Table of contents

1 Foreword ... 5
1.1 Notes on the documentation ... 5
1.2 Safety instructions ... 6
1.3 Notes on information security ... 7

2 Overview .. 8
2.1 Workflow .. 9

3 Installation .. 15
3.1 System requirements ... 15
3.2 Installation .. 15
3.3 Licensing ... 18

4 Quick start .. 21

5 Machine Learning Models and file formats .. 25
5.1 Machine learning models supported .. 25
5.1.1 Multi-layer perceptron .. 25
5.1.2 Support vector machine ... 27
5.1.3 k-Means ... 28
5.1.4 Principal Component Analysis ... 28
5.2 Supported file formats ... 29
5.2.1 Open Neural Network Exchange (ONNX) .. 29
5.2.2 Beckhoff ML XML ... 35
5.2.3 Beckhoff ML BML .. 37
5.3 File management of the ML description files ... 37

6 Configuration ... 43
6.1 TC3 Machine Learning Model Manager .. 43
6.2 Machine Learning Toolbox ... 47
6.3 XML Exporter ... 48
 6.3.1 XML Exporter - samples ... 50

7 API .. 51
7.1 TcCOM ... 51
7.2 PLC API .. 53
 7.2.1 Datatypes .. 53
 7.2.2 Function Blocks .. 54

8 Samples ... 67
8.1 PLC API .. 67
 8.1.1 Quick start .. 67
 8.1.2 Detailed example .. 67
 8.1.3 Parallel, non-blocking access to an inference module ... 67

9 Appendix ... 69
9.1 Log files .. 69
9.2 Third-party components ... 69
1 Foreword

1.1 Notes on the documentation

This description is only intended for the use of trained specialists in control and automation engineering who are familiar with applicable national standards.

It is essential that the documentation and the following notes and explanations are followed when installing and commissioning the components.

It is the duty of the technical personnel to use the documentation published at the respective time of each installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under development.

We reserve the right to revise and change the documentation at any time and without prior announcement.

No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff Automation GmbH.

Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and patents:

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The reproduction, distribution and utilization of this document as well as the communication of its contents to others without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.
1.2 Safety instructions

Safety regulations
Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring, commissioning etc.

Exclusion of liability
All the components are supplied in particular hardware and software configurations appropriate for the application. Modifications to hardware or software configurations other than those described in the documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification
This description is only intended for trained specialists in control, automation and drive engineering who are familiar with the applicable national standards.

Description of symbols
In this documentation the following symbols are used with an accompanying safety instruction or note. The safety instructions must be read carefully and followed without fail!

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Serious risk of injury! Failure to follow the safety instructions associated with this symbol directly endangers the life and health of persons.</td>
</tr>
<tr>
<td></td>
<td>Risk of injury! Failure to follow the safety instructions associated with this symbol endangers the life and health of persons.</td>
</tr>
<tr>
<td></td>
<td>Personal injuries! Failure to follow the safety instructions associated with this symbol can lead to injuries to persons.</td>
</tr>
<tr>
<td></td>
<td>Damage to the environment or devices Failure to follow the instructions associated with this symbol can lead to damage to the environment or equipment.</td>
</tr>
</tbody>
</table>

- Tip or pointer
 - This symbol indicates information that contributes to better understanding.
1.3 Notes on information security

The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online, are equipped with security functions that support the secure operation of plants, systems, machines and networks. Despite the security functions, the creation, implementation and constant updating of a holistic security concept for the operation are necessary to protect the respective plant, system, machine and networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept. The customer is responsible for preventing unauthorized access by third parties to its equipment, systems, machines and networks. The latter should be connected to the corporate network or the Internet only if appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be observed. Further information regarding information security and industrial security can be found in our https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security functions. In light of this continuous further development, Beckhoff expressly recommends that the products are kept up to date at all times and that updates are installed for the products once they have been made available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://www.beckhoff.com/secinfo.
2 Overview

Introduction

The idea behind machine learning is to learn a generalized correlation between inputs and outputs on the basis of example data. Accordingly, a certain amount of training data is required, on the basis of which a model is trained. In the training of the model, parameters of the model are adapted automatically to the training data by means of a mathematical process. In machine learning, the user has a large number of different models at his disposal. The selection and design of the models is part of the engineering process. Different types or designs of models fulfill different tasks, wherein the most important subdivisions are the classification and regression.

Classification:

The model contains an input (an image, one or more vectors, etc.) and assigns it to a class. The output is correspondingly a categorized variable. These classes could be, for example, good part or bad part. Distinction can also be made between several classes, for example quality classes A, B, C, D.

Regression:

The model contains an input and generates a continuous output. Not only are directly learned inputs assigned to directly learned outputs (as with a lookup table), but in addition the model is able to interpolate or, respectively, extrapolate non-learned inputs, provided it generalizes well. A functional correlation is learned.

Once a model has been trained, it can be used for the learned task, i.e. the model is used for inference. This is illustrated again in the graphic below.

In the training phase, for example of a neural network, inputs are shown to a not yet completely learned model. In the case of a known result (label), the error observed is fed back again via the model. The model is adapted as a result. The adaptations are continued until the error observed is acceptable.

In the inference, the model is only run through in the forward direction and used for the prediction of results.

TC3 Machine Learning Runtime

Beckhoff provides components for inference with the products TF3800 TC3 Machine Learning Inference Engine and TF3810 Neural Network Inference Engine. A common basis is used for both products, which is referred to in the following as the Machine Learning Runtime.

The Machine Learning Runtime is a module integrated in TwinCAT 3 and executed in the TwinCAT XAR. Access to all available data in the controller and also the use of the model in hard real-time is thus possible.

Two ways of engineering the components are offered:
• **PLC API**
 The library TC3_MLL is provided for use in the PLC environment. The library can be incorporated like any other PLC library. Machine learning models can be loaded asynchronously via a method call and subsequently executed cyclically in the PLC program by calling a further method.

• **Static TcCOM instance**
 A TcCOM object that can simply be inserted and configured in the TwinCAT object tree in the System Manager. On starting the system, the TcCOM loads the configured model and executes it in the assigned cycle time. A simple method of machine learning without programming effort.

The picture below illustrates the deep integration of the Machine Learning Runtime in the TwinCAT XAR. Like all TwinCAT Runtime objects, the module is a TcCOM and is accordingly anchored deep in the hard real-time.

```
myModel.bml
myModel.xml
```

2.1 Workflow

Basically, the machine learning process and the integration in TwinCAT 3 described here consist of three phases:

- The collection of data (1)
- The training of a model (2)
- The deployment in the TwinCAT XAR (3)
Archiving data

Depending on the application and also after the differentiation into engineering phase, commissioning and production phase, different tools for data communication and data storage can be used. The illustration below shows a subset of possible products from the area of TwinCAT 3 Measurement and TwinCAT 3 Connectivity.
In the engineering phase, the TC3 Scope with its storage function as binary file, CSV, TDMS and other formats is a simple as well as flexible tool for data collection and storage. The tool can be used intuitively and quickly via the user interface of the Scope View. The Scope Server can also be controlled directly from the PLC via the PLC function block `FB_ScopeServerControl` (Tc2_Utilities library) and thus used precisely in terms of time as well as reproducibly.

If an SQL or noSQL database is available (local, in the network or in the cloud), the TC3 Database Server is an ideal tool for aggregating large quantities of data during the machine running time. The Database Server is usable via the PLC and also via a pure configuration interface and supports a large number of different file formats and databases, from ASCII and Excel files to MS SQL and Mongo DB.

If the machine is connected via a message broker to a public or private cloud, the TwinCAT IoT product family provides the option to save the data via the broker in a datastore or warehouse. Due to the decoupled communication via the message broker, new data sources can be integrated very simply into the system in this scenario. Furthermore, third-party systems can also be integrated via the OPC-UA interface of the IoT Data Agent.

In running operation, the TC3 Analytics Logger can also be used to save large amounts of data from the machine controller conveniently and cycle-synchronously in a local file or via a message broker in a database. The high performance of the TC3 Analytics Logger is achieved, among other things, by storing the data in a binary format. The TC3ScopeExportTool can be used for conversion into common formats.
Further options are, for example, the writing of MAT files for processing in MATLAB® with the TcExtendedFileWriter, the sending of data via TC3 OPC UA or the use of the File Function Blocks from the basic PLC library Tc2_System.

Training models

If training data are available in files or databases, they must be read into and processed in a Machine Learning Framework. From the point of view of the user, there is a large degree of freedom in the choice of a suitable framework, whether from an application aspect or a personal one.

A large number of ML frameworks are based on Python™ or R and are open source, while others are commercially available, such as MATLAB® and SAS. A wide range of standard functions and toolboxes/libraries serve here as data interfaces for accessing the stored data, not least because the TwinCAT products named support standard formats, and binary file formats are open.

Roughly speaking, the work with the ML Framework consists of the preparation and selection of the data, the modeling and training of a suitable ML algorithm and, ultimately, the evaluation of the algorithm learned. The result of this engineering step is a trained ML model.

The model learned now has to be exported out of the selected ML Framework and used in the ML Runtime within the TwinCAT Runtime. For this, Beckhoff supports the standardized Open Neural Network Exchange format (ONNX) on the one hand and two of its own proprietary formats on the other. The proprietary formats are firstly a readable XML format and secondly, for the delivery, a binary data format (BML). Read more about the formats here: Supported file formats [p. 29].
Support for the ONNX description format provides flexibility and openness in comparison with the various established ML Frameworks. An overview of the supported ML Frameworks can be found on the ONNX Community’s website: http://onnx.ai/supported-tools. The most important frameworks such as PyTorch, Keras, scikit-learn, etc. are thus supported. In addition to direct support from various frameworks, there are also various converter tools, such as MMdnn, which can generate the standardized description format ONNX from the framework-specific model descriptions.

The introduction of a proprietary format offers Beckhoff the possibility to embed TwinCAT-specific properties in the description. For this reason, ONNX files are not read directly into the Machine Learning Runtime, but must first be converted to XML or BML and can optionally be supplemented with additional information for the Runtime. For more information see: Supported file formats [29].

Running models in TwinCAT 3

For working and editing with model description files (ONNX, XML and BML), the TC3 ML Model Manager [43] is provided as a graphical configurator and the Machine Learning Toolbox [47] as a programmatic interface. The TC3 ML Model Manager is directly integrated into Visual Studio. The Machine Learning Toolbox can be used from the command line or as a Python Package. Both variants offer the same range of functions, i.e. converting file formats and adding information to the XML and BML descriptions. The PLC programmer can read out and use the additional information in his real-time application.

Deeper knowledge of Machine Learning is not required for integrating trained models into TwinCAT 3. The algorithm learned is fully specified in the model description file and only needs to be integrated into the TwinCAT project as an executable function. There are two ways to do this:

- Integration as a static TcCOM object
- Integration via the PLC library Tc3_MLL
Further information on the integration in TwinCAT can be found in API [51] or a quick introduction in Quick start [21].

Following successful integration, the ML models are run synchronously to the cycle in the context of the TwinCAT real time. Accordingly, all data existing in the controller are available in real time and the results of the ML model can be output and processed further in real time.

Updating an ML model in TwinCAT

Trained models can be exchanged via the PLC library without recompiling and without restarting the TwinCAT Runtime. To do this, the new model description file merely has to be copied to the target system, after which the Configure method of the FB_MllPrediction [57] is executed, which then loads the new file. The TwinCAT runtime remains unaffected in Run Mode.

The copy process can happen via common ways: FTP, ADS, Shared Folder and so on. The trigger for the Configure method can be sent manually via an HMI or automatically from a script via ADS. Further information on these update scenarios: File management of the ML description files [38].

The circle of data collection, training and deployment in TwinCAT is thus closed and can be run through repeatedly if necessary via the machine runtime.
3 Installation

3.1 System requirements

Runtime

<table>
<thead>
<tr>
<th>Technical data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating system</td>
<td>Windows 7 64-bit, Windows Embedded Standard 7 64-bit, Windows 10 64-bit, TC/BSD</td>
</tr>
<tr>
<td>Target platform</td>
<td>PC architecture (x64)</td>
</tr>
<tr>
<td>TwinCAT version</td>
<td>TwinCAT 3.1 build 4024.0 or higher</td>
</tr>
<tr>
<td>Required TwinCAT setup level</td>
<td>TwinCAT 3 XAR</td>
</tr>
<tr>
<td>Required TwinCAT license</td>
<td>TF3800 TC3 Machine Learning Inference Engine or TF3810 TC3 Neural Network Inference Engine</td>
</tr>
</tbody>
</table>

Engineering

<table>
<thead>
<tr>
<th>Technical data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TwinCAT version</td>
<td>TwinCAT 3.1. build 4024.0 or higher</td>
</tr>
<tr>
<td>Required TwinCAT setup level</td>
<td>TwinCAT 3 XAE</td>
</tr>
</tbody>
</table>

The setup is to be executed both on the Engineering PC and on the Runtime PC. 7-day trial licenses can be generated for the runtime.

3.2 Installation

The following section describes how to install the TwinCAT 3 Function for Windows-based operating systems.

- The TwinCAT 3 Function setup file was downloaded from the Beckhoff website.

1. Run the setup file as administrator. To do this, select the command **Run as administrator** in the context menu of the file.
 - The installation dialog opens.
2. Accept the end user licensing agreement and click **Next**.

3. Enter your user data.
4. If you want to install the full version of the TwinCAT 3 Function, select **Complete** as installation type. If you want to install the TwinCAT 3 Function components separately, select **Custom**.

5. Select **Next**, then **Install** to start the installation.

* A dialog box informs you that the TwinCAT system must be stopped to proceed with the installation.
6. Confirm the dialog with Yes.

![TwinCAT Server Installation dialog]

7. Select Finish to exit the setup.

![Beckhoff Setup Completed]

⇒ The TwinCAT 3 Function has been successfully installed and can be licensed (see Licensing [18]).

3.3 Licensing

The TwinCAT 3 function can be activated as a full version or as a 7-day test version. Both license types can be activated via the TwinCAT 3 development environment (XAE).

Licensing the full version of a TwinCAT 3 Function

A description of the procedure to license a full version can be found in the Beckhoff Information System in the documentation "TwinCAT 3 Licensing".

Licensing the 7-day test version of a TwinCAT 3 Function

A 7-day test version cannot be enabled for a TwinCAT 3 license dongle.

1. Start the TwinCAT 3 development environment (XAE).
2. Open an existing TwinCAT 3 project or create a new project.
3. If you want to activate the license for a remote device, set the desired target system. To do this, select the target system from the **Choose Target System** drop-down list in the toolbar.

 - The licensing settings always refer to the selected target system. When the project is activated on the target system, the corresponding TwinCAT 3 licenses are automatically copied to this system.

4. In the **Solution Explorer**, double-click **License** in the **SYSTEM** subtree.

 - The TwinCAT 3 license manager opens.

5. Open the **Manage Licenses** tab. In the **Add License** column, check the check box for the license you want to add to your project (e.g. "TF4100 TC3 Controller Toolbox").

6. Open the **Order Information (Runtime)** tab.

 - In the tabular overview of licenses, the previously selected license is displayed with the status “missing”.
7. Click **7-Day Trial License...** to activate the 7-day trial license.

![User interface](image)

- A dialog box opens, prompting you to enter the security code displayed in the dialog.

![Security code dialog](image)

8. Enter the code exactly as it is displayed and confirm the entry.
9. Confirm the subsequent dialog, which indicates the successful activation.
 - In the tabular overview of licenses, the license status now indicates the expiry date of the license.
10. Restart the TwinCAT system.
- The 7-day trial version is enabled.
4 Quick start

Convert model (optional)

There is an ML description file (KerasMLExample_cos.XML) in the ZIP of the https://infosys.beckhoff.com/content/1033/tf38x0_tc3_ML_NN_Inference_Engine/Resources/zip/9007208001625867.zip. This file can be used directly for integration in TwinCAT, or optionally converted to a BML (binary format).

- Open the Machine Learning Model Manager
 - Menu bar: (Extensions)* > TwinCAT > Machine Learning > Machine Learning Model Manager
 * Visual Studio 2019 only

- Use the Convert tool
 - Click Select file and select the file KerasMLExample_cos.XML
 - In the drop-down menu, select Convert to *.bml
 - Click Convert files
 - The corresponding BML appears under <TwinCATpath>\Functions\TF38xx-Machine-Learning\ConvertToolFiles

Additional notes:

- You can also convert several files at once by means of multi-selection.

The converted files are stored by default on the XAE system in the folder <TwinCATpath>\Functions\TF38xx-Machine-Learning\ConvertToolFiles.

Integration in TwinCAT via the PLC API

The procedure to load the ML description file into TwinCAT and to run it cyclically is described below. The PLC API is dealt with first.

- First of all, create a TwinCAT project and a PLC project
- Add the PLC library Tc3_MLL under the References node

In the Declaration, please create an instance of FB_MllPrediction. In this simple case, the description file contains an MLP with one input and one output of the type FP32; accordingly, variables for input and output are created as REAL. A more generally accepted possibility to handle the inputs and outputs can be found in the Samples for PLC API.

In addition, create a string variable that contains the file name incl. path to the ML description file (path on the target system). Copy the corresponding file to this location on the target system (FTP, RDP, Shared Folder, ...).

Further information on this step can be found here.

NOTE

Path of the description file on the target system

Pay attention to the settings of the File Writer and the writing rights on the target system.

PROGRAM MAIN
VAR
 fbPredict : FB_MllPrediction; // ML Interface
 nInputDim, nOutputDim : UDINT := 1;
 fDataIn, fDataOut : REAL;
 sModelName : T_MaxString := 'C:/TwinCAT/3.1/Boot/ML_Boot/KerasMLExample_cos.xml';
 hrErrorCode : HRESULT;
 bLoadModel : BOOL;
 nState : INT := 0;
END_VAR

In the Implementation part you create a state machine, for example, which enables you to switch between the Idle state, Config state, Predict state and Error state.
In the first state you initially wait for the command to load a description file. Subsequently, the Configure method of the fbPredict function block is called until TRUE is returned. This is present for one cycle and means that the configuration has been completed. A check is then done to establish whether an error occurred. If no error occurred, the state is switched to the next state, which is the Predict state. The state machine remains in the Predict state as long as no error occurs or a (new) model is to be loaded.

CASE nState OF
 0: // idle state
 IF bLoadModel THEN
 bLoadModel := FALSE;
 nState := 10;
 END_IF
 10: // Config state
 fbPredict.stPredictionParameter.MlModelFilepath := sModelName; // provide model path and name
 IF fbPredict.Configure() THEN // load model
 IF fbPredict.bError THEN
 nState := 999;
 hrErrorCode := fbPredict.hrErrorCode;
 ELSE // no error -> proceed to predict state
 nState := 20;
 END_IF
 END_IF
 20: // Predict state
 fbPredict.Predict(
 pDataInp := ADR(fDataIn),
 nDataInpDim := nInputDim,
 fmtDataInpType := ETcMllDataType.E_MLLDT_FP32_REAL,
 pDataOut := ADR(fDataOut),
 nDataOutDim := nOutputDim,
 fmtDataOutType := ETcMllDataType.E_MLLDT_FP32_REAL,
 nEngineId := 0,
 nConcurrencyId := 0);
 IF fbPredict.bError THEN // error handling
 nState := 999;
 hrErrorCode := fbPredict.hrErrorCode;
 ELSIF bLoadModel THEN // load (updated) model
 bLoadModel := FALSE;
 nState := 10;
 END_IF;
 999: // Error state
 // add error handling here
END_CASE

The Predict method of fbPredict is used in the Predict state. This runs the loaded model. The method is informed of the input variables via the first three parameters of the method – pointer to a PLC variable, number of inputs and associated data type. The same is to be specified for the output variables (parameters 4 to 6). nEngineId and nConcurrencyId are not required in this simple example and are always transferred with the value zero. Details for these parameters can be found in the samples Detailed example and Parallel, non-blocking access to an inference module.

Before activating the project on a target, you must select the TF3810 license manually on the Manage Licenses tab under System>License in the project tree, as you wish to load a multi-layer perceptron (MLP).

You can now activate the configuration. Log into the PLC and start the program. By setting the bLoadModel variable in the online view to TRUE, the model is now loaded and begins with the prediction. You can manipulate the input variable fDataIn and view the results in the output fDataOut. The multi-layer perceptron loaded approximately maps a cosine function in the input range of [-pi, pi] to the value range [-1,1]. Outside of the range [-pi, pi] the function increasingly diverges from the cosine function.
You can download the sample described above here [67].

Incorporation of a model by means of TcCOM object

This section deals with the execution of machine learning models by means of a prepared TcCOM object. A detailed description can be found here [51]. This interface offers a simple and clear way of loading models, executing them in real-time and generating appropriate links in your own application by means of the process image.

- Generate the prepared TcCOM object TcMachineLearningModelCycal. To do this, select the node **TcCOM Objects** with the right mouse button and select **Add New Item...**

- Under Tasks, generate a new TwinCAT task and assign this task context to your newly generated instance of TcMachineLearningModelCycal. To do this, go to the **Context** tab of the generated object and select your generated task in the drop-down menu.
• The instance of TcMachineLearningModelCycal has a tab called **ML model configuration**, where you can load the description file of the ML algorithm (XML or BML) and the available data types for the inputs and outputs of the selected model are then displayed. The file does not have to be on the target system. It can be selected from the development system and is then loaded to the target system on activating the configuration.

 ◦ A distinction is made between preferred and supported data types. The only difference is that a conversion of the data type takes place at runtime if a non-preferred type is selected. This may lead to slight losses in performance when using non-preferred data types.

• The data types for inputs and outputs are initially set automatically to the preferred data types. The process image of the selected model is created by clicking **Generate IO**. Accordingly, by loading *KerasMLPExample_cos.xml*, you get a process image with an input of the type REAL and an output of the type REAL.

• Before activating the project on a target, you must select the TF3810 license manually on the Manage Licenses tab under System>License in the project tree, as you wish to load a multi-layer perceptron.

• Activate the configuration. You can now test the model by manually writing at the input.
5 Machine Learning Models and file formats

5.1 Machine learning models supported

There are a great many different models in the area of machine learning. The Machine Learning Runtime supports a subset of the models, focusing on those that exhibit a deterministic runtime complexity.

The TwinCAT license required also differs depending on the model type that is loaded into the Machine Learning Runtime.

Note that the TF3810 license contains the TF3800 license, which means that if the TF3810 license is valid, all models that require a TF3800 or TF3810 license can be loaded.

Supported models with a correspondingly necessary license are:

<table>
<thead>
<tr>
<th>Model type</th>
<th>License</th>
<th>Available from setup version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support vector machine [27] (SVM)</td>
<td>TF3800</td>
<td>3.1.42.0</td>
</tr>
<tr>
<td>Principal Component Analysis [28] (PCA)</td>
<td>TF3800</td>
<td>3.1.57.0</td>
</tr>
<tr>
<td>k-Means [28]</td>
<td>TF3800</td>
<td>3.1.57.0</td>
</tr>
<tr>
<td>Multi-layer perceptron [25] (MLP)</td>
<td>TF3810</td>
<td>3.1.42.0</td>
</tr>
</tbody>
</table>

Further model types are being added all the time, therefore an update to a new version is recommended.

5.1.1 Multi-layer perceptron

A multi-layer perceptron (MLP) is a mathematical model that is basically oriented to the structure of the human brain. The basic idea is the linking of the smallest units – so-called neurons – in a network. Each neuron takes up information from previous neurons or directly via model inputs and processes it. A directional flow of information takes place through this network from inputs to outputs.

A neuron processes its inputs \(x \) as a weighted sum plus an ordinate value and transforms the intermediate result with an activation function.

\[
y = f_{act}(wx + u_b)
\]

Neurons are usually arranged in layers, which are then linked one after the other. If a network has more than one layer between inputs and outputs, then it is referred to as a multi-layer perceptron.

The structure is illustrated in the figure below.

- **Input Layer**: Has no neurons of its own. Serves as an input layer and defines the number and data type of the inputs.
- **Hidden Layer**: Layer with its own neurons. The layer is characterized by the number of neurons as well as the selected activation function. Any number of hidden layers can be layered one after the other.
- **Output Layer**: Layer with its own neurons. The number of neurons and their activation function are oriented to the application to be implemented.
In order to be able to fulfill a regression or classification task, it is necessary to adapt the model parameters (the neuron weights) to a data set. This process is called training and can be carried out in relevant frameworks, see Workflow [9].

Properties supported in the Machine Learning Runtime

Activation functions supported

<table>
<thead>
<tr>
<th>Activation function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tanh</td>
<td>Hyperbolic tangent (-1.1)</td>
</tr>
<tr>
<td>sigmoid</td>
<td>Sigmoid function – an exponential function (0.1)</td>
</tr>
<tr>
<td>softmax</td>
<td>Softmax – a normalized exponential function – often used for classification (0.1)</td>
</tr>
<tr>
<td>sine</td>
<td>Sine function (-1.1)</td>
</tr>
<tr>
<td>cosine</td>
<td>Cosine function (-1.1)</td>
</tr>
<tr>
<td>relu</td>
<td>“Rectifier” – positive portion is linear – good learning properties in case of deep networks (0, inf)</td>
</tr>
<tr>
<td>abs</td>
<td>Absolute value of the input (0, inf)</td>
</tr>
<tr>
<td>linear/id</td>
<td>Linear identity – simple linear function f(x) = x (-inf, inf)</td>
</tr>
<tr>
<td>exp</td>
<td>A simple exponential function e^x (0, inf)</td>
</tr>
<tr>
<td>logsoftmax</td>
<td>Logarithm of softmax – sometimes more efficient than softmax in the calculation (-inf, inf)</td>
</tr>
<tr>
<td>sign</td>
<td>Sign function (-1.1)</td>
</tr>
<tr>
<td>softplus</td>
<td>Sometimes better than relu due to the differentiability (0, inf)</td>
</tr>
<tr>
<td>softsign</td>
<td>Conditionally better convergence behavior than tanh (-1.1)</td>
</tr>
</tbody>
</table>

Calculation engines supported

<table>
<thead>
<tr>
<th>Description</th>
<th>Identification in XML</th>
<th>Input data type (preferred)</th>
<th>Output data type (preferred)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32-bit Floating Point Engine</td>
<td>mlp_fp32_engine</td>
<td>E_MLLDT_FP32-REAL</td>
<td>E_MLLDT_FP32-REAL</td>
</tr>
<tr>
<td>64-bit Floating Point Engine</td>
<td>mlp_fp64_engine</td>
<td>E_MLLDT_FP64-LREAL</td>
<td>E_MLLDT_FP64-LREAL</td>
</tr>
</tbody>
</table>

Supported data types

A distinction must be made between "supported datatype" and "preferred datatype". The preferred datatype corresponds to the engine type. When using a supported datatype, an efficient type conversion automatically takes place in the library. Slight losses of performance can occur due to the type conversion.

A list of the "supported datatypes" can be found in ETcMIIDataType [53].

Export of a MLP as ONNX
For a complete overview of ONNX support for frameworks and converters, visit https://onnx.ai/supported-tools.html. Examples for a first idea of how the export takes place can also be found in this documentation at ONNX Export of an MLP [► 30].

Further comments

There are no limits on the software side with regard to the number of layers or the number of neurons. With regard to the calculation duration and memory requirement, however, the limits of the hardware used are to be observed.

5.1.2 Support vector machine

A support vector machine (SVM) can be used both for classification and for regression. The SVM is a frequently used tool in particular with regard to classification tasks.

The fundamental goal of an SVM is to find a hyperplane in an N-dimensional space, wherein the distance between the closest data point and the plane is maximized. A hyperplane can only separate the space linearly. A non-linear separation is also possible by means of a so-called kernel trick. The N-dimensional space is transformed into a higher-dimensional space here. A linear separation with a hyperplane is possible in an accordingly higher-dimensional space. Various kernel functions are used for the kernel trick. The kernel function is to be specified by the user.

If a distinction needs to be made between several classes, several support vector machines are generated internally and classification takes place by means of comparisons.

Properties supported in the Machine Learning Runtime

Kernel functions supported

<table>
<thead>
<tr>
<th>Kernel function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>$K(x_1, x_2) = x_1^T x_2$</td>
</tr>
<tr>
<td>Radial Basis Function (RBF)</td>
<td>$K(x_1, x_2) = \exp(-\gamma |x_1 - x_2|^2)$</td>
</tr>
<tr>
<td>Sigmoid</td>
<td>$K(x_1, x_2) = \tanh(\alpha x_1^T x_2 + b)$</td>
</tr>
<tr>
<td>Polynomial</td>
<td>$K(x_1, x_2) = (x_1^T x_2 + 1)^d$</td>
</tr>
</tbody>
</table>

Calculation engines supported

<table>
<thead>
<tr>
<th>Description</th>
<th>Identification in XML</th>
<th>Input data type (preferred)</th>
<th>Output data type (preferred)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64-bit Floating Point Engine</td>
<td>svm_fb64_engine</td>
<td>E_MLLDT_FP64_LREAL</td>
<td>E_MLLDT_FP64_LREAL</td>
</tr>
</tbody>
</table>

Supported data types

A distinction must be made between "supported datatype" and "preferred datatype". The preferred datatype corresponds to the engine type. When using a supported datatype, an efficient type conversion automatically takes place in the library. Slight losses of performance can occur due to the type conversion.

A list of the "supported datatypes" can be found in ETcMllDataType [► 53].

Export of a SVM as ONNX
5.1.3 k-Means

The k-Means algorithm belongs to the unsupervised learning methods and is used for cluster analysis. k-Means attempts to divide a sample into k clusters of equal variance, where the number of clusters k must be known in advance. The algorithm scales well to a large number of samples and is one of the most widely used clustering methods.

Unsupervised means that the k-Means does not need to be trained with annotated (labeled) data. This property makes the algorithm very popular. As soon as the training has been executed and the clusters have been defined, new data can be assigned to the already known clusters in the inference.

Properties supported in the Machine Learning Runtime

Calculation engines supported

<table>
<thead>
<tr>
<th>Description</th>
<th>Identification in XML</th>
<th>Input data type (preferred)</th>
<th>Output data type (preferred)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64-bit Floating Point Engine</td>
<td>clustering_fb64_engine</td>
<td>E_MLLDT_FP64_LREAL</td>
<td>Depending on model</td>
</tr>
</tbody>
</table>

Supported data types

A distinction must be made between "supported datatype" and "preferred datatype". The preferred datatype corresponds to the engine type. When using a supported datatype, an efficient type conversion automatically takes place in the library. Slight losses of performance can occur due to the type conversion.

A list of the "supported datatypes" can be found in ETcMllDataType [53].

Export of a k-Means as ONNX

For a complete overview of ONNX support for frameworks and converters, visit https://onnx.ai/supported-tools.html. Examples for a first idea of how the export takes place can also be found in this documentation at ONNX Export of an SVM [32].

ONNX Custom Attributes necessary

The specification of the Custom Attribute Key: "sklearn_model" value: "KMeans" is necessary for k-Means models, so that the conversion step in Beckhoff XML and Beckhoff BML works. Example see ONNX export of a k-Means [33].

Further comments

Currently, only the output "label" is mapped in the PLC, but not the output "scores", which indicates the probability to the label.

5.1.4 Principal Component Analysis

Principal Component Analysis (PCA) calculates so-called principal components with the help of which one can rotate the coordinate system of a given data set in such a way that the variance of the data, i.e. its information content, is maximized along the new principal axes. The covariance matrix of the transformed data is diagonalized and the order of principal components is sorted so that the first principal component
Machine Learning Models and file formats

carries the largest information portion of the data set, the second then carries the second largest information portion, and so on. The latter principal components often contribute little information to the data set, which means that they can be ignored. This reduces the parameter space with as little information loss as possible.

PCA is widely used in cluster analysis and for dimension reduction of a large parameter space. PCA can also be applied when there is no prior knowledge about the structure of the data.

Properties supported in the Machine Learning Runtime

Calculation engines supported

<table>
<thead>
<tr>
<th>Description</th>
<th>Identification in XML</th>
<th>Input data type (preferred)</th>
<th>Output data type (preferred)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64-bit Floating Point Engine</td>
<td>pca_fb64_engine</td>
<td>E_MLLDT_FP64_LREAL</td>
<td>E_MLLDT_FP64_LREAL</td>
</tr>
</tbody>
</table>

Supported data types

A distinction must be made between "supported datatype" and "preferred datatype". The preferred datatype corresponds to the engine type. When using a supported datatype, an efficient type conversion automatically takes place in the library. Slight losses of performance can occur due to the type conversion.

A list of the "supported datatypes" can be found in ETcMIIDataType [53].

Export of the PCA as ONNX

For a complete overview of ONNX support for frameworks and converters, visit https://onnx.ai/supported-tools.html. Examples for a first idea of how the export takes place can also be found in this documentation at ONNX export of a PCA [34].

5.2 Supported file formats

The learning process of a Machine Learning Model takes place outside of the real time, usually in a script language such as Python, R or MATLAB®. The learned model is to be exported from the selected ML framework as an ONNX file. In order to load the description of the model in the TwinCAT runtime, the ONNX file must first be converted into a proprietary, TwinCAT 3-specific format.

An overview of the description formats for machine learning models:

- Open Neural Network Exchange Format (ONNX) [29]
- Beckhoff ML XML [35]
- Beckhoff ML BML [37]

Beckhoff's proprietary formats in XML and BML are directly readable from the Machine Learning Runtime. The ONNX data format is to be converted into a Beckhoff proprietary format via the Machine Learning Model Manager [43] (GUI in Visual Studio) or the Machine Learning Toolbox [47] (API).

Whereas ONNX and XML are openly visible formats, BML is a binary format and thus characterized above all by a small file size and an efficient loading behavior (execution time of the Configure method) in the XAR.

5.2.1 Open Neural Network Exchange (ONNX)

What is ONNX?

ONNX is an open file format for the representation of Machine Learning Models and is managed as a community project. Homepage of the ONNX community: onnx.ai
The ONNX format defines groups of operators in a standardized format, allowing learned models to be used interoperably with various frameworks, runtimes and further tools. Beckhoff supports ONNX via the Machine Learning Model Manager [43] and the Machine Learning Toolbox [47], which can read the format and convert it to the Beckhoff proprietary formats XML and BML.

ONNX supports descriptions of neural networks as well as classic machine learning algorithms and is therefore the suitable format for both the TwinCAT Machine Learning Inference Engine and the TwinCAT Neural Network Inference Engine.

Why ONNX?

Through support for ONNX, Beckhoff integrates the TwinCAT Machine Learning products in an open manner and thus guarantees flexible workflows. While the automation specialist can work in TwinCAT 3, the data scientist can work with his usual tools (PyTorch, Scikit-Learn, ...).

The use of ONNX facilitates cross-group work both within the company and across companies with partners.

The automation specialist provides the data scientist with recorded data. The data scientist hands over his work as a single file to the automation specialist. This file already contains all information to execute the created model in TwinCAT.

Offline testing of models is simplified, as all major AI frameworks can load the ONNX file and run it as well.

Which software supports ONNX?

Supported tools of the ONNX community can be viewed here: onnx.ai/supported-tools.

Including, for example, the frameworks:
- PyTorch
- Keras / TensorFlow
- MXNet
- Scikit-Learn
- ...

General converters:
- MMdnn (https://github.com/microsoft/MMdnn)
- ONNXMLTools (https://github.com/onnx/onnxmltools)
- ...

Graph optimizer
- ONNX Optimizer (https://github.com/onnx/onnx/blob/master/docs/Optimizer.md)

Graph visualizer
- Netron (https://github.com/lutzroeder/Netron)
- ...

How do I create ONNX files?

In the following, several variants are shown as examples of how you can export certain models as ONNX from different frameworks. The examples do not claim to be complete and serve only as a first orientation. For detailed documentation, please refer to the documentation of the corresponding frameworks.

5.2.1.1 ONNX Export of an MLP

PyTorch

Import torch
import numpy as np

net = torch.nn.Sequential(
 torch.nn.Linear(1,1),
)
torch.nn.ReLU()

dummy_input = torch.FloatTensor(np.random.random((1,1)))
print(net(dummy_input))

onnx_file = 'pytorch-relu.onnx'
torch.onnx.export(net,dummy_input,onnx_file, verbose=True)

Keras

import tensorflow as tf
import numpy as np

dummy_input = np.random.random((1,1))
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(1,input_shape=(1,), activation=tf.keras.activations.relu))
model.build()
model.summary()

print(model.predict(dummy_input))

path = '.'
import keras2onnx
import onnx
name='tf-keras-relu.onnx'
onnx_model = keras2onnx.convert_keras(model)
onnx.save_model(onnx_model,name)

SciKit Learn

import sklearn.neural_network as skl
import numpy as np

dummy_input = np.random.random((1,1))
dummy_output = np.random.random((1,1))

model = skl.MLPRegressor(hidden_layer_sizes =(1), activation ='relu')
model.fit(dummy_input,np.ravel(dummy_output))

filename = 'skl-relu'
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
initial_type = [('float_input',FloatTensorType([1,1]))]

onx = convert_sklearn(model,initial_types=initial_type)
with open(filename+'.onnx','wb') as f:
 f.write(onx.SerializeToString())

Sample of an MLP visualized in Netron
5.2.1.2 ONNX export of a SVM

Scikit Learn

from sklearn.svm import SVR
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType

X = [[13,3],[1,16],[1,2]]
Y = [1.0,2.0,3.0]
model = SVR(kernel='rbf',gamma=10)
model.fit(X,Y)
out = model.predict(X)
input_type = [('float_input', FloatTensorType([None,len(X[0])]))]
onnx_filename = 'svc-rbf.onnx'
onx = convert_sklearn(model,initial_types=input_type)
with open(onnx_filename, "wb") as f:
 f.write(onx.SerializeToString())

Representation of a SVM (type regression) in Netron
5.2.1.3 ONNX export of a k-Means

SciKit Learn

```python
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import numpy as np

# Generate data for clustering: num of samples, dimensions, num of clusters
X, y, centers = make_blobs(n_samples=50, n_features=3, centers=5, cluster_std=0.5, shuffle=True, random_state=42, return_centers=True)
num_features = X.shape[1]
um_clusters = centers.shape[0]

# Define and train K-Means model
km = KMeans(n_clusters=num_clusters, init='k-means++', n_init=10, max_iter=500, tol=1e-04, random_state=42)
km.fit(X)
y_km = km.predict(X)

# Export model as ONNX
out_onnx = "kmeans.onnx"
initial_type = [('float_input', FloatTensorType([None, num_features]))]
onnx_model = convert_sklearn(km, initial_types=initial_type)

# for k-means models this meta info is mandatory. Otherwise convert process to TwinCAT-specific format will fail!
meta = onnx_model.metadata_props.add()
meta.key = "sklearn_model"
meta.value = "KMeans"

with open(out_onnx, "wb") as f:
    f.write(onnx_model.SerializeToString())
```

ONNX Custom Attributes necessary
The specification of the Custom Attribute "sklearn_model" and "KMeans" is necessary for k-means models, so that the conversion step in Beckhoff XML and Beckhoff BML works.

Representation in Netron
5.2.1.4 **ONNX export of a PCA**

SciKit Learn

```python
import numpy as np
from sklearn.decomposition import PCA
from skl2onnx import convert_sklearn, to_onnx, wrap_as_onnx_mixin
from skl2onnx.common.data_types import FloatTensorType, Int64TensorType

# Generate input data types
rng = np.random.RandomState(1)
X = np.dot(rng.rand(4, 3), rng.randn(3, 300)).T

# Dimensionality reduction with PCA
pca = PCA(n_components=2)
pca.fit(X)
X_pca = pca.transform(X)
print("original shape: ", X.shape)
print("transformed shape: ", X_pca.shape)

# Convert model to ONNX
initial_type = [('float_input', FloatTensorType([None, X.shape[1]]))]
model_onnx = convert_sklearn(pca, initial_types=initial_type)
with open("pca.onnx", "wb") as f:
    f.write(model_onnx.SerializeToString())
```

Representation of a PCA in Netron
5.2.2 Beckhoff ML XML

Introduction to Beckhoff ML XML

As opposed to ONNX, the XML-based description file can map TwinCAT-specific properties. The XML guarantees an extended functional scope of the TwinCAT Machine Learning product – see for example the concept of the Multi-engines [36]. On the other hand, it ensures seamless cooperation between the creator and user of the description file - compare Input and output transformations [36] and Custom Attributes [35].

Essential areas of the Beckhoff ML XML are described below. This helps you to understand the functions it provides. The file should only be generated and edited using the TC3 Machine Learning Model Manager [43] or the Machine Learning Toolbox [47].

XML Tag <MachineLearningModel>

Obligatory tag with 2 obligatory attributes. The tag is generated automatically and may not be manipulated.

Sample:

```xml
<MachineLearningModel modelName="Support_Vector_Machine" defaultEngine="svm_fp64_engine">
```

The attribute `modelName` can be read in the PLC via the method `GetModelName` [61]. The model type that is to be loaded is identified by the model name. For example, the attribute can take the values `support_vector_machine` or `mlp_neural_network`.

XML Tag <CustomAttributes>

The tag CustomAttributes is optional and may be freely used by the user. The depth of the tree and the number of attributes are not limited. Creation can take place via the TC3 Machine Learning Model Manager. The XML can also be manually edited in this area.

Attributes can be read in the PLC via the methods `GetCustomAttribute_array` [57], `GetCustomAttribute_fp64` [58], `GetCustomAttribute_int64` [59] und `GetCustomAttribute_str` [59]. In the XML the typification is given by the prefixes `str_`, `int64_`, `fp64_` and so on.

Sample:
Here, a model with the name "TempEstimator" is created in the version 1.2.11.0. Thus, an array and an integer value are provided as further information. Sample code for reading the CustomAttributes can be downloaded from the Samples [67] section.

XML Tag <AuxilliarySpecifications>

The AuxilliarySpecifications area is optional and is subdivided into the children <PTI> and <IOModification>.

Sample:

```xml
<AuxiliarySpecifications>
  <PTI str_producer="Beckhoff MLlib Keras Exporter" str_producerVersion="3.0.200525.0 str_requiredVersion=3.0.200517.0d"/>
  <IOModification>
    <OutputTransformation str_type="SCALED_OFFSET" fp64_offsets="0.48288949404162623" fp64_scaling="1.4183887951105305"/>
  </IOModification>
</AuxiliarySpecifications>
```

<PTI>

PTI stands for "Product Version and Target Version Information". The tool with which the XML was created and version of the tool at the time of the XML generation are specified here.

A minimum version of the executive ML Runtime can also be specified via the attribute str_requiredVersion. The query is regarded as passed if the attribute is not set. If the attribute is set, the query is regarded as passed if the ML Runtime Version is higher than or equal to the required version. If the query is not passed, i.e. if the version of the ML Runtime used is lower than the required version, then a warning is displayed when executing the Configure method.

<IOModification>

If inputs or outputs of the learned model are scaled in the training environment, the scaling parameters used can be integrated directly in the XML file so that TwinCAT automatically performs the scaling in the ML Runtime.

The scaling takes place by means of $y = x \times \text{Scaling} + \text{Offset}$.

XML Tag <Configuration>

The obligatory area Configuration describes the structure of the loaded model.

Example - SVM

```xml
<Configuration str_operationType="SVM_TYPE_NU_REGRESSION" fp64_cost="0.1" fp64_nu="0.3" str_kernelFunction="KERNEL_FN_RBF" fp64_gamma="1.0" int64_numInputAttributes="1"/>
```

Example - MLP

```xml
<Configuration int_numInputNeurons="1" int_numLayers="2" bool_usesBias="true">
  <MlpLayer1 int_numNeurons="3" str_activationFunction="ACT_FN_TANH"/>
  <MlpLayer2 int_numNeurons="1" str_activationFunction="ACT_FN_IDENTITY"/>
</Configuration>
```

A configuration exists once only and is generated automatically.

XML Tag <Paramaters>

The obligatory area Parameters substantiates the loaded model with the described <Configuration>. The learned parameters of the model are stored here, e.g. the weights of the neurons.

In the standard case, i.e. a learned model is described in an XML, the <Parameters> tag exists only once in the XML.

```xml
<Parameters str_engine="mlp_fp32_engine" int_numLayers="2" bool_usesBias="true"/>
```

Several models with identical <Configuration> can be merged via the Machine Learning Model Manager so that both models are described in a single XML. Distinction can then be made between the parameter sets by Engines, which is specified as an attribute for each parameter tag.
Sample:

```xml
<Parameters str_engine="mlp_fp32_engine::merge0" int64_numLayers="2" bool_usesBias="true">
  ...
</Parameters>
<Parameters str_engine="mlp_fp32_engine::merge1" int64_numLayers="2" bool_usesBias="true">
  ...
</Parameters>
<IODistributor str_distributor="multi_engine_io_distributor::mlp_fp32_engine-merge" str_engine_type="mlp_fp32_engine" int64_engine_count="2">
  <Engine0 str_engine_name="merge0" str_reference="sin_engine" />
  <Engine1 str_engine_name="merge1" str_reference="cos_engine" />
</IODistributor>
```

Two MLPs with an identical *Configuration* were merged here. The first engine bears the ID 0 and the internal name "mlp fp32 engine::merge0" and can be addressed by the user via the reference "sin_engine". The second engine bears the ID 1 and the internal name "mlp fp32 engine::merge1" and the reference "cos_engine".

The ID of the engine is sequentially incremented by the value one, starting from zero. The reference is a string that can be specified in the Model Manager during *Merge*.

If several engines are merged in an XML, all engines are loaded in the ML Runtime and are available for inference. The *Predict method* is to be transferred when calling the engine ID that is to be used. The reference for the engine can be transferred via the *PredictRef method*. A *GetEngineIdFromRef method* is also available for finding the associated ID from the reference. Switching between the engines is possible without latency.

There is an example of the use of multi-engines in the PLC in the Samples area.

5.2.3 Beckhoff ML BML

The BML format is a binary representation of the XML-based ML description file. As a result, the format is not openly visible and the file size is smaller in comparison with ONNX and XML. This also makes the charging process of the model much faster than charging an XML.

A BML file can be generated via the **TC3 Machine Learning Model Manager** from an XML or an ONNX file. The way back from a BML file to an XML file is not provided for.

5.3 File management of the ML description files

File management on the Engineering PC (XAE)

Conversion, editing of ONNX, XML and BML

The Machine Learning Model Manager serves as a central tool for the processing and conversion of Machine Learning models. If a file is loaded and edited, the resulting file is saved in the following folders - depending on the action carried out:

- `\Functions\TF38xx-Machine-Learning\ConvertToolFiles`
- `\Functions\TF38xx-Machine-Learning\ExtractToolFiles`
- `\Functions\TF38xx-Machine-Learning\MergeToolFiles`

If the Machine Learning Toolbox is used instead of the GUI-based Machine Learning Model Manager, the newly created file is stored in the active path as long as no other path has been specifically named.

Integrating a model into a TwinCAT solution

If a BML or XML description file is used in a TwinCAT solution, a distinction must be made between **TcCOM API** and the **PLC API** with regard to the file management.

TcCOM API
After the integration of a description file in the TcCOM TcMachineLearningModelCycal, the corresponding description file is copied into the Visual Studio project directory and is thus part of the project: <VS Projekt>_MLInstall.

On activating the configuration, the file is copied from the Visual Studio project directory into the boot folder on the target system: \TwinCAT\3.1\Boot\ML_Boot.

PLC API

When using the PLC API, the file name and path of the Machine Learning Model file are specified in the PLC code as `T_MaxString` – accordingly, the user must ensure that a corresponding file exists coming from the target system. This means that the description file does not become part of the Visual Studio project directory, nor is it transferred automatically to the target system.

Transfer of the ML description files to the target system on activating the configuration

TcCOM API

When using the TcCOM object `TcMachineLearningModelCycal`, the ML description file is transferred automatically from the XAE system to the XAR system.

The file is transferred from the Visual Studio project folder <VS Project>_MLInstall to the Boot folder TwinCAT\3.1\Boot\ML_Boot on the XAR.

PLC API

If the PLC API is used, the user is responsible for the transfer of the ML description file. As a result, the flexibility of the application is increased on the one hand, while corresponding steps have to be implemented by the user on the other.

The ML description file can be transferred to the target system in many ways. One of them is named below by way of example.

- Via the properties of the PLC project under "Deployment" it is possible to specify which files are to be transferred to the target system in the case of a certain event, for example the activation of the configuration.

Writing rights on the target system

The writing rights on the operating system side and the Write Filter settings must be observed.

Updating ML description files in the field

An important scenario in machine learning is the updating of data-based algorithms in the field during the running time of a machine. Here too, distinction must be made between use of the TcCOM [51] API and use of the PLC API [53].

TcCOM API
In the case of the TcCOM API, the update behavior is the same as with other changes in the TcCOM area. An XAE system is necessary with an ADS route to the target system. In the XAE, a new ML description file can be integrated in the TwinCAT project. The new project is then transferred to the target system by activating the configuration. Therefore, it is necessary to restart the TwinCAT runtime here.

PLC API

If the PLC API is used, it is possible to update the ML description file on the target system without restarting the TwinCAT runtime. To do this it is merely necessary to update the ML description file on the target system and to retrigger the Configure method.

Below, scenarios and important elements are described that need to be considered when carrying out a remote update of the ML description file.

Elements to be observed:

- The XML or BML file should bear a model version and a suitable model name (see `GetCustomAttribute` methods).
- Different protocols can be used when transferring the description file.
- Observe the communication direction for firewall settings.
- Push of a model to the IPC or pull request coming from the IPC?

It should also be mentioned that in all three scenarios an implementation is possible with a TwinCAT 3 function; however, an application-specific user mode application, e.g. on a .NET basis, can also be realized. The advantage of an implementation using a TwinCAT 3 function could be that a direct interaction of the MQTT, HTTPS or OPC UA client can take place in the PLC and can thus directly interact with the state machine of `FB_MllPrediction`.

Update via MQTT

The MQTT protocol can represent a flexible and firewall-friendly way of managing a network (of a changeable number) of devices. The message broker decouples the devices from one another and also ensures that the technical communication direction is always coming from the local networks.
The message broker manages the messages of the devices and the model server. Indicated in the illustration here as an example is a topic structure that addresses the device name and then an "info" area for the current status of the device or the loaded ML model. This information can be read by the model server and, if necessary, an ML model with a more up-to-date version can be sent to the "rx" topic, which is then received by the device. An acknowledgement can take place via the "tx" topic.

In this scenario both "pull" and "push" can be implemented with a technically outgoing communication direction.

Update via HTTPS

An alternative, for example, is the widely used HTTPS protocol, which is often unproblematic with regard to open ports. The model server is implemented here directly as an HTTP(S) server.
An important difference between this and the MQTT scenario is that a "push" to devices cannot be executed directly starting from the model server unless an incoming HTTPS port is opened. In order to get around this, a device can, for example, request updates cyclically. As with MQTT a payload is not defined, therefore both status information and the model file itself can be transmitted by HTTPS.

Update via OPC UA

OPC UA is usually more widely used in automation technology than MQTT and HTTPS. Here too, a scenario can be set up due to the possibility to transmit files via OPC UA.
In this case the OPC UA server is implemented on the Model Server side. Appropriate software products for this are available on the market. The OPC UA client can be implemented on the device side and, as in the HTTPS scenario, send requests to the server.
6 Configuration

6.1 TC3 Machine Learning Model Manager

The TC3 Machine Learning Model Manager is the central tool for the editing of ML model description files. The tool is integrated in Visual Studio and can be opened via the menu bar under TwinCAT > Machine Learning.

The central tasks of the TC3 Machine Learning Model Manager are:

• Conversion of ML model description files (Convert tool)
• Processing of ML engines (Merge tool and Extract tool)
• Processing of model information (Configuration tool)

Required Visual Studio version

The graphic interface of the TC3 Machine Learning Model Manager is compatible with Visual Studio 2017 and 2019 as well as the TcXaeShell. If you use a different version, you can run the interface as a standalone executable. This is located in `<TwinCATInstallDir>\3.1\Components\TcMachine-Learning\ML_VS_Extension\ModelManagerStandalone.exe`.

As an alternative to the editing of the ML model description files using the interface of the TC3 Machine Learning Model Manager, the operations described here can also be carried out programmatically. See the section Machine Learning Toolbox [47].

Conversion of ML model files

A conversion tool for ML model description files is located on the Convert tool tab. XML [35] and ONNX [29] files can be selected and converted to XML or BML [37] format.

NOTE

Conversion of Beckhoff BML back to XML is not provided for

The objective of Beckhoff BML is to represent the content as a not freely readable binary file. Therefore, the conversion process from Beckhoff BML to Beckhoff XML is not provided for.

The File Browser is opened via Select files and ML model description files can be selected (multi-selection is possible by Ctrl + click). Selected ML model files are listed on the left-hand side with their path and file name. Files can be removed from the list again with Remove selected from list.
Listed ML model description files can be selected in the left-hand list (multi-selection is possible with Ctrl + click here too) and converted with Convert files into the format selected in the drop-down menu. The converted files are saved in the converted file path. Default is the path <TwinCATPath>\Functions\TF38xx-Machine-Learning\ConvertToolFiles. The converted file path can be opened in the File Browser by clicking Open converted file path. The path can be changed with Select converted files path.

Creating a multi-engine description

It is possible via the Merge tool tab to generate an ML model description file containing more than one engine. Compare Beckhoff ML XML [36]. The condition for merging several engines is that the model structure - the area <Configuration> [36] in Beckhoff XML - is identical for all engines.

To this end, several ML model description files must be loaded with Select files. The entries are then visible, engine-based, in the list on the left-hand side. If several engines already exist in a description file, they are listed individually in the list.

The field MergeReferenceName is freely editable. A reference name for the selected engine can be entered here so that this engine is addressable in the PLC via this reference, cf. PredictRef [64] and GetEngineIdFromRef [60]. If the EngineId is used in the PLC instead of the reference name, the rule is that the uppermost engine in the list bears the ID = 0 and those that follow it accordingly 1, 2, 3 and so on.

Using the IsIncluded checkbox you can specify whether or not the selected engine should be included in the merged description file.

The position of the engines in the list can be manipulated in the central section of the user interface. Selected engines can be moved up or down in the list (up and down arrow). Any number of engines can be selected at the same time. Also, using the cross symbol, any number of engines can be manipulated at the same time with regard to the IsIncluded checkbox. If two engines are selected, their places can be swapped using the round double-arrow symbol. Engines can be removed from the list using the recycle bin symbol.
The name of the merged ML description file can be entered in the text box in the central section. The file is generated with **Merge** and saved in the file path `<TwinCATPath>\Functions\TF38xx-Machine-Learning\MergeToolFiles`. The path can be changed with **Select target path**.

Extracting multi-engine descriptions

Using the Extract tool it is possible to separate merged description files again. An ML model description file can be loaded using **Select file to extract**. All engines that it contains appear in the list on the left-hand side. If an engine is selected, it can be converted to a discrete ML description file using **Extract**. The name of the newly generated file is to be entered using the text box. If the **Auto file name** checkbox is checked, the original file name is supplemented by the string in the text box; if the checkbox is unchecked, only the string in the text box is used as the new file name. The newly generated file is saved in the file path `<TwinCATPath>\Functions\TF38xx-Machine-Learning\ExtractToolFiles`. The path can be changed with **Select target path**.
Creating metadata for the model

The configurator for

- Custom attributes [35]
- Product version and target version information [36]
- Input and output scaling [36]

is displayed via the Configuration tool tab.

An ML description file can be selected using Select file and then edited. After editing, the original file is overwritten using Save changes.

The Custom Attributes are edited using the buttons

- **Add attribute entry**: Adds an attribute to the selected tree item. The tree item must be selected in the left-hand list.
 - If an attribute is created, then the name, the data type and the value or values respectively must be specified.
 - The attributes are deleted by selecting the attribute and pressing the Delete button.
- **Add tree entry**: Adds a tree item under the selected tree item (as a subtree item).
- **Rename tree entry**: The selected tree item can be renamed.
- **Remove tree entry**: The selected tree item incl. the subtree items is deleted.

The editing area for input and output transformations can be enabled by checking the Trafo active checkbox. Depending on the number of inputs and outputs, a corresponding number of rows is offered, in each of which scaling and offset are to be entered, cf. Beckhoff ML XML [36]. A value from a list of numbers from the clipboard can be entered as an offset or scaling using the Paste Scaling and Paste Offset buttons. The number sequence can be separated by comma, semicolon or space. Only the number of numbers in the list must match the number of inputs or outputs respectively.
The **Producer and Target Version Information** is set automatically by the TC3 ML Model Manager. The Target Version is determined automatically on the basis of the feature set of the model description file used. If an older ML Runtime version is used to load this model file, a warning message appears when executing the Configure method.

The number of **inputs and outputs** of the model and the **model type** are displayed in the bottom right-hand part of the window. This cannot be edited and is only for information.

6.2 Machine Learning Toolbox

There are two options for the programmatic editing of the ML model description files:

- A Python package: `beckhoff.toolbox`
- An executable: `mllib_toolbox.exe`

Both are located in `<TwinCatInstallDir>\Functions\TF38xx-Machine-Learning\Utilities\ModelManagerAPI`.

Use of the executable

The `mllib_toolbox.exe` can be used, for example, from the command prompt or batch files. The built-in help is displayed by running the exe without arguments.

Some example calls are also displayed in the help. For example, an XML can be created from an ONNX with the call

```
mllib_toolbox onnximport myOnnxFile.onnx --xml
```

directly after creating the ONNX. A BML file is created accordingly with the argument `--bml`.

File paths can also be directly specified in order to deposit files in certain existing paths.

```
mllib_toolbox store C:\models\TrigonometryMLP.xml C:\models\bml\TrigonometryMLP.bml
```
Using the Python package

All options of the TC3 Machine Learning Model Manager are also usable with the Python package. Thus, directly after ONNX export from a Python script, a conversion to BML or XML can take place, or metadata information can also be integrated into the model via Custom Attributes.

The Python package is stored as a whl file in the folder `<TwinCatInstallDir>\Functions\TF38xx-Machine-Learning\Utilities\ModelManagerAPI\PythonPackage`. To install the package, use `pip install <TwinCatInstallDir>\Functions\TF38xx-Machine-Learning\Utilities\ModelManagerAPI\PythonPackage\<whl-file-name>`.

The package is loaded with

```python
# Load the package
import beckhoff.toolbox
```

The interface has a similar structure to the executable.

```python
# Import the ONNX and convert to XML format
beckhoff.toolbox.onnximport("myOnnxFile.onnx", "myOnnxFile.xml")

# Convert XML to BML
beckhoff.toolbox.store("myMLP.xml", "myMLP.bml")
```

You can read metadata from the package with the command `pip show beckhoff.toolbox`. In the location displayed there you will find the folder `beckhoff_toolbox<version>.dist.info`, which contains the METADATA file. This file contains further instructions on the use of the Python package. It can be opened in a text editor.

6.3 XML Exporter

Classification of the XML Exporters

The XML Exporters provided by Beckhoff can be freely used and changed. They are open source and under MIT license. This offers customers the option of adapting the XML Exporter according to their needs, for example by adding company-specific or project-specific CustomAttributes, cf. section Beckhoff ML XML.

The XML exporters are provided after installation of the product in the folder `<TwinCATPath>\Functions\TF38xx-Machine-Learning\Utilities\exporter`.

Direct XML export of an MLP

Only network architectures that have a sequential structure in the following sense are supported: each neuron of one layer is exclusively linked to each neuron of the following layer. It is possible to export layers without bias.

Export from Keras / Tensor Flow

- File: KerasMlp2Xml.py
- Sample call: https://infosys.beckhoff.com/content/1033/tf38x0_tc3_ML_NN_Inference_Engine/Resources/zip/9007208001426955.zip
- Requirements for the Python environment:
 - Keras with TensorFlow backend (Tensor Flow Version 1.15.0)
 - Numpy (Version 1.17.4)
Matplotlib

- Supported activation functions: tanh, sigmoid, softmax, relu, linear/identity, exp, softplus, softsign
- Only **sequential models** can be exported with the XML Exporter, no **functional models**. The model is to be generated accordingly with:

```python
from tensorflow.keras.models import Sequential
model = Sequential()
```

- Dropout layers are supported (only relevant for training, ignored when exporting)
- Dense layers are supported. The activation functions must be transferred to the layer as an argument and not as a discrete activation layer.

```python
from keras.layers import Activation, Dense
# this will not work !!!
model.add(Dense(64))
model.add(Activation('tanh'))
# this will work
model.add(Dense(64, activation='tanh'))
```

- The API is described in detail in the header of the file KerasMlp2Xml.py.

```python
net2xml(net, output_scaling_bias=None, output_scaling_scal=None)
```

- **net**, obligatory, class of the trained model
- **output_scaling_bias**, optional, list (in case of several features), otherwise float or int
- **output_scaling_scal**, optional, list (in case of several features), otherwise float or int
- A string document is returned that can be saved as an XML.

Export from MATLAB®

- File: MatlabMlp2Xml.m
- Sample call: https://infosys.beckhoff.com/content/1033/tf38x0_tc3_ML_NN_Inference_Engine/Resources/zip/8746880267.zip
- Requirements for the MATLAB® environment:
 - MATLAB®
 - Deep Learning Toolbox
- Supported activation functions: tanh, sigmoid, softmax, relu, linear/identity
- Supported models of the Deep Learning Toolbox: fitnet, patternnet
- ProcessFcns are supported by the types mapminmax and mapstd
- The use of ProcessFcns is optional
- If a ProcessFcn is used in the output layer, its activation function must be purelin
- The API is described in detail in the header of the file MatlabMlp2Xml.m

```python
MatlabMlp2Xml(net, fnstr, varargin)
```

- **net**, obligatory, class of the trained model
- **fnstr**, obligatory, string with path and file name
- **output_scaling_bias**, optional, vector
- **output_scaling_scal**, optional, vector

Direct XML export of an SVM

Export from SciKit-Learn

- File: SciKitLearnSvm2Xml.py
- Sample call: https://infosys.beckhoff.com/content/1033/tf38x0_tc3_ML_NN_Inference_Engine/Resources/zip/8746882571.zip
- Requirements for the Python environment:
 - Python Interpreter: 3.6 or higher
 - SciKit-Learn: version 0.22.0 or higher
 - Matplotlib
 - Numpy
Only numerical class labels can be exported.

Supported classes or models: SVC, NuSVC, OneClassSVM, SVR, NuSVR
- LinearSVR and LinearSVC are not supported by the Exporter, but can alternatively be implemented via the classes SVR and SVC, each with a linear kernel.

Supported kernel functions: linear, rbf, sigmoid, polynomial
- Neither individual kernel functions nor precomputed functions are supported

Remarks about model parameters:
- \(\textit{Gamma} = \text{scale} \) is not supported
- \(\textit{Gamma} = \text{auto}_\text{deprecated} \): it is exported \(\text{gamma} = 0.0 \)
- \(\textit{Gamma} = \text{auto} \): it is exported \(\text{gamma} = 1/n_\text{features} \).
- \(C = \text{inf} \) is not supported
- \(\textit{decision_function_shape} = \text{ovr} \) is not supported. \(\textit{decision_function_shape} = \text{ovo} \) must be used. Default in SciKit-Learn is \(\text{ovr} \)!
- \(\textit{break_ties} \) is ignored because \(\textit{decision_function_shape} = \text{ovr} \) is not supported.

The API is described in detail in the header of the file SciKitLearnSvm2Xml.py:
\[
\text{svm2xml}\left(\text{svm, input_scaling_bias=}, \text{None, input_scaling_scal=}, \text{None} \right)
\]
- \(\text{net} \), obligatory, class of the trained model
- \(\text{input_scaling_bias} \), optional, list (in case of several features), otherwise float or int
- \(\text{input_scaling_scal} \), optional, list (in case of several features), otherwise float or int
- A string document is returned that can be saved as an XML.

6.3.1 XML Exporter - samples

Small samples of the use of the XML Exporter [48] provided by Beckhoff can be downloaded here.

- Exporting an MLP from Keras / TensorFlow: https://infosys.beckhoff.com/content/1033/tf38x0_tc3_ML_NN_Inference_Engine/Resources/zip/9007208001426955.zip
- Exporting an MLP from MATLAB®: https://infosys.beckhoff.com/content/1033/tf38x0_tc3_ML_NN_Inference_Engine/Resources/zip/8746880267.zip
- Exporting an SVM from SciKit Learn: https://infosys.beckhoff.com/content/1033/tf38x0_tc3_ML_NN_Inference_Engine/Resources/zip/8746882571.zip
7 API

Two ways of programming are available to the user in TwinCAT 3. Static TcCOM objects can be created and triggered via a cyclic task, or an instance can be created from and configured via the PLC.

The programming interface of the PLC offers far greater flexibility than the use of a TcCOM instance; conversely, the latter is very simple and in many cases adequate.

7.1 TcCOM

The use of a TcCOM for the inference of an ML model in TwinCAT provides a very simple possibility to execute trained models in the TwinCAT XAR. In principle, the entire procedure is documented in the quick start, so that the steps described there are initially repeated and a few further details are given below.

Incorporation of a model by means of TcCOM object

This section deals with the execution of machine learning models by means of a prepared TcCOM object. A detailed description can be found here [51]. This interface offers a simple and clear way of loading models, executing them in real-time and generating appropriate links in your own application by means of the process image.

- Generate the prepared TcCOM object TcMachineLearningModelCycal. To do this, select the node TcCOM Objects with the right mouse button and select Add New Item...

- Under Tasks, generate a new TwinCAT task and assign this task context to your newly generated instance of TcMachineLearningModelCycal. To do this, go to the Context tab of the generated object and select your generated task in the drop-down menu.
• The instance of TcMachineLearningModelCycal has a tab called **ML model configuration**, where you can load the description file of the ML algorithm (XML or BML) and the available data types for the inputs and outputs of the selected model are then displayed. The file does not have to be on the target system. It can be selected from the development system and is then loaded to the target system on activating the configuration.

 ◦ A distinction is made between preferred and supported data types. The only difference is that a conversion of the data type takes place at runtime if a non-preferred type is selected. This may lead to slight losses in performance when using non-preferred data types.

 • The data types for inputs and outputs are initially set automatically to the preferred data types. The process image of the selected model is created by clicking **Generate IO**. Accordingly, by loading `KerasMLPEXample_cos.xml`, you get a process image with an input of the type REAL and an output of the type REAL.

 • Before activating the project on a target, you must select the TF3810 license manually on the Manage Licenses tab under System>License in the project tree, as you wish to load a multi-layer perceptron.

 • Activate the configuration. You can now test the model by manually writing at the input.

If the process image is larger, i.e. many inputs or outputs exist, it may be helpful not to generate each input individually as a PDO, but to define an input or output as an array type. To do this, check the checkbox **Generate IO as array** and click **Generate IO**.

Models with several engines, cf. Beckhoff ML XML [36], can be loaded, but only EngineId = 0 is used. Switching between the EngineIds with the TcCOM API is not provided for.

The ML description file used is automatically transferred from the Engineering system to the Runtime system on activating the configuration. File management details are described in the section **File management of the ML description files** [37].
7.2 PLC API

7.2.1 Datatypes

7.2.1.1 ETcMIIDataType

Syntax

Definition:

```
TYPE ETcMIIDataType :
{
  E_MLLDT_UNDEFINED : = 0,
  E_MLLDT_INT8_SINT : = 10,
  E_MLLDT_INT16_INT : = 20,
  E_MLLDT_INT32_DINT : = 30,
  E_MLLDT_INT64_LINT : = 40,
  E_MLLDT_FP16     : = 50,
  E_MLLDT_FP16B    : = 55,
  E_MLLDT_FP32_REAL : = 60,
  E_MLLDT_FP64_LREAL : = 70,
  E_MLLDT_SPECIAL : = 99
} BYTE;
END_TYPE
```

Values

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_MLLDT_UNDEFINED</td>
<td>invalid / undefined data type</td>
</tr>
<tr>
<td>E_MLLDT_INT8_SINT</td>
<td>8-bit signed integer number (SINT / char)</td>
</tr>
<tr>
<td>E_MLLDT_INT16_INT</td>
<td>16-bit signed integer number (INT / short)</td>
</tr>
<tr>
<td>E_MLLDT_INT32_DINT</td>
<td>32-bit signed integer number (DINT / long)</td>
</tr>
<tr>
<td>E_MLLDT_INT64_LINT</td>
<td>64-bit signed integer number (LINT / long long)</td>
</tr>
<tr>
<td>E_MLLDT_FP16</td>
<td>16-bit IEEE floating point number (future usage)</td>
</tr>
<tr>
<td>E_MLLDT_FP16B</td>
<td>16-bit "bfloat16" floating point number (future usage)</td>
</tr>
<tr>
<td>E_MLLDT_FP32_REAL</td>
<td>32-bit IEEE floating point number (REAL / float)</td>
</tr>
<tr>
<td>E_MLLDT_FP64_LREAL</td>
<td>64-bit IEEE floating point number (LREAL / double)</td>
</tr>
<tr>
<td>E_MLLDT_SPECIAL</td>
<td>Function-specific byte stream</td>
</tr>
</tbody>
</table>

7.2.1.2 ST_MIIPredictionParameters

Syntax

Definition:

```
TYPE ST_MIIPredictionParameters :
  STRUCT
    MIModelFilepath : STRING(255);
    MaxConcurrency : UINT;
  END_STRUCT
END_TYPE
```
Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MlModelFilepath</td>
<td>STRING(255)</td>
<td></td>
<td>File path of the loaded model. Either *.xml or *.bml file</td>
</tr>
<tr>
<td>MaxConcurrency</td>
<td>UINT</td>
<td>1</td>
<td>Maximum number of threads calling predict on the FB in the same time.</td>
</tr>
</tbody>
</table>

7.2.2 Function Blocks

7.2.2.1 FB_MllPrediction

Syntax

Definition:

```plaintext
FUNCTION_BLOCK FB_MllPrediction
  VAR_INPUT
    stPredictionParameter : ST_MllPredictionParameters;
    eTraceLevel          : TcEventSeverity;
  END_VAR
  VAR_OUTPUT
    bBusy                : BOOL;
    bError               : BOOL;
    ipResultMessage      : I_TcMessage;
    hrErrorCode          : HRESULT;
  END_VAR
```

Inputs

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>stPredictionParameter</td>
<td>ST_MllPredictionParameters</td>
<td>General Prediction parameters</td>
</tr>
<tr>
<td>eTraceLevel</td>
<td>TcEventSeverity</td>
<td>Eventlogger trace level. Default = Critical. Must be set before Configure method is called</td>
</tr>
</tbody>
</table>

Outputs

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bBusy</td>
<td>BOOL</td>
<td>True if a asynchronous action is taking place</td>
</tr>
<tr>
<td>bError</td>
<td>BOOL</td>
<td>Indicates error in method</td>
</tr>
<tr>
<td>ipResultMessage</td>
<td>I_TcMessage</td>
<td>Contains the last invoked error</td>
</tr>
<tr>
<td>hrErrorCode</td>
<td>HRESULT</td>
<td>Unique error code</td>
</tr>
</tbody>
</table>
Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CheckPreferredIODataTypes</td>
<td></td>
</tr>
<tr>
<td>CheckSupportedIODataTypes</td>
<td></td>
</tr>
<tr>
<td>Configure</td>
<td></td>
</tr>
<tr>
<td>GetCustomAttribute_array</td>
<td></td>
</tr>
<tr>
<td>GetCustomAttribute_fp64</td>
<td></td>
</tr>
<tr>
<td>GetCustomAttribute_int64</td>
<td></td>
</tr>
<tr>
<td>GetCustomAttribute_str</td>
<td></td>
</tr>
<tr>
<td>GetEngineIdFromRef</td>
<td></td>
</tr>
<tr>
<td>GetInputDim</td>
<td></td>
</tr>
<tr>
<td>GetMaxConcurrency</td>
<td></td>
</tr>
<tr>
<td>GetModelName</td>
<td></td>
</tr>
<tr>
<td>GetOutputDim</td>
<td></td>
</tr>
<tr>
<td>Predict</td>
<td></td>
</tr>
<tr>
<td>PredictRef</td>
<td></td>
</tr>
<tr>
<td>Reset</td>
<td></td>
</tr>
<tr>
<td>SetActiveEngineOptions</td>
<td></td>
</tr>
</tbody>
</table>

General information

The **FB_MllPrediction** is a central Function Block for the usage of TC3 Machine Learning in the PLC. The Function Block offers a variety of Methods as described above. Basically, the **FB_MllPrediction** offers the functionality to load and to execute ML models. Hence, it is an interface to the TwinCAT 3 integrated inference engine (ML Runtime).

Error handling

Note that all methods of **FB_MllPrediction** return a **BOOL** which indicates if the execution on the method caused any error, e.g.

```plaintext
bFailed := fbprediction.GetInputDim(nInputDim);
```

The evaluation of the return value of the methods is equivalent to the evaluation of the Output **bError** of **FB_MllPrediction**.

Further, **FB_MllPrediction** references the **TwinCAT 3 EventLogger** and thus ensures that information (events) is provided via the standardized interface **I_TcMessage**. The trace level can be adjusted using **TcEventSeverity**.

Sample Code

Sample code for the usage of the Function Block is available [here](#).
System Requirements

7.2.2.1.1 CheckPreferredIODataTypes

CheckPreferredIODataTypes

<table>
<thead>
<tr>
<th>fmtInputType</th>
<th>ETcMllDataType</th>
</tr>
</thead>
<tbody>
<tr>
<td>fmtOutputType</td>
<td>ETcMllDataType</td>
</tr>
<tr>
<td>IsPreferred</td>
<td>Reference To BOOL</td>
</tr>
</tbody>
</table>

Syntax

Definition:

```plaintext
METHOD CheckPreferredIODataTypes : BOOL
VAR_INPUT
    fmtInputType  : ETcMllDataType;
    fmtOutputType : ETcMllDataType;
    IsPreferred   : Reference To BOOL;
END_VAR
```

Inputs

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fmtInputType</td>
<td>ETcMllDataType [53]</td>
<td>Input type to check</td>
</tr>
<tr>
<td>fmtOutputType</td>
<td>ETcMllDataType [53]</td>
<td>Output type to check</td>
</tr>
<tr>
<td>IsPreferred</td>
<td>Reference To BOOL</td>
<td>Return true if preferred type</td>
</tr>
</tbody>
</table>

Return value

BOOL

A distinction is made between preferred and supported data types. The only difference is that a conversion of the data type takes place at runtime if a non-preferred type is selected. This may lead to slight losses in performance when using non-preferred data types.

7.2.2.1.2 CheckSupportedIODataTypes

CheckSupportedIODataTypes

<table>
<thead>
<tr>
<th>fmtInputType</th>
<th>ETcMllDataType</th>
</tr>
</thead>
<tbody>
<tr>
<td>fmtOutputType</td>
<td>ETcMllDataType</td>
</tr>
<tr>
<td>IsSupported</td>
<td>Reference To BOOL</td>
</tr>
</tbody>
</table>

Syntax

Definition:

```plaintext
METHOD CheckSupportedIODataTypes : BOOL
VAR_INPUT
    fmtInputType  : ETcMllDataType;
    fmtOutputType : ETcMllDataType;
    IsSupported   : Reference To BOOL;
END_VAR
```
Inputs

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fmtInputType</td>
<td>ETcMllDataType</td>
<td>Input type to check</td>
</tr>
<tr>
<td>fmtOutputType</td>
<td>ETcMllDataType</td>
<td>Output type to check</td>
</tr>
<tr>
<td>IsSupported</td>
<td>Reference To BOOL</td>
<td>returns true if supported</td>
</tr>
</tbody>
</table>

Return value

BOOL

7.2.2.1.3 Configure

Syntax

Definition:

METHOD Configure : BOOL

Return value

BOOL

The method loads the specified ML model description file and configures the inference engine. Specify all settings using the `stPredictionParameter` before calling the configure method.

```plaintext
fbPredict.stPredictionParameter.MlModelFilepath := 'C:/myModel.xml';
fbPredict.stPredictionParameter.MaxConcurrency := 1;
IsConfigured := fbPredict.Configure();
```

7.2.2.1.4 GetCustomAttribute_array

Syntax

Definition:

METHOD GetCustomAttribute_array : BOOL

Return value

BOOL

The method loads the specified ML model description file and configures the inference engine. Specify all settings using the `stPredictionParameter` before calling the configure method.

```plaintext
fbPredict.stPredictionParameter.MlModelFilepath := 'C:/myModel.xml';
fbPredict.stPredictionParameter.MaxConcurrency := 1;
IsConfigured := fbPredict.Configure();
```
Inputs

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sCustomAttributeName</td>
<td>T_MaxString</td>
<td>Name of the custom attribute</td>
</tr>
<tr>
<td>fmtAttributeDataType</td>
<td>Reference To</td>
<td>Data format of the custom attribute</td>
</tr>
<tr>
<td>pDataBuffer</td>
<td>PVOID</td>
<td>Destination data buffer, where the custom attribute is copied into</td>
</tr>
<tr>
<td>nBufferSize</td>
<td>UDINT</td>
<td>Length of the destination data buffer in bytes</td>
</tr>
<tr>
<td>nArrayLength</td>
<td>Reference To UDINT</td>
<td>Number of data type elements (i.e. number of fp32 values) found in the custom attribute</td>
</tr>
<tr>
<td>pnBytesWritten</td>
<td>Pointer To UDINT</td>
<td>Returns the number of bytes that have been written to the destination buffer</td>
</tr>
</tbody>
</table>

Return value

BOOL

Methods reads a custom attribute specified by `sCustomAttributeName` of type Array. Refer to [this sample code](#) showing how to read an array of LREAL.

7.2.2.1.5 GetCustomAttribute_fp64

Syntax

Definition:

```c
METHOD GetCustomAttribute_fp64 : BOOL
VAR_INPUT
  sCustomAttributeName : T_MaxString;
  lrDataOut            : Reference To LREAL;
END_VAR
```

Inputs

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sCustomAttributeName</td>
<td>T_MAXSTRING</td>
<td>Name of the custom fp64 attribute</td>
</tr>
<tr>
<td>lrDataOut</td>
<td>Reference To LREAL</td>
<td>Output value of the custom fp64 attribute</td>
</tr>
</tbody>
</table>

Return value

BOOL

Methods reads a custom attribute specified by `sCustomAttributeName` of type LREAL.

```c
sCustomKey : T_MAXSTRING := XmlTreeItem/XmlAttribute';
fValue : LREAL;
fpPrediction.GetCustomAttribute_fp64(sCustomKey, fValue);
```
7.2.2.1.6 GetCustomAttribute_int64

Syntax

Definition:

METHOD GetCustomAttribute_int64 : BOOL
VAR_INPUT
 sCustomAttributeName : T_MaxString;
 nDataOut : Reference To LINT;
END_VAR

Inputs

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sCustomAttributeName</td>
<td>T_MaxString</td>
<td>Name of the custom int64 attribute</td>
</tr>
<tr>
<td>nDataOut</td>
<td>Reference To LINT</td>
<td>Output value of the custom int64 attribute</td>
</tr>
</tbody>
</table>

Return value

BOOL

Methods reads a custom attribute specified by `sCustomAttributeName` of type LINT.

`sCustomKey : T_MaxString := XmlTreeItem/XmlAttribute';
iValue : LINT;
fbprediction.GetCustomAttribute_int64(sCustomKey, iValue);

7.2.2.1.7 GetCustomAttribute_str

Syntax

Definition:

METHOD GetCustomAttribute_str : BOOL
VAR_INPUT
 sCustomAttributeName : T_MaxString;
 sDstAttributeStringBuffer : Reference To T_MaxString;
 pnStringLen : Pointer To UDINT;
END_VAR

Inputs

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sCustomAttributeName</td>
<td>T_MaxString</td>
<td>Name of the custom string attribute</td>
</tr>
<tr>
<td>sDstAttributeStringBuffer</td>
<td>Reference To T_MaxString</td>
<td>Pointer to a string buffer to write the custom string attribute into</td>
</tr>
<tr>
<td>pnStringLen</td>
<td>Pointer To UDINT</td>
<td>(Optional) Actual length of the string attribute</td>
</tr>
</tbody>
</table>

TF3800, TF3810 Version: 1.4 59
Return value

BOOL

Methods reads a custom attribute specified by `sCustomAttributeName` of type `T_MaxString`.

```pascal
sCustomKey : T_MaxString := XmlTreeItem.XmlAttribute';
sValue : T_MaxString :=
fbprediction.GetCustomAttribute_str(sCustomKey, sValue);
```

7.2.2.1.8 GetEngineIdFromRef

Syntax

Definition:

```pascal
METHOD GetEngineIdFromRef : BOOL
VAR_INPUT
  sEngineRef : T_MaxString;
  nEngineId : Reference To UDINT;
END_VAR
```

Inputs

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sEngineRef</code></td>
<td><code>T_MaxString</code></td>
<td>Reference string of model engine (or parameter set) used for prediction, use default value 0 if there are no multi-engines used</td>
</tr>
<tr>
<td><code>nEngineId</code></td>
<td><code>Reference To UDINT</code></td>
<td>Id of model engine (or parameter set)</td>
</tr>
</tbody>
</table>

Return value

BOOL

In case of multi engines in an ML model description file, engines can be selected via ID or reference name. While the Predict-method expects an ID as input, the PredictRef method expects a reference name as input.

GetEngineIdFromRef can convert a reference name into an engine ID. Reference names can be found in the Beckhoff ML XML file inside the `<IODistributor>` section, see XML attribute str_reference, and can be set via the TC3 Machine Learning Model Manager, see Merge Tool.

7.2.2.1.9 GetInputDim

Syntax

Definition:

```pascal
METHOD GetInputDim : BOOL
VAR_INPUT
  nInputDim : Reference To UDINT;
END_VAR
```
Inputs

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nInputDim</td>
<td>Reference To UDINT</td>
<td>Size of the input data array</td>
</tr>
</tbody>
</table>

Return value

BOOL

7.2.2.1.10 GetMaxConcurrency

GetMaxConcurrency

```plaintext
METHOD GetMaxConcurrency : BOOL
VAR_INPUT
  nConcurrency : Reference To UDINT;
END_VAR
```

Inputs

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nConcurrency</td>
<td>Reference To UDINT</td>
<td>Maximum supported number of concurrently processing threads</td>
</tr>
</tbody>
</table>

Return value

BOOL

Methods reads out current configuration of inference engine regarding possible number of concurrently processing threads. This value is set by the user using `stPredictionParameter` before calling `Configure` method.

7.2.2.1.11 GetModelName

GetModelName

```plaintext
METHOD GetModelName : BOOL
VAR_INPUT
  sDstModelNameBuffer : Reference To T_MaxString;
  pnStringLen        : Pointer To UDINT;
END_VAR
```
Inputs

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sDstModelNameBuffer</td>
<td>Reference To T_MaxString</td>
<td>Name of the loaded model</td>
</tr>
<tr>
<td>pnStringLen</td>
<td>Pointer To UDINT</td>
<td>(Optional) Actual length of the string attribute</td>
</tr>
</tbody>
</table>

Return value

BOOL

The method reads the model name of the loaded ML description file. The model name is an identifier of the machine learning model type. Returned strings can be for example ‘support_vector_machine’ or ‘mlp_neural_network’.

7.2.2.1.12 GetOutputDim

Syntax

Definition:

```plaintext
METHOD GetOutputDim : BOOL
VAR_INPUT
  nOutputDim : Reference To UDINT;
END_VAR
```

Inputs

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nOutputDim</td>
<td>Reference To UDINT</td>
<td>Size of the output data array</td>
</tr>
</tbody>
</table>

Return value

BOOL

7.2.2.1.13 Predict

Syntax

Definition:

```plaintext
METHOD Predict : BOOL
VAR_INPUT
  pDataInp : PVOID;
  nDataInpDim : UDINT;
  fmtDataInpType : ETCMIIDataType;
  pDataOut : PVOID;
  nDataOutDim : UDINT;
  fmtDataOutType : ETCMIIDataType;
  nEngineId : UDINT;
  nConcurrencyId : UDINT;
END_VAR
```

Inputs

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pDataInp</td>
<td>PVOID</td>
<td></td>
</tr>
<tr>
<td>nDataInpDim</td>
<td>UDINT</td>
<td></td>
</tr>
<tr>
<td>fmtDataInpType</td>
<td>ETCMIIDataType</td>
<td></td>
</tr>
<tr>
<td>pDataOut</td>
<td>PVOID</td>
<td></td>
</tr>
<tr>
<td>nDataOutDim</td>
<td>UDINT</td>
<td></td>
</tr>
<tr>
<td>fmtDataOutType</td>
<td>ETCMIIDataType</td>
<td></td>
</tr>
<tr>
<td>nEngineId</td>
<td>UDINT</td>
<td></td>
</tr>
<tr>
<td>nConcurrencyId</td>
<td>UDINT</td>
<td></td>
</tr>
</tbody>
</table>
METHOD Predict : BOOL
VAR_INPUT
 pDataInp : PVOID;
 nDataInpDim : UDINT;
 fmtDataInpType : ETcMllDataType;
 pDataOut : PVOID;
 nDataOutDim : UDINT;
 fmtDataOutType : ETcMllDataType;
 nEngineId : UDINT;
 nConcurrencyId : UDINT;
END_VAR

Inputs

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pDataInp</td>
<td>PVOID</td>
<td>Pointer to the input data array (e.g. ARRAY[0..10] OF REAL in PLC)</td>
</tr>
<tr>
<td>nDataInpDim</td>
<td>UDINT</td>
<td>Number of inputs in the current vector</td>
</tr>
<tr>
<td>fmtDataInpType</td>
<td>ETcMllDataType</td>
<td>ETCmllDataType data type of input array</td>
</tr>
<tr>
<td>pDataOut</td>
<td>PVOID</td>
<td>Pointer to the output data array (e.g. ARRAY[0..10] OF REAL in PLC)</td>
</tr>
<tr>
<td>nDataOutDim</td>
<td>UDINT</td>
<td>Number of outputs in the current vector</td>
</tr>
<tr>
<td>fmtDataOutType</td>
<td>ETcMllDataType</td>
<td>ETCmllDataType data type of output array</td>
</tr>
<tr>
<td>nEngineId</td>
<td>UDINT</td>
<td>Id of model engine (or parameter set) used for prediction, use default value 0 if there are no multi-engines used</td>
</tr>
<tr>
<td>nConcurrencyId</td>
<td>UDINT</td>
<td>Id of the processing thread. Important: Never have two concurrently processing threads use the same id.</td>
</tr>
</tbody>
</table>

Return value

BOOL

The method performs the inference of the loaded model with the given input data and stores the result in the output data. Use configure method to load a ML model description file before calling Predict method.

For the inputs and outputs a pointer, the number of inputs/outputs and the data type are needed.

Sample call:

dtype : ETcMllDataType.E_MLLDTP32_REAL;
nInputDim := UDINT := 3;
nOutputDim := UDINT := 2;
nInput := ARRAY[1..3] OF REAL;
nOutput := ARRAY[1..2] OF REAL;
nCurrentEngineID := UDINT := 0;
nConcurrencyId := UDINT := 0;

fpprediction.Predict(
 pDataInp:=ADR(nInput) ,
 nDataInpDim:= nInputDim,
 fmtDataInpType:= dtype,
 pDataOut:=ADR(nOutput) ,
 nDataOutDim:= nOutputDim,
 fmtDataOutType:= dtype,
 nEngineId:= nCurrentEngineID,
 nConcurrencyId:= nConcurrencyId);
7.2.2.1.14 PredictRef

```plaintext
METHOD PredictRef : BOOL
VAR_INPUT
  pDataInp : PVOID;
  nDataInpDim : UDINT;
  fmtDataInpType : ETcMllDataType;
  pDataOut : PVOID;
  nDataOutDim : UDINT;
  fmtDataOutType : ETcMllDataType;
  sEngineRef : T_MaxString;
  nConcurrencyId : UDINT;
END_VAR
```

Inputs

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pDataInp</td>
<td>PVOID</td>
<td>Pointer to the input data array (e.g. ARRAY[0..10] OF REAL in PLC)</td>
</tr>
<tr>
<td>nDataInpDim</td>
<td>UDINT</td>
<td>Number of inputs in the current vector</td>
</tr>
<tr>
<td>fmtDataInpType</td>
<td>ETcMllDataType [53]</td>
<td>ETcMllDataType data type of input array</td>
</tr>
<tr>
<td>pDataOut</td>
<td>PVOID</td>
<td>Pointer to the output data array (e.g. ARRAY[0..10] OF REAL in PLC)</td>
</tr>
<tr>
<td>nDataOutDim</td>
<td>UDINT</td>
<td>Number of outputs in the current vector</td>
</tr>
<tr>
<td>fmtDataOutType</td>
<td>ETcMllDataType [53]</td>
<td>ETcMllDataType data type of output array</td>
</tr>
<tr>
<td>sEngineRef</td>
<td>T_MaxString</td>
<td>Reference string of model engine (or parameter set) used for prediction;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>use default value 0 if there are no multi-engines used</td>
</tr>
<tr>
<td>nConcurrencyId</td>
<td>UDINT</td>
<td>Id of the processing thread. Important: Never have two concurrently processing threads use the same id.</td>
</tr>
</tbody>
</table>

Return value

BOOL

The method performs the inference of the loaded model with the given input data and stores the result in the output data. Use configure method to load a ML model description file before calling PredictRef method.

For the inputs and outputs a pointer, the number of inputs/outputs and the data type are needed.

Sample call:

```plaintext
dtype : ETcMllDataType.E_MLLDT_FP32_REAL;
nInputDim : UDINT := 3;
nOutputDim : UDINT := 2;
nInput : ARRAY[1..3] OF REAL;
```
nOutput : ARRAY[1..2] OF REAL;
sCurrentEngineRef: T_MaxString := 'EngineRef';
nConcurrencyId : UDINT := 0;

```plaintext
fbprediction.Predict(
  pDataInp:=ADR(nInput) ,
  nDataInpDim:= nInputDim,
  fmtDataInpType:= dtype,
  pDataOut:=ADR(nOutput) ,
  nDataOutDim:= nOutputDim,
  fmtDataOutType:= dtype,
  sEngineRef:= sCurrentEngineRef,
  nConcurrencyId:= nConcurrencyId );
```

7.2.2.1.15 Reset

Reset

```plaintext
BOOL Reset
```

Syntax

Definition:

METHOD Reset : BOOL

- **Return value**

 BOOL

 This method resets the FB's error state.

7.2.2.1.16 SetActiveEngineOptions

SetActiveEngineOptions

```plaintext
sEngineOptions T_MaxString BOOL SetActiveEngineOptions
```

Syntax

Definition:

METHOD SetActiveEngineOptions : BOOL

- **Inputs**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sEngineOptions</td>
<td>T_MaxString</td>
<td></td>
</tr>
</tbody>
</table>

- **Return value**

 BOOL

 Input is a JSON-String with the following Key-Value-Pairs:
<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
<th>Default-Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>allow_FPU</td>
<td>TRUE / FALSE</td>
<td>TRUE</td>
</tr>
<tr>
<td>Allow_SSE3</td>
<td>TRUE / FALSE</td>
<td>TRUE</td>
</tr>
<tr>
<td>Allow_AVX</td>
<td>TRUE / FALSE</td>
<td>TRUE</td>
</tr>
<tr>
<td>Allow_FMA</td>
<td>TRUE / FALSE</td>
<td>TRUE</td>
</tr>
<tr>
<td>Allow_AVX_512F</td>
<td>TRUE / FALSE</td>
<td>TRUE</td>
</tr>
</tbody>
</table>

*Default-Values: The library uses as default the maximum performance. Hence, all available SIMD-extensions provided by the target PC's CPU are set to TRUE by default.

Sample Code to disable FMA and allow AVX (all others will be left unaltered):

```python
fbPredict : FB_M1LPrediction;
EngineOpts : T_MaxString := '\{ "allow_AVX":"true", "allow_FMA":"false" \}';
fbPredict.SetActiveEngineOptions(EngineOpts);
```
8 Samples

8.1 PLC API

8.1.1 Quick start

The sample from the section Quick start [21] can be downloaded here: https://infosys.beckhoff.com/content/1033/tf38x0(tc3_ML_NN_Inference_Engine/Resources/zip/9007208001625867.zip.

The ZIP contains a tszip archive (see PLC documentation, tszip) and a Beckhoff ML XML file (KerasMLPExample_cos.XML). Copy the XML file to the place defined in the PLC as the destination, or change the string to a different path.

8.1.2 Detailed example

The sample can be downloaded here: https://infosys.beckhoff.com/content/1033/tf38x0(tc3_ML_NN_Inference_Engine/Resources/zip/9007208017960459.zip.

The ZIP contains a tszip archive (see PLC documentation, tszip) and a Beckhoff ML XML file (TrigonometryMLP.XML). Copy the XML file to the place defined in the PLC as the destination, or change the string to a different path.

The ML model description file contains an MLP with an input and an output, cf. XML-Tag <Configuration> with int64_numInputNeurons = 1 as well as the second (last) layer with int64_numNeurons = 1.

Two parameter tags exist, i.e. the file contains two MLPs that are trained differently but identical in structure (<Configuration>). One of them is an MLP that was trained to approximate a sine function, while the other is an MLP that is intended to approximate a cosine function. In the <IODistributor> area it can be seen that one engine is reachable with the reference "sin_engine" and the other with the reference "cos_engine". Some metadata are stored in the <CustomAttributes> area, e.g. the name of the model, the version and the validity range of the input variables.

As in the quick start sample, a simple state machine is run through in the PLC source code. It differs from the quick start sample by the executability of the "Configure" state and the use of several engines.

The "Configure" state shows by way of example how flexibly you can handle the number of inputs and outputs and how you can read as much information as possible from the description file and put it to use directly in the PLC.

You can switch manually between the two engines in the online view by setting the EngineId to 0 or 1.

8.1.3 Parallel, non-blocking access to an inference module

This sample shows how an instance of FB_MllPrediction can be accessed from two tasks running concurrently.

The sample can be downloaded here: https://infosys.beckhoff.com/content/1033/tf38x0(tc3_ML_NN_Inference_Engine/Resources/zip/9007208030613003.zip.

The instance fbredict is declared in the GVL_ML. All programs in the PLC thus have access to the instance. The following are created as programs:

- P_InitML: The step sequence for initializing/loading an ML model is described here.
- P_Predict_Task1: The Predict method of the fbredict is called, wherein PRG is executed on Core 1.
- P_Predict_Task2: The Predict method of the fbredict is called, wherein PRG is executed on Core 2.
The essential components for the concurrent execution of 2 Predict calls are:

- The maximum number of concurrent accesses must be specified with the Configure method:

  ```
  GVL_ML.fbpredict.stPredictionParameter.MaxConcurrency := nMaxConcurrency;
  ```

 with nMaxConcurrency = 2.

 The instance then keeps this number of independent inference machines available.

- A unique ID of the calling context must be specified when calling the Predict method. These are declared as constants in P_Predict_Task1 and P_Predict_Task2, see nConcurrencyId.

 The user must ensure that each calling context transfers a unique ID with the Predict call.

- The remainder of the source code is largely identical to the Quick start sample [67].
9 Appendix

9.1 Log files

The log files are important for Support. They can be found under `<TwinCATInstallPath>\Functions\TF38xx-Machine-Learning\Logs`.

The files `CycalLog.txt` and `ModelManagerLog.txt` are created on the XAE system. These log the behavior during the engineering of components. CycalLog.txt contains logs regarding the configuration of TcMachineLearningModelCycal TcCOM. The TC3 Machine Learning Model Manager writes to the file ModelManagerLog.txt.

On the runtime system, the file `mllib.log` is created for logging the behavior during the machine runtime.

You can access Report an Issue via the Visual Studio menu bar under TwinCAT > Machine Learning. This dialog opens the Support Information Report, which assists you in sending a report to Beckhoff Support.

9.2 Third-party components

This software contains third-party components.
Please refer to the license file provided in the following folder for further information:
<TwinCatInstallPath>\3.1\System\Legal\TF38xx Additional license information.txt.
More Information:
www.beckhoff.com/tf3800