</tr>
<tr>
<td>speed_limit_look_ahead.dist_to_corner</td>
<td>10000</td>
</tr>
<tr>
<td>speed_limit_look_ahead.dist_from_corner</td>
<td>10000</td>
</tr>
<tr>
<td>speed_limit_look_ahead.f_override_weight_v_limit</td>
<td>0</td>
</tr>
</tbody>
</table>

Parameters can also be changed in the NC program by appropriate variables (V.G.SPEED_LIMIT.*) [PROG].

“Speed limit detect” status signal

Speed drop at end of NC block

```plaintext
%main
X0 Y0
N10 G01 X50 F5000
N20 X100
N30 X150
N40 X200 (speed drop at end of NC block)
N50 X250 Y-25
N60 X300 Y-50
M30
```

The parameters listed above and the F word in the NC program result in:

Speed limit = 75% of the programmed velocity

→ v_limit = 3750 mm/min (62500 um/s)

In the NC program example the path velocity drops to 8.562 um/s at block transition N40 -> N50 due to a path kink angle of 30 degrees. This means that the “speed limit detect” status signal is set 1 mm before limit speed undershoot at the block end of N40 and reset 1 mm after limit speed overshoot at the block start of N50.

![Diagram](image)

Figure 9: F word and “speed limit detected” status signal
5 Parameter

5.1 Overview

<table>
<thead>
<tr>
<th>ID</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-CHAN-00012</td>
<td>dist_from_corner</td>
<td>Distance to corner</td>
</tr>
<tr>
<td>P-CHAN-00013</td>
<td>dist_to_corner</td>
<td>Distance from corner</td>
</tr>
<tr>
<td>P-CHAN-00017</td>
<td>enable</td>
<td>Enabling/disabling the function</td>
</tr>
<tr>
<td>P-CHAN-00018</td>
<td>time</td>
<td>Control flag (distance or time) for P-CHAN-00012/13</td>
</tr>
<tr>
<td>P-CHAN-00089</td>
<td>limit</td>
<td>Weighting of the velocity limit</td>
</tr>
<tr>
<td>P-CHAN-00155</td>
<td>override_weight_v_limit</td>
<td>Weighting of the velocity limit value by override</td>
</tr>
</tbody>
</table>

5.2 Description

P-CHAN-00012 Distance from corner for speed limit look ahead

Description	The logical signal SLD 1 ->0 is generated depending on the parameters ‘distance from corner’ or ‘time from corner’. Here, corner means the position in the block at which the speed rises again above the speed limit.
Parameter	speed_limit_look_ahead.dist_from_corner
Data type	UNS32
Data range	0 ... MAX(UNS32)
Dimension	0.1μm or μs
Default value	0
Remarks	

P-CHAN-00013 Distance to corner for speed limit look ahead

Description	The logical signal SLD 0 ->1 is generated in advance depending on the parameters ‘distance to corner’ or ‘time to corner’. Here, corner means the position in the block at which the speed drops below the speed limit.
Parameter	speed_limit_look_ahead.dist_to_corner
Data type	UNS32
Data range	0 ... MAX(UNS32)
Dimension	0.1μm or μs
Default value	0
Remarks	

P-CHAN-00017 Enable / disable speed limit look ahead

Description	Parameter to enable or disable the speed limit look ahead function.
Parameter	speed_limit_look_ahead.enable
Data type	BOOLEAN
Data range	0: Speed limit look ahead is disabled.
Dimension	1: Speed limit look ahead is enabled.
Default value	0
Remarks	speed_limit_look_ahead.f_enable (old syntax up to V2.11.2022.13)

P-CHAN-00018 Unit to interpret the SLD signal for speed limit look ahead

<p>| Description | The logical signal SLD is generated depending on the parameter values for distance or time. |
| Parameter | |
| Data type | |
| Data range | |
| Dimension | |
| Default value | |
| Remarks | |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>speed_limit_look_ahead.time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data type</td>
<td>BOOLEAN</td>
</tr>
</tbody>
</table>
| Data range| 0: The parameter values P-CHAN-00012 and P-CHAN-00013 are interpreted as path.
1: The parameter values P-CHAN-00012 and P-CHAN-00013 are interpreted as time. |
| Dimension | ---- |
| Default value | 0 |
| Remarks | speed_limit_look_ahead.f_time (old syntax up to V2.11.2022.13) |

P-CHAN-00089 Weighting of speed limit for speed limit look ahead

| Description | Speed limit value in 0.1 percent of programmed speed. If current speed falls below the limit
\[v = \frac{v_{\text{prog}} \cdot v_{\text{limit}}}{1000}, \]
the logical signal SLD 0 -> 1 is generated. |
Parameter	speed_limit_look_ahead.v_limit
Data type	UNS32
Data range	0 ... MAX(UNS32)
Dimension	0.1%
Default value	0
Remarks	

P-CHAN-00155 Weighting the speed limit via override for speed limit look ahead function

Description	This parameter controls the influence of the speed limit via the real-time feed override. In the default setting, the real-time feed override does not influence the speed limit P-CHAN-00089 (v_limit). However, if this is desirable e.g. to commission or engage contours, the parameter is set to 1. Then the parametrised speed limit value is weighted by the override value. Note that at a non-constant programmed feed, the SLD signal is activated in each acceleration phase because the speed limit at the start of the block is set to the new value.
Parameter	speed_limit_look_ahead.override_weight_v_limit
Data type	BOOLEAN
Data range	0: No weighting of P-CHAN-00089 (default).
1: Weighting of P-CHAN-00089 via override.	
Dimension	----
Default value	0
Remarks	f_override_weight_v_limit (old syntax up to V2.11.2022.13)
6 Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff’s branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet pages: https://www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of individual Beckhoff products, but also with other, wide-ranging services:

• support
• design, programming and commissioning of complex automation systems
• and extensive training program for Beckhoff system components

Hotline: +49 5246 963 157
Fax: +49 5246 963 9157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

• on-site service
• repair service
• spare parts service
• hotline service

Hotline: +49 5246 963 460
Fax: +49 5246 963 479
e-mail: service@beckhoff.com

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20
33415 Verl
Germany

Phone: +49 5246 963 0
Fax: +49 5246 963 198
e-mail: info@beckhoff.com
web: https://www.beckhoff.com
Index

P

P-CHAN-00012	20
P-CHAN-00013	20
P-CHAN-00017	20
P-CHAN-00018	20
P-CHAN-00089	21
P-CHAN-00155	21
More information:
www.beckhoff.com/TF5200