Functional description | EN

TF5200 | TwinCAT 3 CNC

Driving on fixed stop
Notes on the documentation

This description is only intended for the use of trained specialists in control and automation engineering who are familiar with the applicable national standards.
It is essential that the documentation and the following notes and explanations are followed when installing and commissioning the components.
It is the duty of the technical personnel to use the documentation published at the respective time of each installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under development.
We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff Automation GmbH.
Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners.

Patent Pending

The EtherCAT technology is patent protected, in particular by the following applications and patents:

EtherCAT®

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The reproduction, distribution and utilisation of this document as well as the communication of its contents to others without express authorisation are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.
General and safety instructions

Icons used and their meanings

This documentation uses the following icons next to the safety instruction and the associated text. Please read the (safety) instructions carefully and comply with them at all times.

Icons in explanatory text

1. Indicates an action.
 ⇒ Indicates an action statement.

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute danger to life!</td>
</tr>
<tr>
<td>If you fail to comply with the safety instruction next to this icon, there is immediate danger to human life and health.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal injury and damage to machines!</td>
</tr>
<tr>
<td>If you fail to comply with the safety instruction next to this icon, it may result in personal injury or damage to machines.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restriction or error</td>
</tr>
<tr>
<td>This icon describes restrictions or warns of errors.</td>
</tr>
</tbody>
</table>

Tips and other notes

This icon indicates information to assist in general understanding or to provide additional information.

General example

Example that clarifies the text.

NC programming example

Programming example (complete NC program or program sequence) of the described function or NC command.

Specific version information

Optional or restricted function. The availability of this function depends on the configuration and the scope of the version.
Table of contents

Notes on the documentation .. 3
General and safety instructions ... 4

1 Overview .. 8

2 Description .. 9

3 Programming ... 11

4 Examples .. 16
 4.1 “Move to fixed stop” with one axis .. 16
 4.2 “Move to fixed stop” with an independent axis .. 16
 4.3 Text for fixed stop detected ... 17
 4.4 “Move to fixed stop” with several axes ... 17

5 Parameter .. 18
 5.1 Default initialisation at controller start .. 19
 5.1.1 Default assignment for a SERCOS drive ... 20
 5.1.2 Default assignment for a CANopen drive .. 21
 5.2 Overview ... 22
 5.2.1 Start-up parameters ... 22
 5.2.2 Axis parameters .. 22
 5.3 Description .. 23
 5.3.1 Start-up parameters ... 23
 5.3.2 Axis parameters .. 23

6 Support and Service ... 31

Index .. 32
List of figures

Figure 1 Delete distance to go... 14
Figure 2 Circular motion converted to linear motion.. 15
1 Overview

Tasks
The “Move to fixed stop” function moves the drive to a fixed obstacle. During the move to the fixed stop a torque limit is active in the drive.

As soon as the CNC detects the fixed stop, the axis is stopped and machining continues in the next NC line.

Characteristics
“Move to fixed stop” can be used in the following applications:

- Clamping workpieces
- Simple measurement processes without measuring probe
- Applying a defined force

Parametrisation
“Move to fixed stop” is configured for each axis in the axis parameter list.

In addition the forward/backward controller must be switched on in the channel parameter list.
2 Description

The “Move to fixed stop” function can move an axis to a fixed stop and exert a defined contact pressure on the fixed stop.

The function is selected by an axis-specific command in the NC program. In addition the axis must be moved over a path motion or a single axis motion (see [PROG/Independent axes]). Motion to the fixed stop is referred below as ‘approach block’.

After the “Move to fixed stop” function is activated:

- the CNC reduces the permitted torque in the drive and
- also switches off other monitoring functions, e.g. the position lag monitor (see FCT-A1) in the CNC and in the drive.

The motion to approach the fixed stop is executed at reduced torque. The CNC then automatically reduces axis acceleration. During the approach motion the CNC monitors the position lag of the axis and increases it when the stop is reached. As soon as the specified limit is overshot:

- the CNC stops the axis,
- discards the block distance to go and
- changes to the next NC line.

As long as the axis is stationary at the fixed stop, the drive continues to apply the specified torque on the fixed stop. While the axis is moving towards the fixed stop or when it reaches the fixed stop, it may not be reprogrammed in the NC program. However, the parameters may be changed at any time, e.g. torque limit.

While the axis is stationary at the fixed stop, the CNC monitors the actual position. As soon as the actual value leaves a specified tolerance window, the CNC issues error message P-ERR-70548.

When the “Move to fixed stop” is switched off, the setpoint is tracked on the actual position of the axis. At the same time, the torque limit is cancelled and the monitoring functions are re-activated, e.g. position lag monitor. Together with the switch-off command, a path motion should always be specified for the axis to move away from the fixed stop.

If the fixed stop was not detected at the end of the motion block, the CNC issues error message P-ERR-50886. Output of the error message can be suppressed by the axis parameter P-AXIS-00716 for by the keyword ERR_NOT_DETECTED.

Prerequisites

“Move to fixed stop” can be used:

- For SERCOS and CANopen drives which support a maximum torque limit. Normally they are the drive objects S-0-0092 for SERCOS and 0x6072 for CANopen.
- For path or spindle axes which were replaced in the path compound.
- If the backward motion memory is not switched off in the controller, i.e. a value greater than 0 must be specified for the NC channel in the start-up parameter P-STUP-00033.
Restrictions

If the “Move to fixed stop” function is active for an axis, the following commands and actions are not permitted for this axis:

- The axis may not be reprogrammed in the NC program. Otherwise the CNC issues error message P-ERR-21967.
- The axis may not be released. Otherwise the CNC issues error message P-ERR-21970.
- No actual position may be requested for the axis.
 #CHANNEL INIT [ACTPOS].
 Otherwise the CNC issues error message P-ERR-21964.
- Tracking mode may not be activated for the axis. Otherwise the CNC issues error message P-ERR-70549.
- Drive releases may not be reset for the axis. Otherwise the CNC issues error message P-ERR-70546.

Behaviour at CNC reset

After a reset the CNC issues error message P-ERR-70549 if:

- moving to fixed stop was interrupted by a CNC reset,
- the fixed stop is not detected and
- the parameter P-AXIS-00715 has the value 1.

The “Move to fixed stop” is then deselected.

After a reset, the CNC continues to be active if “Move to fixed stop” is still active.

If the parameter P-AXIS-00717 is set with the value 1, the CNC issues the warning message P-ERR-70550 in this case.
3 Programming

Programming is based on the syntax for independent axes. When the function is activated, the required parameter settings can be defined. The settings are applied until program end. After this, the default settings in the axis parameter list are re-applied. The setting last specified in the NC program is used for non-specified parameters. If the parameter was not previously specified in the NC program, the default setting in the axis parameter list applies.

When the function is activated, motion information must always be specified for the axis. This may be a path or independent axis motion. Otherwise the controller outputs error message P-ERR-21966.

Any number of axes may participate in the motion in the approach block and be monitored at a fixed stop. It is also possible to move axes without monitoring. The approach motion stops as soon as all axes monitored at the fixed stop detect the fixed stop. The controller then discards the distance to go of the approach block and continues machining with the next NC block.

<axis_name> [FIXED_STOP [ON | OFF] [TORQUE_LIMIT<expr> applies] [POS_LAG_LIMIT<expr> applies]
[CYCLES<expr>] [WINDOW<expr>] [START<expr>] [END<expr>]
[ERR_NOT_DETECT<expr>] { { \} }

<axis_name> Name of the axis to be used with the “Move to fixed stop” function.
ON Activate the “Move to fixed stop” function for this axis.
Motion information must also be specified for the axis.
OFF Deactivate the “Move to fixed stop” function.
In addition a motion should be programmed for the axis to move away from the fixed stop.
TORQUE_LIMIT<expr> applies Specifying the torque limit with “Move to fixed stop”.
Scaling is determined by parameterising the “Move to fixed stop” function from the axis parameters (see P-AXIS-00724). Normally this is given in percent (%) of the drive nominal torque.
If no torque is specified for the axis in the NC program, the default value in the axis parameter P-AXIS-00729 is used for the torque limit.
POS_LAG_LIMIT<expr> applies Limit for position lag
If this limit is overshot, the CNC reverts to the “Fixed stop reached” state after the LR cycles specified in CYCLES. If no position lag limit is specified for the axis in the NC program, the default value in the axis parameter P-AXIS-00712 is used.
CYCLES<expr> Number of position controller cycles in which the position lag must be above the specified POS_LAG_LIMIT limit before the controller reverts to the “Fixed stop reached” state.
If the number of position controller cycles is not specified for the axis in the NC program, the default value from the axis parameter P-AXIS-00714 [\[23]\]} is used.
WINDOW<expr> Tolerance window for fixed stop position
After the fixed stop is reached, the controller checks whether the actual position of the drive leaves the specified tolerance window to detect a breakaway of the fixed stop.
If no tolerance window is specified for the axis in the NC program, the default value in the axis parameter P-AXIS-00713 is used.
The monitor is disabled with a value of 0.
START<expr> This parameter can delay the monitoring function for when the fixed stop is reached by one percent (%) referred to the path distance in order to prevent the incorrect detection of a fixed stop due to friction etc. when the axis starts off.
If this parameter is not specified in the NC program, the start of the motion is always monitored (START = 0%).
END<expr>

This parameter can prematurely end the monitoring function for when the fixed stop is reached by one percent referred to the path distance in order to prevent the incorrect detection of a fixed stop when the axis is decelerated on approaching the target point. If this parameter is not specified in the NC program, monitoring always takes place up to the target point of the motion block (END = 100%).

ERR_NOT_DETECT<expr>

This parameter suppresses the output of error message P-ERR-50886 if the fixed stop is not detected in the approach motion. This permits the execution of simple measurement processes, e.g. with "Move to fixed stop".

NOTE

A motion for the axis should always be programmed together with deactivation of the “Move to fixed stop” function. This function must move away from the fixed stop. Otherwise it may result in damage to the machine if the motion continues towards the fixed stop.
V.RTA variables

State information about the “Move to fixed stop” function of an axis can be requested in the NC program. Since V.RTA variables originate from the interpolator context, an advance stop is required on access.

When the “Move to fixed stop” function is activated, the information in the V.RTA.FIXED_STOP variables is reset.

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Meaning</th>
<th>Data type</th>
<th>Unit</th>
<th>Permitted access</th>
<th>Decoder</th>
<th>Real-time cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.RTA.FIXED_STOP.ACTIVE</td>
<td>Move to fixed stop active</td>
<td>Boolean</td>
<td>-</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>V.RTA.FIXED_STOP.DETECTED</td>
<td>Move to fixed stop detected</td>
<td>Boolean</td>
<td>-</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>V.RTA.FIXED_STOP.ACS.POS</td>
<td>Fixed stop position recorded in axis coordinate system</td>
<td>SGN64</td>
<td>[mm, inc]</td>
<td>R</td>
<td></td>
<td>R</td>
</tr>
</tbody>
</table>

Delete distance to do in the approach block with non-participating path axes

The “Move to fixed stop” function can be active simultaneously in any number of axes. In addition other axes can be moved together in the approach block even if they do not move to the fixed stop.

If all axes in the approach block detected the fixed stop, the block distance to go is discarded. If other axes participate in the motion but do not move to the fixed stop, these axes continue to move towards the target point of the next motion block starting at the abort motion.
Discard distance to go

N10 G01 X10 Y10 Z0 F1000
N20 G01 X100 Z100 Z[FIXED_STOP ON TORQUE_LIMIT10]
N30 G01 Y100

Figure 1: Delete distance to go

A circular motion following the approach block is converted to a linear motion; the axes approach the target point of the original circular segment directly, as shown in the example below.
Circular motion converted to linear motion

N10 G01 X10 Y10 Z0 F1000
N20 G01 X100 Z100 Z[FIXED_STOP ON TORQUE_LIMIT10]
N30 G03 Y70 J+30

Figure 2: Circular motion converted to linear motion

Axes which move towards the fixed stop with an independent path motion (INDP_SYN / INDP_ASYN) have no influence on the path motion of other axes.

Also see about this
- Axis parameters [p 23]
- Overview [p 8]
4 Examples

4.1 “Move to fixed stop” with one axis

In the test program below the X axis moves towards a fixed stop:

N010 G0 X0 Y0

(* Approach motion *)
N020 G01 X100 F10 X[FIXED_STOP ON TORQUE_LIMIT = 10]
N030 G01 Y100 F1000

(* Withdrawal motion away from the fixed stop *)
N040 G01 X0 X[FIXED_STOP OFF]

N050 M30

4.2 “Move to fixed stop” with an independent axis

In the test program below the X axis moves towards a fixed stop:

N010 G0 X0 Y0 F1000

(* Independent approach motion *)
N020 G01 Y100 X[INDP_ASYN G01 POS100 FEED10] \
X[FIXED_STOP ON TORQUE_LIMIT = 10]
N030 G01 Y200 F1000

(* Withdrawal motion away from the fixed stop *)
N040 G01 X0 X[FIXED_STOP OFF]
N050 M30
4.3 Text for fixed stop detected

In the test program below the result of the “Move to fixed stop” function is forwarded to the PLC by external variables:

```plaintext
N010 G0 X0 Y0 F1000 V.E.FS_DETECTED = FALSE

(* Parameterisation *)
X[FIXED_STOP TORQUE_LIMIT = 5 ERR_NOT_DETECTED = 0]

(* Approach motion *)
N020 G01 X100 X[FIXED_STOP ON TORQUE_LIMIT = 10]
N030/ IF V.RTA.FIXED_STOP.DETECTED = TRUE
N040 V.E.FS_DETECTED = TRUE
N050 V.E.FS_POSITION = V.RTA.FIXED_STOP.ACS.POS.X
N050/ ENDIF

(* Withdrawal motion away from the fixed stop *)
N040 G01 X0 X[FIXED_STOP OFF]
N050 M30
```

4.4 “Move to fixed stop” with several axes

In the test program below the X, Y and Z axes move towards a fixed stop:

```plaintext
N010 G0 X0 Y0

(* Parameterisation *)
N020 X[FIXED_STOP TORQUE_LIMIT = 10 WINDOW = 5]
N030 Y[FIXED_STOP TORQUE_LIMIT = 10 WINDOW = 10]
N040 Z[FIXED_STOP TORQUE_LIMIT = 20 WINDOW = 2]
N050 G01 X100 F1000

(* Approach motion *)
N060 X100 Z200 X2=100 F10 X[FIXED_STOP ON] Z[FIXED_STOP ON]
N070 Y100 F1000

(* Independent approach motion *)
N080 Y[INDP_ASYN G01 POS200 FEED200] Y[FIXED_STOP ON]

(* Change torque and monitoring window *)
N090 X[FIXED_STOP TORQUE_LIMIT = 15]
N100 Y[FIXED_STOP WINDOW = 5]
N110 X2 = 200

(* Independent motion of Y axis away from the fixed stop *)
N120 Y[INDP_ASYN G01 POS0 FEED1000 Y[FIXED_STOP OFF]
N130 X2 = 100 F1000

(* Move X and Z axes away from the fixed stop *)
N140 Z0 Z[FIXED_STOP OFF]
N150 X0 Z-100 X[FIXED_STOP OFF]
N160 M30
```
5 Parameter

Drive object for torque limitation

The drive torque must be reduced for the “Move to fixed stop” function. An appropriate entry must therefore be made in the drive objects. If the controller finds no object with the name ‘TORQUE_LIMIT’ (see P-AXIS-00719), the error message P-ERR-70541 is issued when the function is activated.

If no torque limit is programmed in the NC program, the controller uses the value in the parameter P-AXIS-00729 of the ‘TORQUE_LIMIT’ torque object.

Reloading parameters

While the controller is running, the following parameter settings can be changed by updating the axis parameter list or by using the #MACHINE DATA command:

• position lag limit P-AXIS-00712
• monitoring window P-AXIS-00713
• number of position lag cycles P-AXIS-00714 [23]
• error response if function aborted P-AXIS-00715
• error response if fixed stop not detected P-AXIS-00716
• reset warning message if fixed stop detected P-AXIS-00717
• maximum torque P-AXIS-00718

For all other parameters of the “Move to fixed stop” function, new parameter values are not accepted when the controller is running. The controller must then be restarted for these parameters.
5.1 Default initialisation at controller start

Default initialisation at controller start

When the controller is started, a default initialisation takes place for the drive objects depending on the drive type. Entries specified in the default axis parameter list are overwritten by this default initialisation. If this is not desired, the default initialisation can be disabled for the drive object using the parameter P-AXIS-00732.

- To be able to assign drive objects for the “Move to fixed stop” in the default axis parameter list, the automatic default initialisation must be disabled for the objects (see P-AXIS-00732)

- If the automatic default initialisation is used, the parameters described in the sections “Default assignment for a SERCOS drive” and “Default assignment for a CANopen drive” must be checked for plausibility, in particular the save torque limit, before the “Move to fixed stop” function.
Default assignment for a SERCOS drive

#Disable position lag monitor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>antr.fixed_stop.drive_ident[0].id</td>
<td>MON_WINDOW</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[0].wr_ident</td>
<td>S_0.0159</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[0].commu</td>
<td>ACYCLIC</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[0].data_type</td>
<td>UNS32</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[0].mask</td>
<td>NOT_USED</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[0].scaling_type</td>
<td>UNSCALED</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[0].scaling_factor</td>
<td>1.0</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[0].min_limit</td>
<td>0.0</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[0].max_limit</td>
<td>1.0e+199</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[0].startup_value</td>
<td>1048575</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[0].rd_ident</td>
<td>""</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[0].active_value</td>
<td>0</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[0].use_startup_value</td>
<td>0</td>
</tr>
</tbody>
</table>

#Torque limit

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>antr.fixed_stop.drive_ident[1].id</td>
<td>TORQUE_LIMIT</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[1].wr_ident</td>
<td>S_0.0092</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[1].commu</td>
<td>ACYCLIC</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[1].data_type</td>
<td>UNS16</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[1].mask</td>
<td>NOT_USED</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[1].scaling_type</td>
<td>LINEAR</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[1].scaling_factor</td>
<td>10.0</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[1].min_limit</td>
<td>0.0</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[1].max_limit</td>
<td>100.0</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[1].startup_value</td>
<td>100.0</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[1].rd_ident</td>
<td>""</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[1].active_value</td>
<td>1.0</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[1].use_startup_value</td>
<td>0</td>
</tr>
</tbody>
</table>
5.1.2 Default assignment for a CANopen drive

Disable position lag monitor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>antr.fixed_stop.drive_ident[0].id</td>
<td>MON_WINDOW</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[0].wr_ident</td>
<td>6065_00</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[0].commu</td>
<td>ACYCLIC</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[0].data_type</td>
<td>UNS32</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[0].mask</td>
<td>NOT_USED</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[0].scaling_type</td>
<td>UNSCALED</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[0].scaling_factor</td>
<td>1.0</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[0].min_limit</td>
<td>0.0</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[0].max_limit</td>
<td>1.0e+199</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[0].startup_value</td>
<td>1048575</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[0].rd_ident</td>
<td>""</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[0].active_value</td>
<td>4294967295</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[0].use_startup_value</td>
<td>0</td>
</tr>
</tbody>
</table>

Torque limit

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>antr.fixed_stop.drive_ident[1].id</td>
<td>TORQUE_LIMIT</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[1].wr_ident</td>
<td>6072_00</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[1].commu</td>
<td>ACYCLIC</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[1].data_type</td>
<td>UNS16</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[1].mask</td>
<td>NOT_USED</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[1].scaling_type</td>
<td>LINEAR</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[1].scaling_factor</td>
<td>10.0</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[1].min_limit</td>
<td>0.0</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[1].max_limit</td>
<td>500.0</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[1].startup_value</td>
<td>500.0</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[1].rd_ident</td>
<td>""</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[1].active_value</td>
<td>1.0</td>
</tr>
<tr>
<td>antr.fixed_stop.drive_ident[1].use_startup_value</td>
<td>0</td>
</tr>
</tbody>
</table>
5.2 Overview

5.2.1 Start-up parameters

<table>
<thead>
<tr>
<th>ID</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-STUP-00033</td>
<td>fb_storage_size[i]</td>
<td>Memory size for backward motion</td>
</tr>
</tbody>
</table>

5.2.2 Axis parameters

<table>
<thead>
<tr>
<th>ID</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-AXIS-00712</td>
<td>antr.fixed_stop.pos_lag_limit</td>
<td>Position lag limit to detect the fixed stop</td>
</tr>
<tr>
<td>P-AXIS-00713</td>
<td>antr.fixed_stop.window</td>
<td>Monitoring window for the fixed stop</td>
</tr>
<tr>
<td>P-AXIS-00714</td>
<td>Antr.fixed_stop.nbr_cycles</td>
<td>Number of position controller cycles to detect the fixed stop</td>
</tr>
<tr>
<td>P-AXIS-00715</td>
<td>Antr.fixed_stop.error_on_abort</td>
<td>Error output on abort by reset</td>
</tr>
<tr>
<td>P-AXIS-00716</td>
<td>Antr.fixed_stop.error_not_detected</td>
<td>Error output if fixed stop is not detected</td>
</tr>
<tr>
<td>P-AXIS-00717</td>
<td>antr.fixed_stop.warning_reset_while_detected</td>
<td>Warning message on reset and detected fixed stop</td>
</tr>
<tr>
<td>P-AXIS-00718</td>
<td>antr.fixed_stop.max_torque</td>
<td>Motor torque at maximum axis acceleration</td>
</tr>
<tr>
<td>P-AXIS-00719</td>
<td>antr.fixed_stop.drive_ident[i].id</td>
<td>CNC-internal identifier for the drive object</td>
</tr>
<tr>
<td>P-AXIS-00720</td>
<td>antr.fixed_stop.drive_ident[i].commu</td>
<td>Type of communication with drive controller</td>
</tr>
<tr>
<td>P-AXIS-00721</td>
<td>antr.fixed_stop.drive_ident[i].wr_ident</td>
<td>Name of the drive object in the driver amplifier</td>
</tr>
<tr>
<td>P-AXIS-00722</td>
<td>antr.fixed_stop.drive_ident[i].data_type</td>
<td>Data type of the data to be transmitted</td>
</tr>
<tr>
<td>P-AXIS-00723</td>
<td>antr.fixed_stop.drive_ident[i].startup_value</td>
<td>Default value of data element after controller start-up</td>
</tr>
<tr>
<td>P-AXIS-00724</td>
<td>antr.fixed_stop.drive_ident[i].scaling_type</td>
<td>Scaling type of the data element</td>
</tr>
<tr>
<td>P-AXIS-00725</td>
<td>antr.fixed_stop.drive_ident[i].min_limit</td>
<td>Maximum permissible output value</td>
</tr>
<tr>
<td>P-AXIS-00726</td>
<td>antr.fixed_stop.drive_ident[i].max_limit</td>
<td>Minimum permissible output value</td>
</tr>
<tr>
<td>P-AXIS-00727</td>
<td>antr.fixed_stop.drive_ident[i].mask</td>
<td>Write/read by bit mask</td>
</tr>
<tr>
<td>P-AXIS-00728</td>
<td>antr.fixed_stop.drive_ident[i].scaling_factor</td>
<td>Scaling factor</td>
</tr>
<tr>
<td>P-AXIS-00729</td>
<td>antr.fixed_stop.drive_ident[i].active_value</td>
<td>Value of data element during “Move to fixed stop”</td>
</tr>
<tr>
<td>P-AXIS-00730</td>
<td>antr.fixed_stop.drive_ident[i].use_startup_value</td>
<td>Use of default value</td>
</tr>
<tr>
<td>P-AXIS-00731</td>
<td>antr.fixed_stop.drive_ident[i].rd_ident</td>
<td>Name of the drive object to be read in the driver amplifier</td>
</tr>
<tr>
<td>P-AXIS-00732</td>
<td>antr.fixed_stop.drive_ident[i].default</td>
<td>Use of default parameters for the drive type</td>
</tr>
</tbody>
</table>
5.3 Description

5.3.1 Start-up parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-STUP-00033</td>
<td>Memory size for backward motion</td>
</tr>
<tr>
<td>Description</td>
<td>This parameter defines the memory size in bytes used for backward motion on the path. During start-up, the NC checks whether the required minimum size is available. If this is not the case, a warning is output and the memory size is set to the required minimum value. If the size is set to 0, the “forward/ backward motion on the path” function is not available. The maximum size is only limited by the resources available on the PC.</td>
</tr>
<tr>
<td>Parameter</td>
<td>fb_storage_size[i] where i = 0 to 11 (maximum number of channels: 12, application-specific)</td>
</tr>
<tr>
<td>Data type</td>
<td>UNS32</td>
</tr>
<tr>
<td>Data range</td>
<td>0 ... MAX(UNS32)</td>
</tr>
<tr>
<td>Dimension</td>
<td>----</td>
</tr>
<tr>
<td>Default value</td>
<td>0</td>
</tr>
</tbody>
</table>

5.3.2 Axis parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Position lag limit to detect the fixed stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-AXIS-00712</td>
<td>This parameter defines this limit for the position lag for the “Move to fixed stop” function after which an overshoot of the fixed stop is detected. Finally, the CNC stops the axis and discards the distance to go of the NC block.</td>
</tr>
<tr>
<td>Description</td>
<td>--</td>
</tr>
<tr>
<td>Parameter</td>
<td>antr.fixed_stop.pos_lag_limit</td>
</tr>
<tr>
<td>Data type</td>
<td>UNS32</td>
</tr>
<tr>
<td>Data range</td>
<td>0 ≤ pos_lag_limit ≤ MAX(UNS32)</td>
</tr>
<tr>
<td>Axis types</td>
<td>T, R</td>
</tr>
<tr>
<td>Dimension</td>
<td>T: 0.1µm, R: 0.0001°</td>
</tr>
<tr>
<td>Default value</td>
<td>20000</td>
</tr>
<tr>
<td>Drive types</td>
<td>SERCOS, CANopen</td>
</tr>
<tr>
<td>Remarks</td>
<td>The measurement (G100, measurement type 7) with motion to a stop is also subject to the limit in the parameter P-AXIS-00331</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Monitoring window for the fixed stop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-AXIS-00713</td>
<td>This parameter defines a tolerance window for the fixed stop. If the actual position of the axis leaves the tolerance window after the fixed stop is detected, the CNC issues the error message P-ERR-70548. If this parameter is changed after the fixed stop is detected, the CNC assumes the current fixed stop position as the centre of the new tolerance window.</td>
</tr>
<tr>
<td>Description</td>
<td>--</td>
</tr>
<tr>
<td>Parameter</td>
<td>antr.fixed_stop.window</td>
</tr>
<tr>
<td>Data type</td>
<td>UNS32</td>
</tr>
<tr>
<td>Data range</td>
<td>0 ≤ pos_lag_limit ≤ MAX(UNS32)</td>
</tr>
<tr>
<td>Axis types</td>
<td>T, R</td>
</tr>
<tr>
<td>Dimension</td>
<td>T: 0.1µm, R: 0.0001°</td>
</tr>
<tr>
<td>Default value</td>
<td>0</td>
</tr>
<tr>
<td>Drive types</td>
<td>SERCOS, CANopen</td>
</tr>
<tr>
<td>Remarks</td>
<td>The monitor is disabled with the value 0.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Number of position controller cycles to detect the fixed stop</th>
</tr>
</thead>
</table>

TF5200 | TwinCAT 3 CNC Driving on fixed stop Version: 1.01
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
</table>
| **Parameter** | This parameter defines the number of position controller cycles which the position lag of the axis must overshoot the specified position lag limit P-AXIS-00712 before the fixed stop is detected. Counting start from the beginning if the limit is again undershot during this time. | **Parameter** antr.fixed_stop.nbr_cycles
Data type UNS16
Data range 0 < nbr_cycles < MAX(UNS32)
Axis types T, R
Dimension T: Number of interpolation cycles
R: Number of interpolation cycles
Default value 10
Drive types SECOS, CANopen
Remarks The measurement (G100, measurement type 7) with motion to a stop is also subject to the limit in the parameter P-AXIS-00332 |
| **P-AXIS-00715** | **Error output on abort by reset** | **Description** This parameter defines whether the error message P-ERR-70549 is output if a CNC reset occurs while moving to the fixed stop.
Parameter antr.fixed_stop.error_on_abort
Data type BOOLEAN
Data range 0 / 1
Axis types T, R
Dimension T: -
R: -
Default value 1
Drive types SERCOS, CANopen
Remarks |
| **P-AXIS-00716** | **Error message if fixed stop is not detected** | **Description** This parameter defines whether the error message P-ERR-50886 is output while moving to the fixed stop if the fixed stop was not detected in the approach block.
Parameter antr.fixed_stop.error_not_detected
Data type BOOLEAN
Data range 0 / 1
Axis types T, R
Dimension T: -
R: -
Default value 1
Drive types SERCOS, CANopen
Remarks |
| **P-AXIS-00717** | **Warning message on reset and detected fixed stop** | **Description** This parameter defines whether the warning message P-ERR-70550 is output at a CNC reset if the axis is stationary at the fixed stop.
Parameter antr.fixed_stop.warning_reset_while_detected
Data type BOOLEAN
Data range 0 / 1
Axis types T, R
Dimension T: -
R: -
Default value 1
Drive types SERCOS, CANopen
Remarks |
| **P-AXIS-00718** | **Motor torque at maximum axis acceleration** | |

Version: 1.01
Description
This parameter defines the motor torque which the drive requires to accelerate at maximum axis acceleration P-AXIS-00008. This parameter uses the controller to compensate axis acceleration to the reduced drive torque when moving to fixed stop.

Parameter
antr.fixed_stop.max_torque

Data type
REAL64

Data range
0 / 1

Axis types
T, R

Dimension
T: Scaling dependent on P-AXIS-00724
R: Scaling dependent on P-AXIS-00724

Default value
P-AXIS-00726 maximum torque limit if P-AXIS-00726 is specified; otherwise 0.0 (acceleration reduction disabled)

Drive types
SERCOS, CANopen

Remarks
The value 0.0 disables acceleration reduction when moving to the fixed stop.

Up to 4 drive objects can be configured for moving to the fixed stop and can be changed when the function is activated or deactivated in the drive:

<table>
<thead>
<tr>
<th>Structure name</th>
<th>Permitted range</th>
</tr>
</thead>
<tbody>
<tr>
<td>drive_ident[i]</td>
<td>0 ≤ i ≤ 3 (Number of drive objects: 4, application-specific)</td>
</tr>
</tbody>
</table>

P-AXIS-00719 CNC-internal identifier for the drive object

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>This parameter specifies a name for the drive object. The keyword TORQUE_LIMIT is reserved for the torque limit. When moving to the fixed stop, the controller checks whether a drive object is configured with the name TORQUE_LIMIT. Otherwise the controller issues the error message P-ERR-70541.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>antr.fixed_stop.drive_ident[i].id</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRING</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum 29 characters</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Axis types</th>
</tr>
</thead>
<tbody>
<tr>
<td>T, R</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>T: ----</td>
</tr>
<tr>
<td>R: ----</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drive types</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERCOS, CANopen</td>
</tr>
</tbody>
</table>

Remarks
Example:

Defining the torque limit for a SERCOS drive:

```plaintext
antr.fixed_stop.drive_ident[0].id          TORQUE_LIMIT
antr.fixed_stop.drive_ident[0].wr_ident    S_0_0092
```

P-AXIS-00720 Type of communication with drive controller

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>This parameter defines the type of communication by which the function in the drive is addressed. The value can be transferred both in the cyclic process data and in the service channel with SERCOS or SDO communication with CANopen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>antr.fixed_stop.drive_ident[i].commu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data type</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRING</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYCLIC: The drive object is switched by a telegram element that is configured in the cyclic drive telegram. The name of the telegram element must then be parameterised in the P-AXIS-00721 parameter. The telegram element must be configured in the cyclic process data.</td>
</tr>
</tbody>
</table>

| ACYCLIC: The drive function is addressed by writing a drive parameter through the parameter channel. The name of the telegram element must then be parameterised in the P-AXIS-00721 parameter. |

| IGNORE: No value is exchanged with the drive. |
| **Parameter** | **TF5200 | TwinCAT 3 CNC** |
|--------------|------------------|
| **Version:** | 1.01 |
| **Driving on fixed stop** | |

Axis types
- T, R

Dimension
- T: ----
- R: ----

Default value
- ACYCLIC

Drive types
- SERCOS, CANopen

Remarks

P-AXIS-00721
Name of the drive object in the driver amplifier

Description
This parameter defines which drive parameter or which telegram element is to be changed with moving to fixed stop.

Parameter
antr.fixed_stop.drive_ident[i].wr_ident

Data type
STRING

Data range
Maximum 29 characters

Axis types
T, R

Dimension
- T: ----
- R: ----

Default value
-

Drive types
SERCOS, CANopen

Remarks
Example:
Defining the torque limit for a SERCOS drive:
```plaintext
antr.fixed_stop.drive_ident[0].id          TORQUE_LIMIT
antr.fixed_stop.drive_ident[0]wr_ident    S_0_0092
```

P-AXIS-00722
Data type of the data to be transmitted

Description
This parameter defines the data type of the drive parameter or telegram element.

Parameter
antr.fixed_stop.drive_ident[i].data_type

Data type
STRING

Data range
- SGN16: Signed 16 bit integer
- SGN32: Signed 32 bit integer
- UNS16: Unsigned 16-bit integer
- UNS32: Unsigned 32-bit integer
- BITARRAY_16: Bit array 16 bit
- BITARRAY_32: Bit array 32 bit

Axis types
T, R

Dimension
- T: ----
- R: ----

Default value
- SGN16

Drive types
SERCOS, CANopen

Remarks

P-AXIS-00723
Default value of data element after controller start-up

Description
When cyclic communication is used (see P-AXIS-00720), this parameter defines the value of the telegram element after controller start-up.

This parameter is also used if reading the current value at the start of motion to fixed stop is not required (see P-AXIS-00730). At the end of the move to fixed stop function, the controller writes this value back to the drive.

Parameter
antr.fixed_stop.drive_ident[i].startup_value

Data type
REAL64
Parameter

Parameter

Data range

Dependent on the data type P-AXIS-00722 of the drive object

- SGN16: \(\text{MIN}(\text{SGN16}) \leq \text{startup_value} \leq \text{MAX}(\text{SGN16}) \)
- SGN32: \(\text{MIN}(\text{SGN32}) \leq \text{startup_value} \leq \text{MAX}(\text{SGN32}) \)
- UNS16: \(\text{MIN}(\text{UNS16}) \leq \text{startup_value} \leq \text{MAX}(\text{UNS16}) \)
- SGN32: \(\text{MIN}(\text{SGN32}) \leq \text{startup_value} \leq \text{MAX}(\text{SGN32}) \)

Axis types

- T, R

Dimension

- T: ----
- R: ----

Default value

0

Drive types

- SERCOS, CANopen

Remarks

This parameter must be assigned if the data item is transferred cyclically, i.e. the parameter P-AXIS-00720 has the value CYCLIC or reading the active parameter value is suppressed, i.e. P-AXIS-00730 has the value 1.

P-AXIS-00724

Scaling type of the data element

Description

This parameter scales the transferred value before it is transferred to the drive or after the value was read by the drive. This parameter sets the unit of the data item in the NC program independently of the drive.

The scaling type influences the values of the following parameters:

- Torque at maximum acceleration P-AXIS-00718
- Default value P-AXIS-00723
- Minimum permissible value P-AXIS-00725
- Maximum permissible value P-AXIS-00726
- Drive value while moving to fixed stop P-AXIS-00729

Parameter

antr.fixed_stop.drive_ident[i].scaling_type

Data type

STRING

Data range

- UNSCALED
- LINEAR
- TORQUE_DRIVE_SIDE

The value is not scaled, i.e. the value in the NC program directly corresponds to the value in the drive.

The value is weighted by a linear scaling factor (see P-AXIS-00728).

The programmed value is a torque value related to the motor shaft and is scaled to the drive torque format with the parameters P-AXIS-00325, P-AXIS-00326 and P-AXIS-00392.

The scaling factor does not change during gear change.

The conversion factor is:

\[
f = \frac{1}{\frac{P - \text{AXIS-00325}}{P - \text{AXIS-00392}} \times \frac{P - \text{AXIS-00326}}{P - \text{AXIS-00325}}}
\]

Remarks

Example:

The torque limit in the SERCOS drive is specified in per mil of the maximum motor torque. However, the torque should be specified in percent in the NC program:

- `antr.fixed_stop.drive_ident[0].id` TORQUE_LIMIT
- `antr.fixed_stop.drive_ident[0].wr_ident` S_0_0092
- `antr.fixed_stop.drive_ident[0].scaling_type` LINEAR
- `antr.fixed_stop.drive_ident[0].scaling_factor` 10
Minimum permissible output value

Parameter

P-AXIS-00725

Description

By this parameter the minimum permissible output value can be defined. If the value specified in the configuration lists or in the NC program undershoots the set limit, it is automatically limited to the minimum value. Thereby no error message is created.

If P-AXIS-00725 is configured, P-AXIS-00726 must be greater than this parameter, otherwise the warning P-ERR-70385 is output and the values are exchanged.

No value limit takes place by default.

Irrespective of this parameter setting, a value range check always takes place with the specified data type P-AXIS-00722. If an overflow is detected, the controller outputs the error message P-ERR-70384.

Parameter

antr.fixed_stop.drive_ident[i].min_limit

Data type

REAL64

Data range

Dependent on P-AXIS-00722 and P-AXIS-00724

Axis types

T, R

Dimension

T: ----
R: ----

Default value

1.000000e+199, no limit takes place.

Drive types

SERCOS, CANopen

Remarks

By default no limit is active; the limit is disabled at a value of 1.000000e+199.

Maximum permissible output value

Parameter

P-AXIS-00726

Description

By this parameter the maximum permissible output value can be defined. If the value specified in the configuration lists or in the NC program overshoots the set limit, it is automatically limited to the maximum value. Thereby no error message is created.

If P-AXIS-00726 is configured, the parameter value must be greater than P-AXIS-00725, otherwise the warning P-ERR-70385 is output and the values are exchanged.

No value limit takes place by default.

Irrespective of this parameter setting, a value range check always takes place with the specified data type P-AXIS-00722. If an overflow is detected, the controller outputs the error message P-ERR-70384.

Parameter

antr.fixed_stop.drive_ident[i].max_limit

Data type

REAL64

Data range

Dependent on P-AXIS-00722 and P-AXIS-00724

Axis types

T, R

Dimension

T: ----
R: ----

Default value

1.000000e+199, no limit takes place.

Drive types

SERCOS, CANopen

Remarks

By default no limit is active; the limit is disabled at a value of 1.000000e+199.

Writing/reading drive values by bit mask

Parameter

P-AXIS-00727

Description

This parameter defines the bit mask to be used to read and write drive values bitwise.

If the writing value (default value P-AXIS-00726 or the value when motion to the fixed stop is active P-AXIS-00729) is greater than zero, the bit mask is set; when the value is zero, the bits in the bit mask are deleted from the value transferred to the drive.

When read, the value of a bit is returned if all the bits in the bit mask are set in the read drive object. Otherwise the return value is 0.

This parameter is only used if the data type configured in P-AXIS-00722 has either the value 'BITARRAY_16' or 'BITARRAY_32'.

The value of the bit mask must fit in the data type of the drive object P-AXIS-00722, otherwise the controller issues the error message P-ERR-70403.
Parameter	antr.fixed_stop.drive_ident[i].mask
Data type | STRING
Data range |
Axis types | T, R
Dimension | T: ---- R: ----
Default value | NOT_USED
Drive types | SERCOS, CANopen
Remarks |

Parameter antr.fixed_stop.drive_ident[i].mask

Data type: STRING
Data range:
Axis types: T, R
Dimension: T: ---- R: ----
Default value: NOT_USED
Drive types: SERCOS, CANopen
Remarks:

P-AXIS-00728 Scaling factor

Description: This parameter executes a scaling for reading and writing the drive object. This parameter only acts if the scaling type P-AXIS-00724 is set to 'LINEAR'.

Parameter: antr.fixed_stop.drive_ident[i].scaling_factor
Data type: REAL64
Data range: Unequal to 0
Axis types: T, R
Dimension: T: - R: -
Default value: 1.0
Drive types: SERCOS, CANopen
Remarks:

Example:

When moving to fixed stop, the torque should be limited to 10% of the maximum torque:

```
antr.fixed_stop.drive_ident[0].id          TORQUE_LIMIT  
antr.fixed_stop.drive_ident[0].wr_ident   S_0_0092  
antr.fixed_stop.drive_ident[0].scaling_type LINEAR  
antr.fixed_stop.drive_ident[0].scaling_factor 10  
antr.fixed_stop.drive_ident[0].active_value 10  
```
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>antr.fixed_stop.drive_ident[i].use_startup_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data type</td>
<td>BOOLEAN</td>
<td>-</td>
</tr>
<tr>
<td>Data range</td>
<td>0 / 1</td>
<td>-</td>
</tr>
<tr>
<td>Axis types</td>
<td>T, R</td>
<td>-</td>
</tr>
<tr>
<td>Dimension</td>
<td>T: -</td>
<td>R: -</td>
</tr>
<tr>
<td>Default value</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Drive types</td>
<td>SERCOS, CANopen</td>
<td>-</td>
</tr>
<tr>
<td>Remarks</td>
<td>If the object is communicated in the cyclic process data (P-AXIS-00720 = 'CYCLIC'), it is advisable to set this parameter to the value 1 since the start value in P-AXIS-00723 is already transferred cyclically to the drive.</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P-AXIS-00731</th>
<th>Name of the drive object to be read in the driver amplifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>If the name of the drive object is different for read and write access, the name of the drive object to be read can also be specified here. If no value is specified here, the controller uses the name of the object in P-AXIS-00721 for read and write.</td>
</tr>
<tr>
<td>Parameter</td>
<td>antr.fixed_stop.drive_ident[i].rd_ident</td>
</tr>
<tr>
<td>Data type</td>
<td>STRING</td>
</tr>
<tr>
<td>Data range</td>
<td>Maximum 29 characters</td>
</tr>
<tr>
<td>Axis types</td>
<td>T, R</td>
</tr>
<tr>
<td>Dimension</td>
<td>T: -</td>
</tr>
<tr>
<td>Default value</td>
<td>-</td>
</tr>
<tr>
<td>Drive types</td>
<td>SERCOS, CANopen</td>
</tr>
<tr>
<td>Remarks</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P-AXIS-00732</th>
<th>Use of default parameters for the drive type</th>
</tr>
</thead>
</table>
| **Description** | By default the drive objects for moving to fixed stop are preconfigured for each drive type when the controller starts and this overwrites any assignment made in the default axis parameter list. All parameters required to change the drive objects are affected by pre-initialisation, i.e. the parameters assigned in the structure antr.fixed_stop.drive_ident[i].*.

However, if a parameterisation is used from the default list, this parameter can be set to the value 0. In this case, no default initialisation of the drive object takes place. |
Parameter	antr.fixed_stop.drive_ident[i].default
Data type	BOOLEAN
Data range	0 / 1
Axis types	T, R
Dimension	T: -
Default value	1
Drive types	SERCOS, CANopen
Remarks	-

Also see about this

Description [9]
Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff’s branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff products!

The addresses of Beckhoff’s branch offices and representatives round the world can be found on her internet pages: https://www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of individual Beckhoff products, but also with other, wide-ranging services:

• support
• design, programming and commissioning of complex automation systems
• and extensive training program for Beckhoff system components

Hotline: +49 5246 963 157
Fax: +49 5246 963 9157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

• on-site service
• repair service
• spare parts service
• hotline service

Hotline: +49 5246 963 460
Fax: +49 5246 963 479
e-mail: service@beckhoff.com

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20
33415 Verl
Germany

Phone: +49 5246 963 0
Fax: +49 5246 963 198
e-mail: info@beckhoff.com
web: https://www.beckhoff.com
Index

P

P-AXIS-00712	23
P-AXIS-00713	23
P-AXIS-00714	23
P-AXIS-00715	24
P-AXIS-00716	24
P-AXIS-00717	24
P-AXIS-00718	24
P-AXIS-00719	25
P-AXIS-00720	25
P-AXIS-00721	26
P-AXIS-00722	26
P-AXIS-00723	26
P-AXIS-00724	27
P-AXIS-00725	28
P-AXIS-00726	28
P-AXIS-00727	28
P-AXIS-00728	29
P-AXIS-00729	29
P-AXIS-00730	29
P-AXIS-00731	30
P-AXIS-00732	30
P-STUP-00033	23